首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Somatolactin (SL), the latest member of the growth hormone/prolactin family, is a novel pituitary hormone with diverse functions. At present, SL can be identified only in fish but not in tetrapods and its regulation at the pituitary level has not been fully characterized. Using grass carp as a model, we examined the direct effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on SL secretion and synthesis at the pituitary cell level. As a first step, the structural identity of grass carp SL, SLalpha and SLbeta, was established by 5'/3'-rapid amplification of cDNA ends. These two SL isoforms are single-copy genes and are expressed in two separate populations of pituitary cells located in the pars intermedia. In the carp pituitary, PACAP nerve fibers were detected in the nerve tracts of the neurohypophysis and extended into the vicinity of pituitary cells forming the pars intermedia. In primary cultures of grass carp pituitary cells, PACAP was effective in stimulating SL release, cellular SL content, and total SL production. The increase in SL production also occurred with parallel rises in SLalpha and SLbeta mRNA levels. With the use of a combination of molecular and pharmacological approaches, PACAP-induced SL release and SL gene expression were shown to be mediated by pituitary PAC-I receptors. These findings, as a whole, suggest that PACAP may serve as a hypophysiotropic factor in fish stimulating SL secretion and synthesis at the pituitary level. Apparently, PACAP-induced SL production is mediated by upregulation of SLalpha and SLbeta gene expression through activation of PAC-I receptors.  相似文献   

2.
Insulin-like growth factor (IGF)-I and -II have been cloned from a number of teleost species, but their cellular actions in fish are poorly defined. In this study, we show that both IGF-I and -II stimulated zebrafish embryonic cell proliferation and DNA synthesis in a concentration-dependent manner, whereas insulin had little mitogenic activity. Affinity cross-linking and immunoblotting studies revealed the presence of IGF receptors with the characteristics of the mammalian type I IGF receptor. Competitive binding assay results indicated that the binding affinities of the zebrafish IGF-I receptors to IGF-I, IGF-II, and insulin are 1.9, 2.6, and >190 nM, indicating that IGF-I and -II bind to the IGF-I receptor(s) with approximately equal high affinity. To further investigate the cellular mechanism of IGF actions, we have studied the effects of IGFs on two major signal transduction pathways: mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3 kinase). IGFs activated MAPK in zebrafish embryonic cells in a dose-dependent manner. This activation occurred within 5 min of IGF-I stimulation and disappeared after 1 h. IGF-I also caused a concentration-dependent activation of protein kinase B, a downstream target of PI3 kinase, this activation being sustained for several hours. Inhibition of MAPK activation by the MAPK kinase inhibitor PD-98059 inhibited the IGF-I-stimulated DNA synthesis. Similarly, use of the PI3 kinase inhibitor LY-294002 also inhibited IGF-I-stimulated DNA synthesis. When both the MAPK and PI3 kinase pathways were inhibited using a combination of these compounds, the IGF-I-stimulated DNA synthesis was completely negated. These results indicate that both IGF-I and -II are potent mitogens for zebrafish embryonic cells and that activation of both the MAPK and PI3 kinase-signaling pathways is required for the mitogenic action of IGFs in zebrafish embryonic cells.  相似文献   

3.
Somatolactin (SL), the latest member of the growth hormone/prolactin family, is a novel pituitary hormone with diverse functions. However, the signal transduction mechanisms responsible for SL expression are still largely unknown. Using grass carp as an animal model, we examined the direct effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on SL gene expression at the pituitary level. In primary cultures of grass carp pituitary cells, SLalpha and SLbeta mRNA levels could be elevated by PACAP via activation of PAC-I receptors. With the use of a pharmacological approach, the AC/cAMP/PKA and PLC/inositol 1,4,5-trisphosphate (IP(3))/PKC pathways and subsequent activation of the Ca(2+)/calmodulin (CaM)/CaMK-II cascades were shown to be involved in PACAP-induced SLalpha mRNA expression. Apparently, the downstream Ca(2+)/CaM-dependent cascades were triggered by extracellular Ca(2+) ([Ca(2+)](e)) entry via L-type voltage-sensitive Ca(2+) channels (VSCC) and Ca(2+) release from IP(3)-sensitive intracellular Ca(2+) stores. In addition, the VSCC component could be activated by cAMP/PKA- and PLC/PKC-dependent mechanisms. Similar postreceptor signaling cascades were also observed for PACAP-induced SLbeta mRNA expression, except that [Ca(2+)](e) entry through VSCC, PKC coupling to PLC, and subsequent activation of CaMK-II were not involved. These findings, taken together, provide evidence for the first time that PACAP can induce SLalpha and SLbeta gene expression in fish model via PAC-I receptors through differential coupling to overlapping and yet distinct signaling pathways.  相似文献   

