首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Protein modification by one or more ubiquitin chains serves a critical signalling function across a wide range of cellular processes. Specificity within this system is conferred by ubiquitin E3 ligases, which target the substrates. Their activity is balanced by deubiquitylating enzymes (DUBs), which remove ubiquitin from both substrates and ligases. The RING-CH ligases were initially identified as viral immunoevasins involved in the downregulation of immunoreceptors. Their cellular orthologues, the Membrane-Associated RING-CH (MARCH) family represent a subgroup of the classical RING genes. Unlike their viral counterparts, the cellular RING-CH proteins appear highly regulated, and one of these in particular, MARCH7, was of interest because of a potential role in neuronal development and lymphocyte proliferation. Difficulties in detection and expression of this orphan ligase lead us to search for cellular cofactors involved in MARCH7 stability. In this study, we show that MARCH7 readily undergoes autoubiquitylation and associates with two deubiquitylating enzymes – ubiquitin-specific protease (USP)9X in the cytosol and USP7 in the nucleus. Exogenous expression and short interfering RNA depletion experiments demonstrate that MARCH7 can be stabilized by both USP9X and USP7, which deubiquitylate MARCH7 in the cytosol and nucleus, respectively. We therefore demonstrate compartment-specific regulation of this E3 ligase through recruitment of site-specific DUBs.  相似文献   

3.
4.
Bax, a pro‐apoptotic protein from the Bcl‐2 family, is central to apoptosis regulation. To suppress spontaneous apoptosis, Bax must be under stringent control that may include regulation of Bax conformation and expression levels. We report that IBRDC2, an IBR‐type RING‐finger E3 ubiquitin ligase, regulates the levels of Bax and protects cells from unprompted Bax activation and cell death. Downregulation of IBRDC2 induces increased cellular levels and accumulation of the active form of Bax. The ubiquitination‐dependent regulation of Bax stability is suppressed by IBRDC2 downregulation and stimulated by IBRDC2 overexpression in both healthy and apoptotic cells. Although mostly cytosolic in healthy cells, upon induction of apoptosis, IBRDC2 accumulates in mitochondrial domains enriched with Bax. Mitochondrial accumulation of IBRDC2 occurs in parallel with Bax activation and also depends on the expression levels of Bcl‐xL. Furthermore, IBRDC2 physically interacts with activated Bax. By applying Bax mutants in HCT116 Bax?/? cells, combined with the use of active Bax‐specific antibodies, we have established that both mitochondrial localization and apoptotic activation of Bax are required for IBRDC2 translocation to the mitochondria.  相似文献   

5.
Sensitive to Apoptosis Gene (SAG), a RING component of SCF E3 ubiquitin ligase, was shown to be phosphorylated by protein kinase CK2 at the Thr10 residue. It is, however, unknown whether this phosphorylation is stress-responsive or whether the phosphorylation changes its E3 ubiquitin ligase activity. To address these, we made a specific antibody against the phosphor-SAGThr10. Transient transfection experiment showed that SAG was phosphorylated at Thr10 which can be significantly inhibited by TBB, a relatively specific inhibitor of protein kinase CK2. To determine whether this SAG phosphorylation is stress-responsive, we defined a chemical-hypoxia condition in which SAG and CK2 were both induced. Under this condition, we failed to detect SAG phosphorylation at Thr10, which was readily detected, however, in the presence of MG132, a proteasome inhibitor, suggesting that the phosphorylated SAG has undergone a rapid degradation. To further define this, we made two SAG mutants, SAG-T10A which abolishes the SAG phosphorylation and SAG-T10E, which mimics the constitutive SAG phosphorylation. The half-life study revealed that indeed, SAG-T10E has a much shorter protein half-life (2 h), as compared to wild-type SAG (10 h). Again, rapid degradation of SAG-T10E in cells can be blocked by MG132. Thus, it appears that CK2-induced SAG phosphorylation at Thr10 regulates its stability through a proteasome-dependent pathway. Immunocytochemistry study showed that SAG as well as its phosphorylation mutants, was mainly localized in nucleus and lightly in cytoplasm. Hypoxia condition did not change their sub-cellular localization. Finally, an in vitro ubiqutination assay showed that SAG mutation at Thr10 did not change its E3 ligase activity when complexed with cullin-1. These studies suggested that CK2 might regulate SAG-SCF E3 ligase activity through modulating SAG’s stability, rather than its enzymatic activity directly.  相似文献   

