首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of DNA, RNA, and de novo proteins is fundamental for early development of the seedling after germination, but such processes release pyrophosphate (PPi) as a byproduct of ATP hydrolysis. The over-accumulation of the inhibitory metabolite PPi in the cytosol hinders these biosynthetic reactions. All living organisms possess ubiquitous enzymes collectively called inorganic pyrophosphatases (PPases), which catalyze the hydrolysis of PPi into two orthophosphate (Pi) molecules. Defects in PPase activity cause severe developmental defects and/or growth arrest in several organisms. In higher plants, a proton-translocating vacuolar PPase (H+­PPase) uses the energy of PPi hydrolysis to acidify the vacuole. However, the biological implications of PPi hydrolysis are vague due to the widespread belief that the major role of H+­PPase in plants is vacuolar acidification. We have shown that the Arabidopsis fugu5 mutant phenotype, caused by a defect in H+­PPase activity, is rescued by complementation with the yeast cytosolic PPase IPP1. In addition, our analyses have revealed that increased cytosolic PPi levels impair postgerminative development in fugu5 by inhibiting gluconeogenesis. This led us to the conclusion that the role of H+­PPase as a proton-pump is negligible. Here, we present further evidence of the growth-boosting effects of removing PPi in later stages of plant vegetative development, and briefly discuss the biological role of PPases and their potential applications in different disciplines and in various organisms.  相似文献   

2.
The early stages of tuber development are characterized by cell division, high metabolic activity, and the predominance of invertase as the sucrose (Suc) cleaving activity. However, during the subsequent phase of starch accumulation the cleavage of Suc occurs primarily by the action of Suc synthase. The mechanism that is responsible for this switch in Suc cleaving activities is currently unknown. One striking difference between the invertase and Suc synthase mediated cleavage of Suc is the direct involvement of inorganic pyrophosphate (PPi) in the latter case. There is presently no convincing explanation of how the PPi required to support this process is generated in potato (Solanum tuberosum) tubers. The major site of PPi production in a maturing potato tubers is likely to be the reaction catalyzed by ADP-glucose pyrophosphorylase, the first committed step of starch biosynthesis in amyloplasts. We present data based on the analysis of the PPi levels in various transgenic plants altered in starch and Suc metabolism that support the hypothesis that PPi produced in the plastid is used to support cytosolic Suc breakdown and that PPi is an important coordinator of cytosolic and plastidial metabolism in potato tubers.  相似文献   

3.
In plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H+-PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also known as compensated cell enlargement (CCE). While decreased cell numbers have been ascribed to reduced gluconeogenesis from triacylglycerol, the molecular mechanisms underlying CCE remain ill-known. Given the role of indole 3-butyric acid (IBA) in cotyledon development, and because CCE in fugu5 is specifically and completely cancelled by ech2, which shows defective IBA-to-indoleacetic acid (IAA) conversion, IBA has emerged as a potential regulator of CCE. Here, to further illuminate the regulatory role of IBA in CCE, we used a series of high-order mutants that harbored a specific defect in IBA-to-IAA conversion, IBA efflux, IAA signaling, or vacuolar type H+-ATPase (V-ATPase) activity and analyzed the genetic interaction with fugu5–1. We found that while CCE in fugu5 was promoted by IBA, defects in IBA-to-IAA conversion, IAA response, or the V-ATPase activity alone cancelled CCE. Consistently, endogenous IAA in fugu5 reached a level 2.2-fold higher than the WT in 1-week-old seedlings. Finally, the above findings were validated in icl–2, mls–2, pck1–2 and ibr10 mutants, in which CCE was triggered by low sugar contents. This provides a scenario in which following seed germination, the low-sugar-state triggers IAA synthesis, leading to CCE through the activation of the V-ATPase. These findings illustrate how fine-tuning cell and organ size regulation depend on interplays between metabolism and IAA levels in plants.  相似文献   