4.
5.
6.
Multiple myeloma (MM) is a bone disease that affects many individuals. It was recently reported that macrophage inflammatory protein (MIP)-1α is constitutively secreted by MM cells. MIP-1α causes bone destruction through the formation of osteoclasts (OCs). However, the molecular mechanism underlying MIP-1α-induced OC formation is not well understood. In the present study, we attempted to clarify the mechanism whereby MIP-1α induces OC formation in a mouse macrophage-like cell line comprising C7 cells. We found that MIP-1α augmented OC formation in a concentration-dependent manner; moreover, it inhibited IFN-β and ISGF3γ mRNA expression, and IFN-β secretion. MIP-1α increased the expressions of phosphorylated ERK1/2 and c-Fos and decreased those of phosphorylated p38MAPK and IRF-3. We found that the MEK1/2 inhibitor U0126 inhibited OC formation by suppressing the MEK/ERK/c-Fos pathway. SB203580 induced OC formation by upregulating c-fos mRNA expression, and SB203580 was found to inhibit IFN-β and IRF-3 mRNA expressions. The results indicate that MIP-1α induces OC formation by activating and inhibiting the MEK/ERK/c-Fos and p38MAPK/IRF-3 pathways, respectively, and suppressing IFN-β expression. These findings may be useful in the development of an OC inhibitor that targets intracellular signaling factors.  相似文献   

7.
There exist indications that the growth hormone (GH)/insulin-like growth factor (IGF) axis may play a role in fish immune regulation, and that interactions occur via tumour necrosis factor (TNF)-α at least in mammals, but no systematic data exist on potential changes in GH, IGF-I, IGF-II, GH receptor (GHR) and TNF-α expression after GH treatment. Thus, we investigated in the Nile tilapia the influence of GH injections by real-time qPCR at different levels of the GH/IGF-axis (brain, pituitary, peripheral organs) with special emphasis on the immune organs head kidney and spleen. Endocrine IGF-I served as positive control for GH treatment efficiency. Basal TNF-α gene expression was detected in all organs investigated with the expression being most pronounced in brain. Two consecutive intraperitoneal injections of bream GH elevated liver IGF-I mRNA and plasma IGF-I concentration. Also liver IGF-II mRNA and TNF-α were increased while the GHR was downregulated. In brain, no change occurred in the expression levels of all genes investigated. GH gene expression was exclusively detected in the pituitary where the GH injections elevated both GH and IGF-I gene expression. In the head kidney, GH upregulated IGF-I mRNA to an even higher extent than liver IGF-I while IGF-II and GHR gene expressions were not affected. Also in the spleen, no change occurred in GHR mRNA, however, IGF-I and IGF-II mRNAs were increased. In correlation, in situ hybridisation showed a markedly higher amount of IGF-I mRNA in head kidney and spleen after GH injection. In both immune tissues, TNF-α gene expression showed a trend to decrease after GH treatment. The stimulation of IGF-I and also partially of IGF-II expression in the fish immune organs by GH indicates a local role of the IGFs in immune organ regulation while the differential changes in TNF-α support the in mammals postulated interactions with the GH/IGF-axis which demand for further investigations.  相似文献   