6.
CHIP proteins are E3 ubiquitin ligases that promote degradation of Hsp70 and Hsp90 substrate proteins through the 26S proteasome in animal systems. A CHIP-like protein in Arabidopsis, AtCHIP, also has E3 ubiquitin ligase activity and has important roles to play under conditions of abiotic stress. In an effort to study the mode of action of AtCHIP in plant cells, proteins that physically interact with it were identified. Like its animal orthologs, AtCHIP interacts with a unique class of ubiquitin-conjugating enzymes (UBC or E2) that belongs to the stress-inducible UBC4/5 class in yeast. AtCHIP also interacts with other proteins, including an A subunit of protein phosphatase 2A (PP2A). This PP2A subunit appears to be a substrate of AtCHIP, because it can be ubiquitylated by AtCHIP in vitro and because the activity of PP2A is increased in AtCHIP-overexpressing plants in the dark or under low-temperature conditions. Unlike the rcn1 mutant, that has reduced PP2A activity due to a mutation in one of the A subunit genes of PP2A, AtCHIP-overexpressing plants are more sensitive to ABA treatment. Since PP2A was previously shown to be involved in low-temperature responses in plants, the low-temperature-sensitive phenotype observed in AtCHIP-overexpressing plants might be partly due to the change in PP2A activity. These data suggest that the E3 ubiquitin ligase AtCHIP may function upstream of PP2A in stress-responsive signal transduction pathways under conditions of low temperature or in the dark.  相似文献   

7.
8.
9.
10.
Ubiquitin‐like proteins (UBLs) are activated, transferred and conjugated by E1‐E2‐E3 enzyme cascades. E2 enzymes for canonical UBLs such as ubiquitin, SUMO, and NEDD8 typically use common surfaces to bind to E1 and E3 enzymes. Thus, canonical E2s are required to disengage from E1 prior to E3‐mediated UBL ligation. However, E1, E2, and E3 enzymes in the autophagy pathway are structurally and functionally distinct from canonical enzymes, and it has not been possible to predict whether autophagy UBL cascades are organized according to the same principles. Here, we address this question for the pathway mediating lipidation of the human autophagy UBL, LC3. We utilized bioinformatic and experimental approaches to identify a distinctive region in the autophagy E2, Atg3, that binds to the autophagy E3, Atg12~Atg5‐Atg16. Short peptides corresponding to this Atg3 sequence inhibit LC3 lipidation in vitro. Notably, the E3‐binding site on Atg3 overlaps with the binding site for the E1, Atg7. Accordingly, the E3 competes with Atg7 for binding to Atg3, implying that Atg3 likely cycles back and forth between binding to Atg7 for loading with the UBL LC3 and binding to E3 to promote LC3 lipidation. The results show that common organizational principles underlie canonical and noncanonical UBL transfer cascades, but are established through distinct structural features.  相似文献   

11.
Mammalian α4 phosphoprotein, the homolog of yeast Tap42, is a component of the mammalian target‐of‐rapamycin (mTOR) pathway that regulates ribogenesis, the initiation of translation, and cell‐cycle progression. α4 is known to interact with the catalytic subunit of protein phosphatase 2A (PP2Ac) and to regulate PP2A activity. Using α4 as bait in yeast two‐hybrid screening of a human K562 erythroleukemia cDNA library, EDD (E3 isolated by differential display) E3 ubiquitin ligase was identified as a new protein partner of α4. EDD is the mammalian ortholog of Drosophila hyperplastic discs gene (hyd) that controls cell proliferation during development. The EDD protein contains a PABC domain that is present in poly(A)‐binding protein (PABP), suggesting that PABP may also interact with α4. PABP recruits translation factors to the poly(A)‐tails of mRNAs. In the present study, immunoprecipitation/immunoblotting (IP/IB) analyses showed a physical interaction between α4 and EDD in rat Nb2 T‐lymphoma and human MCF‐7 breast cancer cell lines. α4 also interacted with PABP in Nb2, MCF‐7 and the human Jurkat T‐leukemic and K562 myeloma cell lines. COS‐1 cells, transfected with Flag‐tagged‐pSG5‐EDD, gave a (Flag)‐EDD–α4 immunocomplex. Furthermore, deletion mutants of α4 were constructed to determine the binding site for EDD. IP/IB analysis showed that EDD bound to the C‐terminal region of α4, independent of the α4‐PP2Ac binding site. Therefore, in addition to PP2Ac, α4 interacts with EDD and PABP, suggesting its involvement in multiple steps in the mTOR pathway that leads to translation initiation and cell‐cycle progression. J. Cell. Biochem. 110: 1123–1129, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