4.
Wu L  Birch RG 《Plant physiology》2011,157(4):2094-2101
Isomaltulose is a structural isomer of sucrose (Suc). It has been widely used as a nonmetabolized sugar in physiological studies aimed at better understanding the regulatory roles and transport of sugars in plants. It is increasingly used as a nutritional human food, with some beneficial properties including low glycemic index and acariogenicity. Cloning of genes for Suc isomerases opened the way for direct commercial production in plants. The understanding that plants lack catabolic capabilities for isomaltulose indicated a possibility of enhanced yields relative to Suc. However, this understanding was based primarily on the treatment of intact cells with exogenous isomaltulose. Here, we show that sugarcane (Saccharum interspecific hybrids), like other tested plants, does not readily import or catabolize extracellular isomaltulose. However, among intracellular enzymes, cytosolic Suc synthase (in the breakage direction) and vacuolar soluble acid invertase (SAI) substantially catabolize isomaltulose. From kinetic studies, the specificity constant of SAI for isomaltulose is about 10% of that for Suc. Activity varied against other Suc isomers, with V(max) for leucrose about 6-fold that for Suc. SAI activities from other plant species varied substantially in substrate specificity against Suc and its isomers. Therefore, in physiological studies, the blanket notion of Suc isomers including isomaltulose as nonmetabolized sugars must be discarded. For example, lysis of a few cells may result in the substantial hydrolysis of exogenous isomaltulose, with profound downstream signal effects. In plant biotechnology, different V(max) and V(max)/K(m) ratios for Suc isomers may yet be exploited, in combination with appropriate developmental expression and compartmentation, for enhanced sugar yields.  相似文献   

5.
6.
外源糖浸种缓解盐胁迫下玉米种子萌发   总被引:7,自引:2,他引:5  
以玉米品种‘垦玉6号’为材料,在150 mmol·L-1NaCl胁迫条件下,研究葡萄糖(Glc)和蔗糖(Suc)浸种对玉米种子萌发阶段耐盐性的影响.结果表明: 盐胁迫下,0.5 mmol·L-1 Glc、Suc浸种可促进玉米种子萌发及幼苗早期生长,其中Glc浸种玉米胚芽和胚根长及相应干质量增加到盐处理的1.5、1.3、2.1、1.8倍;Suc浸种玉米分别增加到1.7、1.3、2.7、1.9倍;盐胁迫下Glc、Suc浸种可减少胚芽中硫代巴比妥酸反应物(TBARS)和过氧化氢(H2O2)含量,与盐处理相比分别降低24.9%、20.6%;Glc、Suc浸种可显著提高盐胁迫下玉米胚芽超氧化物歧化酶(SOD)、抗坏血酸过氧化物酶(APX)、谷胱甘肽过氧化物酶(GPX)、谷胱甘肽还原酶(GR)的活性,并诱导葡萄糖6 磷酸脱氢酶(G6PDH)活性的升高,其中Glc浸种玉米SOD、APX、GPX、GR、G6PDH活性较盐处理分别提高66.2%、62.9%、32.0%、38.5%、50.5%,Suc浸种玉米较盐处理分别提高67.5%、59.8%、30.0%、38.5%、50.4%;Glc、Suc浸种胚芽中抗坏血酸 (ASA)、谷胱甘肽(GSH)含量及ASA/DHA、GSH/GSSG显著提高,其中G6PDH活性与外源糖诱导的较强的抗氧化能力密切相关.Glc、Suc浸种还可提高盐胁迫下玉米胚芽中K+/Na+,分别为盐处理的2.3、2.4倍.外源 Glc、Suc浸种可通过提高玉米种子抗氧化能力及维持体内K+和Na+离子平衡缓解盐胁迫对玉米种子萌发的抑制效应.  相似文献   

