首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pei Y  Niu L  Lu F  Liu C  Zhai J  Kong X  Cao X 《Plant physiology》2007,144(4):1913-1923
Human PROTEIN ARGININE METHYLTRANSFERASE5 (PRMT5) encodes a type II protein arginine (Arg) methyltransferase and its homologs in animals and yeast (Saccharomyces cerevisiae and Schizosaccharomyces pombe) are known to regulate RNA processing, signal transduction, and gene expression. However, PRMT5 homologs in higher plants have not yet been reported and the biological roles of these proteins in plant development remain elusive. Here, using conventional biochemical approaches, we purified a plant histone Arg methyltransferase from cauliflower (Brassica oleracea) that was nearly identical to AtPRMT5, an Arabidopsis (Arabidopsis thaliana) homolog of human PRMT5. AtPRMT5 methylated histone H4, H2A, and myelin basic protein in vitro. Western blot using symmetric dimethyl histone H4 Arg 3-specific antibody and thin-layer chromatography analysis demonstrated that AtPRMT5 is a type II enzyme. Mutations in AtPRMT5 caused pleiotropic developmental defects, including growth retardation, dark green and curled leaves, and FlOWERING LOCUS C (FLC)-dependent delayed flowering. Therefore, the type II protein Arg methyltransferase AtPRMT5 is involved in promotion of vegetative growth and FLC-dependent flowering time regulation in Arabidopsis.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Severe combined deficiency of the 2-oxoacid dehydrogenases, associated with a defect in lipoate synthesis and accompanied by defects in complexes I, II, and III of the mitochondrial respiratory chain, is a rare autosomal recessive syndrome with no obvious causative gene defect. A candidate locus for this syndrome was mapped to chromosomal region 2p14 by microcell-mediated chromosome transfer in two unrelated families. Unexpectedly, analysis of genes in this area identified mutations in two different genes, both of which are involved in [Fe-S] cluster biogenesis. A homozygous missense mutation, c.545G>A, near the splice donor of exon 6 in NFU1 predicting a p.Arg182Gln substitution was found in one of the families. The mutation results in abnormal mRNA splicing of exon 6, and no mature protein could be detected in fibroblast mitochondria. A single base-pair duplication c.123dupA was identified in BOLA3 in the second family, causing a frame shift that produces a premature stop codon (p.Glu42Argfs13). Transduction of fibroblast lines with retroviral vectors expressing the mitochondrial, but not the cytosolic isoform of NFU1 and with isoform 1, but not isoform 2 of BOLA3 restored both respiratory chain function and oxoacid dehydrogenase complexes. NFU1 was previously proposed to be an alternative scaffold to ISCU for the biogenesis of [Fe-S] centers in mitochondria, and the function of BOLA3 was previously unknown. Our results demonstrate that both play essential roles in the production of [Fe-S] centers for the normal maturation of lipoate-containing 2-oxoacid dehydrogenases, and for the assembly of the respiratory chain complexes.  相似文献   

15.
SWI2/SNF2 chromatin remodeling ATPases play important roles in plant and metazoan development. Whereas metazoans generally encode one or two SWI2/SNF2 ATPase genes, Arabidopsis encodes four such chromatin regulators: the well‐studied BRAHMA and SPLAYED ATPases, as well as two closely related non‐canonical SWI2/SNF2 ATPases, CHR12 and CHR23. No developmental role has as yet been described for CHR12 and CHR23. Here, we show that although strong single chr12 or chr23 mutants are morphologically indistinguishable from the wild type, chr12 chr23 double mutants cause embryonic lethality. The double mutant embryos fail to initiate root and shoot meristems, and display few and aberrant cell divisions. Weak double mutant embryos give rise to viable seedlings with dramatic defects in the maintenance of both the shoot and the root stem cell populations. Paradoxically, the stem cell defects are correlated with increased expression of the stem cell markers WUSCHEL and WOX5. During subsequent development, the meristem defects are partially overcome to allow for the formation of very small, bushy adult plants. Based on the observed morphological defects, we named the two chromatin remodelers MINUSCULE 1 and 2. Possible links between minu1 minu2 defects and defects in hormone signaling and replication‐coupled chromatin assembly are discussed.  相似文献   

16.
17.
18.
Histone H1 is an abundant component of eukaryotic chromatin that is thought to stabilize higher-order chromatin structures. However, the complete knock-out of H1 genes in several lower eukaryotes has no discernible effect on their appearance or viability. In higher eukaryotes, the presence of many mutually compensating isoforms of this protein has made assessment of the global function of H1 more difficult. We have used double-stranded RNA (dsRNA) silencing to suppress all the H1 genes of Arabidopsis thaliana. Plants with a >90% reduction in H1 expression exhibited a spectrum of aberrant developmental phenotypes, some of them resembling those observed in DNA hypomethylation mutants. In subsequent generations these defects segregated independently of the anti-H1 dsRNA construct. Downregulation of H1 genes did not cause substantial genome-wide DNA hypo- or hypermethylation. However, it was correlated with minor but statistically significant changes in the methylation patterns of repetitive and single-copy sequences, occurring in a stochastic manner. These findings reveal an important and previously unrecognized link between linker histones and specific patterns of DNA methylation.  相似文献   

19.
Hereditary multiple exostoses (EXT; MIM 133700) is an autosomal dominant bone disorder characterized by the presence of multiple benign cartilage-capped tumors (exostoses). Besides suffering complications caused by the pressure of these exostoses on the surrounding tissues, EXT patients are at an increased risk for malignant chondrosarcoma, which may develop from an exostosis. EXT is genetically heterogeneous, and three loci have been identified so far: EXT1, on chromosome 8q23-q24; EXT2, on 11p11-p12; and EXT3, on the short arm of chromosome 19. The EXT1 and EXT2 genes were cloned recently, and they were shown to be homologous. We have now analyzed the EXT1 and EXT2 genes, in 26 EXT families originating from nine countries, to identify the underlying disease-causing mutation. Of the 26 families, 10 families had an EXT1 mutation, and 10 had an EXT2 mutation. Twelve of these mutations have never been described before. In addition, we have reviewed all EXT1 and EXT2 mutations reported so far, to determine the nature, frequency, and distribution of mutations that cause EXT. From this analysis, we conclude that mutations in either the EXT1 or the EXT2 gene are responsible for the majority of EXT cases. Most of the mutations in EXT1 and EXT2 cause premature termination of the EXT proteins, whereas missense mutations are rare. The development is thus mainly due to loss of function of the EXT genes, consistent with the hypothesis that the EXT genes have a tumor- suppressor function.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号