12.
Tribbles homolog 2 (TRIB2) is functionally important for liver cancer cell survival and transformation. Our previous study demonstrates TRIB2 is stable in liver cancer cells due to the impaired ubiquitination by Smurf1. However, overexpression of Smurf1 alone cannot completely abolish TRIB2 protein expression, whether other potential factors involved in the degradation of TRIB2 still remains unclear. In the present study, we reveal that the stability and ubiquitination of TRIB2 can also be controlled by ubiquitin E3 ligase SCFβ-TRCP. Depletion of either Cullin1 or β-TRCP up-regulates TRIB2 protein expression. Moreover, knockdown of β-TRCP extends the half-life, whereas reduces ubiquitylation of TRIB2. Similar to Smurf1, β-TRCP exerts its role through the TRIB2 Degradation Domain (TDD) at the N-terminus of the TRIB2 protein. Hence, we add TRIB2 to the substrate list of SCFβ-TRCP and the finding may be helpful in the treatment of TRIB2 dependent liver cancer.  相似文献   

13.
14.
SAG (Sensitive to Apoptosis Gene), also known as RBX2 (RING box protein 2), ROC2 (Regulator of Cullins 2), or RNF7 (RING Finger Protein 7), was originally cloned in our laboratory as a redox inducible antioxidant protein and later characterized as the second member of the RBX/ROC RING component of the SCF (SKP1-CUL-F-box Proteins) E3 ubiquitin ligase. When acting alone, SAG scavenges oxygen radicals by forming inter- and intra- molecular disulfide bonds, whereas by forming a complex with other components of the SCF E3 ligase, SAG promotes ubiquitination and degradation of a number of protein substrates, including c-JUN, DEPTOR, HIF-1α, IκBα, NF1, NOXA, p27, and procaspase-3, thus regulating various signaling pathways and biological processes. Specifically, SAG protects cells from apoptosis, confers radioresistance, and plays an essential and non-redundant role in mouse embryogenesis and vasculogenesis. Furthermore, stress-inducible SAG is overexpressed in a number of human cancers and SAG overexpression correlates with poor patient prognosis. Finally, SAG transgenic expression in epidermis causes an early stage inhibition, but later stage promotion, of skin tumorigenesis triggered by DMBA/TPA. Given its major role in promoting targeted degradation of tumor suppressive proteins, leading to apoptosis suppression and accelerated tumorigenesis, SAG E3 ligase appears to be an attractive anticancer target.  相似文献   

15.
16.
17.
18.
19.
20.
Mutations of parkin are associated with the occurrence of autosomal recessive familial Parkinson's disease (PD). Parkin acts an E3 ubiquitin ligase, which ubiquitinates target proteins and subsequently regulates either their steady‐state levels through the ubiquitin–proteasome system or biochemical properties. In this study, we identify a novel regulatory mechanism of parkin by searching for new regulatory factors. After screening human fetal brain using a yeast two hybrid assay, we found dual‐specificity tyrosine‐(Y)‐phosphorylation‐regulated kinase 1A (Dyrk1A) as a novel binding partner of parkin. We also observed that parkin interacts and co‐localizes with Dyrk1A in mammalian cells. In addition, Dyrk1A directly phosphorylated parkin at Ser‐131, causing the inhibition of its E3 ubiquitin ligase activity. Moreover, Dyrk1A‐mediated phosphorylation reduced the binding affinity of parkin to its ubiquitin‐conjugating E2 enzyme and substrate, which could be the underlying inhibitory mechanism of parkin activity. Furthermore, Dyrk1A‐mediated phosphorylation inhibited the neuroprotective action of parkin against 6‐hydroxydopamine toxicity in dopaminergic SH‐SY5Y cells. These findings suggest that Dyrk1A acts as a novel functional modulator of parkin. Parkin phosphorylation by Dyrk1A suppresses its E3 ubiquitin ligase activity potentially contributing to the pathogenesis of PD under PD‐inducing pathological conditions.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号