7.
Zhang J  Liu H  Sun J  Li B  Zhu Q  Chen S  Zhang H 《PloS one》2012,7(1):e30355
Fatty acid desaturases play important role in plant responses to abiotic stresses. However, their exact function in plant resistance to salt stress is unknown. In this work, we provide the evidence that FAD2, an endoplasmic reticulum localized ω-6 desaturase, is required for salt tolerance in Arabidopsis. Using vacuolar and plasma membrane vesicles prepared from the leaves of wild-type (Col-0) and the loss-of-function Arabidopsis mutant, fad2, which lacks the functional FAD2, we examined the fatty acid composition and Na+-dependent H+ movements of the isolated vesicles. We observed that, when compared to Col-0, the level of vacuolar and plasma membrane polyunsaturation was lower, and the Na+/H+ exchange activity was reduced in vacuolar and plasma membrane vesicles isolated from fad2 mutant. Consistent with the reduced Na+/H+ exchange activity, fad2 accumulated more Na+ in the cytoplasm of root cells, and was more sensitive to salt stress during seed germination and early seedling growth, as indicated by CoroNa-Green staining, net Na+ efflux and salt tolerance analyses. Our results suggest that FAD2 mediated high-level vacuolar and plasma membrane fatty acid desaturation is essential for the proper function of membrane attached Na+/H+ exchangers, and thereby to maintain a low cytosolic Na+ concentration for salt tolerance during seed germination and early seedling growth in Arabidopsis.  相似文献   

8.
D E Godt  T Roitsch 《Plant physiology》1997,115(1):273-282
The aim of the present study was to gain insight into the contribution of extracellular invertases for sink metabolism in tomato (Lycopersicon esculentum L.). The present study shows that extracellular invertase isoenzymes are encoded by a gene family comprising four members: Lin5, Lin6, Lin7, and Lin8. The regulation of mRNA levels by internal and external signals and the distribution in sink and source tissues has been determined and compared with mRNA levels of the intracellular sucrose (Suc)-cleaving enzymes Suc synthase and vacuolar invertase. The specific regulation of Lin5, Lin6, and Lin7 suggests an important function of apoplastic cleavage of Suc by cell wall-bound invertase in establishing and maintaining sink metabolism. Lin6 is expressed under conditions that require a high carbohydrate supply. The corresponding mRNA shows a sink tissue-specific distribution and the concentration is elevated by stress-related stimuli, by the growth-promoting phytohormone zeatin, and in response to the induction of heterotrophic metabolism. The expression of Lin5 and Lin7 in gynoecia and stamens, respectively, suggests an important function in supplying carbohydrates to these flower organs, whereas the Lin7 mRNA was found to be present exclusively in this specific sink organ.  相似文献   

9.
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc.  相似文献   

10.
Mobilization of seed storage reserves is essential for seed germination and seedling establishment. Here, we report that AtDSEL, an Arabidopsis thalianaDAD1-like Seedling Establishment-related Lipase, is involved in the mobilization of storage oils for early seedling establishment. AtDSEL is a cytosolic member of the DAD1-like acylhydrolase family encoded by At4g18550. Bacterially expressed AtDSEL preferentially hydrolyzed 1,3-diacylglycerol and 1-monoacylglycerol, suggesting that AtDSEL is an sn-1-specific lipase. AtDSEL-overexpressing transgenic Arabidopsis plants (35S:AtDSEL) were defective in post-germinative seedling growth in medium without an exogenous carbon source. This phenotype was rescued by the addition of sucrose to the growth medium. In contrast, loss-of-function mutant plants (atdsel-1 and atdsel-2) had a mildly fast-growing phenotype regardless of the presence of an exogenous carbon source. Electron microscopy revealed that 5-day-old 35S:AtDSEL cotyledons retained numerous peroxisomes and oil bodies, which were exhausted in wild-type and mutant cotyledons. The impaired seedling establishment of 35S:AtDSEL was not rescued by the addition of an exogenous fatty acid source, and 35S:AtDSEL seedling growth was insensitive to 2,4-dichlorophenoxybutyric acid, indicating that β-oxidation was blocked in AtDSEL-overexpressers. These results suggest that AtDSEL is involved in the negative regulation of seedling establishment by inhibiting the breakdown of storage oils.  相似文献   

11.
By using barley seeds, developmental changes of ADPglucose (ADPG)-producing sucrose synthase (SS) and ADPG pyrophosphorylase (AGPase) have been compared with those of UDPglucose (UDPG), ADPG, sucrose (Suc) and starch contents. Both ADPG-synthesizing SS and AGPase activity patterns were found to correlate well with those of ADPG and starch contents. Remarkably, however, maximal activities of ADPG-synthesizing SS were found to be several fold higher than those of AGPase throughout seed development, the highest rate of starch accumulation being well accounted for by SS. Kinetic analyses of SS from barley endosperms and potato tubers in the Suc cleavage direction showed similar K(m) values for ADP and UDP, whereas apparent affinity for Suc was shown to be higher in the presence of UDP than with ADP. Moreover, measurements of transglucosylation activities in starch granules incubated with purified SS, ADP and [U-(14)C]Suc revealed a low inhibitory effect of UDP. The ADPG and UDPG contents in the transgenic S-112 SS and starch deficient potato mutant [Zrenner et al. (1995) Plant J. 7: 97] were found to be 35% and 30% of those measured in wild-type plants, whereas both glucose-1-phosphate and glucose-6-phosphate contents were found to be normal as compared with those of wild-type plants. The overall results thus strongly support a novel gluconeogenic mechanism reported previously [Pozueta-Romero et al. (1999) CRIT: Rev. Plant Sci. 18: 489] wherein SS catalyses directly the de novo production of ADPG linked to starch biosynthesis in heterotrophic tissues of plants.  相似文献   

12.
PPi has previously been implicated specifically in the co-ordination of the sucrose–starch transition and in the broader context of its role as co-factor in heterotrophic plant metabolism. In order to assess the compartmentation of pyrophosphate (PPi) metabolism in the potato tuber we analysed the effect of expressing a bacterial pyrophosphatase in the amyloplast of wild type tubers or in the cytosol or amyloplast of invertase-expressing tubers. The second and third approaches were adopted since we have previously characterized the invertase expressing lines to both exhibit highly altered sucrose metabolism and to contain elevated levels of PPi (Farré et al. (2000a) Plant Physiol 123:681) and therefore this background rendered questions concerning the level of communication between the plastidic and cytosolic pyrophosphate pools relatively facile. In this study we observed that the increase in PPi in the invertase expressing lines was mainly confined to the cytosol. Accordingly, the expression of a bacterial pyrophosphatase in the plastid of either wild type or invertase-expressing tubers did not lead to a decrease in total PPi content. However, the expression of the heterologous pyrophosphatase in␣the cytosol of cytosolic invertase-expressing tubers led to strong metabolic changes. These results are discussed both with respect to our previous hypotheses and to current models of the compartmentation of potato tuber metabolism.  相似文献   

13.
Isopentenyl/dimethylallyl diphosphate isomerase (IPI) catalyzes the interconversion of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), which are the universal C(5) units of isoprenoids. In plants, IPP and DMAPP are synthesized via the cytosolic mevalonate (MVA) and plastidic methylerythritol phosphate (MEP) pathways, respectively. However, the role of IPI in each pathway and in plant development is unknown due to a lack of genetic studies using IPI-defective mutants. Here, we show that the atipi1atipi2 double mutant, which is defective in two Arabidopsis IPI isozymes, exhibits dwarfism and male sterility under long-day conditions and decreased pigmentation under continuous light, whereas the atipi1 and atipi2 single mutants are phenotypically normal. We also show that the sterol and ubiquinone levels in the double mutant are <50% of those in wild-type plants, and that the male-sterile phenotype is chemically complemented by squalene, a sterol precursor. In vivo isotope labeling experiments using the atipi1atipi2 double mutant revealed a decrease in the incorporation of MVA (in its lactone form) into sterols, with no decrease in the incorporation of MEP pathway intermediates into tocopherol. These results demonstrate a critical role for IPI in isoprenoid biosynthesis via the MVA pathway, and they imply that IPI is essential for the maintenance of appropriate levels of IPP and DMAPP in different subcellular compartments in plants.  相似文献   

14.
The responses of Saccharomyces cerevisiae towards the oxyanions tellurite, selenite and chromate were investigated in order to establish the involvement of the yeast vacuole in their detoxification. Three mutants of S. cerevisiae with defective vacuolar morphology and function were used; mutant JSR180D1 is devoid of any vacuolar-like structure while ScVatB and ScVatC are deficient in specific protein subunits of the vacuolar (V)-H -ATPase. All the mutant strains showed increased sensitivity to tellurite and chromate compared to their parental strains. Such sensitivity of the mutants was associated with increased accumu-lation of tellurium and chromium. These results indicate that accumulation of both tellurium and chromium occurred mainly in the cytosolic compartment of the cell, with detoxification influenced by the presence of a functionally-active vacuole which may play a role in compartmentation as well as regulation of the cytostolic compartment for optimal expression of a detoxification mechanism, e.g. reduction. In contrast, the vacuolar-lacking mutant, JSR180D1, and the defective V-H ATPase mutant ScVatB displayed lower selenium accu-mulation than their parental strains. Additionally, the mutant strain ScVatB displayed a higher tolerance to selenite than the parental strain. This result suggests that accumulation of selenium occurs mainly in the vacuolar compartment of the cell with tolerance depending on the ability of the cytosolic component to reduce selenite to elemental selenium, which might, in turn, be related to activity of the V-H -ATPase. These results are discussed in relation to vacuolar compartmentation and the significance of the vacuolar H -ATPase in cytosolic homeostasis of H both of which may affect the accumulation, reduction, and toler-ance to the tested metal(loids). © Rapid Science 1998  相似文献   

15.
Seed vigour is important for successful establishment and high yield, especially under suboptimal environmental conditions. In legumes, raffinose oligosaccharide family (RFO) sugars have been proposed as an easily available energy reserve for seedling establishment. In this study, we investigated whether the composition or amount of soluble sugars (sucrose and RFO) is part of the genetic determinants of seed vigour of Medicago truncatula using two recombinant inbred line (RIL) populations. Quantitative trait loci (QTL) mapping for germination rate, hypocotyl and radicle growth under water deficit and nutritional stress, seed weight and soluble sugar content was performed using RIL populations LR1 and LR4. Seven of the 12 chromosomal regions containing QTL for germination rate or post-germinative radicle growth under optimal or stress conditions co-located with Suc/RFO QTL. A significant negative correlation was also found between seed vigour traits and Suc/RFO. In addition, one QTL that explained 80% of the variation in the ratio stachyose/verbascose co-located with a stachyose synthase gene whose expression profile in the parental lines could explain the variation in oligosaccharide composition. The correlation and co-location of Suc/RFO ratio with germination and radicle growth QTL suggest that an increased Suc/RFO ratio in seeds of M. truncatula might negatively affect seed vigour.  相似文献   

16.
Although sugar has been suggested to promote floral transition in many plant species, growth on high concentrations (5% [w/v]) of sucrose (Suc) significantly delayed flowering time, causing an increase in the number of leaves at the time of flowering in Arabidopsis. The effect of high concentrations of Suc seemed to be metabolic rather than osmotic. The delay of floral transition was due to extension of the late vegetative phase, which resulted in a delayed activation of LFY expression. In addition, growth on low concentrations (1% [w/v]) of Suc slightly inhibited flowering in wild-type plants. This delay resulted from effects on the early vegetative phase. This inhibition was more pronounced in tfl1, an early flowering mutant, than in the wild type. Although 1% (w/v) Suc was reported to promote floral transition of late-flowering mutants such as co, fca, and gi, floral transition in these mutants was delayed by a further increase in Suc concentration. These results suggest that sugar may affect floral transition by activating or inhibiting genes that act to control floral transition, depending on the concentration of sugars, the genetic background of the plants, and when the sugar is introduced. Growth on 1% (w/v) Suc did not restore the reduced expression levels of FT and SOC1/AGL20 in co or fca mutants. Rather, expression of FT and SOC1/AGL20 was repressed by 1% (w/v) Suc in wild-type background. The possible effects of sugar on gene expression to promote floral transition are discussed.  相似文献   

17.
The budding yeast Saccharomyces cerevisiae can grow for generations in the absence of exogenous iron, indicating a capacity to store intracellular iron. As cells can accumulate iron by endocytosis we studied iron metabolism in yeast that were defective in endocytosis. We demonstrated that endocytosis-defective yeast (Delta end4) can store iron in the vacuole, indicating a transfer of iron from the cytosol to the vacuole. Using several different criteria we demonstrated that CCC1 encodes a transporter that effects the accumulation of iron and Mn(2+) in vacuoles. Overexpression of CCC1, which is localized to the vacuole, lowers cytosolic iron and increases vacuolar iron content. Conversely, deletion of CCC1 results in decreased vacuolar iron content and decreased iron stores, which affect cytosolic iron levels and cell growth. Furthermore Delta ccc1 cells show increased sensitivity to external iron. The sensitivity to iron is exacerbated by ectopic expression of the iron transporter FET4. These results indicate that yeast can store iron in the vacuole and that CCC1 is involved in the transfer of iron from the cytosol to the vacuole.  相似文献   

18.
The Arabidopsis gene AVP1 encodes an H+-pyrophosphatase that functions as a proton pump at the vacuolar membranes, generating a proton gradient across vacuolar membranes, which serves as the driving force for many secondary transporters on vacuolar membranes such as Na+/H+-antiporters. Overexpression of AVP1 could improve drought tolerance and salt tolerance in transgenic plants, suggesting a possible way in improving drought and salt tolerance in crops. The AVP1 was therefore introduced into peanut by Agrobacterium-mediated transformation. Analysis of AVP1-expressing peanut indicated that AVP1-overexpression in peanut could improve both drought and salt tolerance in greenhouse and growth chamber conditions, as AVP1-overexpressing peanuts produced more biomass and maintained higher photosynthetic rates under both drought and salt conditions. In the field, AVP1-overexpressing peanuts also outperformed wild-type plants by having higher photosynthetic rates and producing higher yields under low irrigation conditions.  相似文献   

19.
The rate of cycloheximide-resistant incorporation of carbon from [14C]alanine and [14C]acetate into polysaccharidic material was used to study gluconeogenic activity in wild-type Neurospora crassa and in the adenylate cyclase-deficient cr-1 (crisp-1) mutant. The wild-type efficiently utilized alanine and acetate as gluconeogenic substrates, whereas the mutant used acetate efficiently but was unable to use alanine. Cycloheximide-resistant 14C-incorporating activity was sensitive to carbon catabolite effects (repression and inactivation) in the two strains, which suggested that cyclic AMP metabolism was not involved in these regulatory responses. In the wild type, gluconeogenesis was induced by incubation of the cells in the absence of a carbon source. In contrast, cr-1 required supplementation with acetate. This finding suggested that induction of gluconeogenesis in N. crassa could be mediated by metabolites formed in carbon-starved cells. The cr-1 mutant seemed to be deficient in this process and to depend on an exogenous effector to induce gluconeogenesis. Incubation of cr-1 with cyclic AMP partially overcame the acetate requirement for induction of gluconeogenesis.  相似文献   

20.
Lin M  Oliver DJ 《Plant physiology》2008,147(4):1822-1829
The acs1 knockout mutant that has a disruption in the plastidic acetyl-coenzyme A (CoA) synthetase (ACS; At5g36880) gene was used to explore the role of this protein and plastidic acetate metabolism in Arabidopsis (Arabidopsis thaliana). Disruption of the ACS gene decreased ACS activity by 90% and largely blocked the incorporation of exogenous (14)C-acetate and (14)C-ethanol into fatty acids. Whereas the disruption had no significant effect on the synthesis of bulk seed triacylglycerols, the acs1 plants were smaller and flowered later. This suggests that the pyruvate dehydrogenase bypass provided by the aerobic fermentation pathway that converts pyruvate to acetate and probably on to fatty acids is important to the plants during normal growth. The role of ACS in destroying fermentative intermediates is supported by the increased sensitivity of the acs1 mutant to exogenous acetate, ethanol, and acetaldehyde compared to wild-type plants. Whereas these observations suggest that flux through the aerobic fermentation pathway is important, the reason for this flux is unclear. Interestingly, acetate is able to support high rates of plant growth on medium and this growth is blocked in the acs1 mutant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号