8.
9.
Interleukin (IL)-8 serves as a major chemoattractant for neutrophils and has also been proposed to affect cancer progression. In the present study, we show that IGF-I stimulates IL-8 mRNA expression and IL-8 secretion in the leukemic cell line HL-60. Stimulation of IL-8 expression was completely attenuated by two inhibitors of mitogen-activated protein kinase (MAPK) kinase (MEK), which phosphorylates the MAPKs extracellular-regulated kinase (ERK)1 and ERK2, and by the c-Jun NH2-terminal kinase (JNK) inhibitor SP600125. In contrast, inhibitors of p38 MAPK and phosphatidylinositol-3 kinase (PI3K) did not abrogate the effect of IGF-I. We also show that IGF-I stimulates the activation of ERK1 and ERK2, but we could not detect any effect of IGF-I on the phosphorylation of p38, JNKp46 or JNKp54. Collectively, our results suggest that basal JNK activity and activation of the MEK–ERK pathway are required for upregulation of IL-8 by IGF-I in HL-60 cells.  相似文献   

10.
饥饿状态下草鱼生长激素的分泌   总被引:13,自引:2,他引:11  
以两种规模草鱼为对象,研究了饥饿对其生长激素的影响。检测由背大动脉导管抽取的连续血样的结果表明;饥饿状态下草鱼(体重为0.5-1.0kg)生长激素分泌仍是间歇性的,但饥饿明显提高其总体生长激素平均值、基础生长激素平均值和其最大峰值。对于草鱼鱼种(体重为25.30g),饥饿也明显提高其血液中生长激素水平,但草鱼种的肥满度系数和血糖浓度却。在体外灌流实验中,饥饿的草鱼种脑垂体碎片生长激素基础分泌值明显高于正常投喂的对照组。这些结果表明:饥饿状态下草鱼生长激素分泌增强。  相似文献   

11.
In mammals, pituitary adenylate cyclase activating polypeptide (PACAP) is a potent anti-inflammatory factor, showing that it inhibits the expression and release of proinflammatory cytokines and enhances the production of anti-inflammatory factors. However, whether fish PACAP plays similar regulatory roles as seen in mammals remains unclear. In the present study, expression of PACAP-specific receptor PAC1-R was shown in grass carp head kidney and spleen, supporting that PACAP may have a direct effect on fish immune cells. To test this hypothesis, the immunoregulatory role of grass carp PACAP (gcPACAP) was examined in head kidney leucocytes (HKLs). Results showed that gcPACAP inhibited basal and further attenuated lipopolysaccharide (LPS)-stimulated cell viability of HKLs, indicating that gcPACAP may possess similar inhibitory property at cellular level as seen in mammals. Curiously, in vitro and in vivo studies revealed that gcPACAP stimulated proinflammatory factors (IL-1β and TNF-α) but not IL-10 mRNA expression in HKLs and head kidney. Moreover, bacterial infection and LPS enhanced IL-1β, TNF-α and IL-10 mRNA expression in grass carp head kidney and HKLs, respectively, and these stimulatory effects were not influenced by gcPACAP. These findings suggest that PACAP plays distinct roles, at least does not function as an anti-inflammatory factor, in fish compared with that in mammals.  相似文献   

12.
Increasing evidence suggests that bone marrow-derived mesenchymal stem cells (MSCs) are recruited into the stroma of developing tumors where they contribute to cancer progression. MSCs produce different growth factors that sustain tumor-associated neo-angiogenesis. Since the majority of carcinomas secrete ligands of the epidermal growth factor receptor (EGFR), we assessed the role of EGFR signaling in regulating the release of angiogenic factors in MSCs. Treatment of human primary MSCs and of the human osteoblastic cell line hFOB with transforming growth factor α (TGF-α), one of the main ligands of the EGFR, significantly induced activation of this receptor and of different intracellular signaling proteins, including the PI3K/AKT and the MEK/MAPK pathways. TGF-α induced a significant increase in the levels of secretion of vascular endothelial growth factor in both MSCs and hFOB. Conditioned medium from TGF-α treated MSCs showed an higher in vivo angiogenic effect as compared with medium from untreated cells. Treatment of MSCs with TGF-α also produced a significant increase in the secretion of other angiogenic growth factors such as angiopoietin-2, granulocyte-colony stimulating factor, hepatocyte growth factor, interleukin (IL)-6, IL-8, and platelet-derived growth factor-BB. Using selective MEK and PI3K inhibitors, we found that both MEK/MAPK and the PI3K/AKT signaling pathways mediate the ability of TGF-α to induce secretion of angiogenic factors in MSCs. Finally, stimulation with TGF-α increased the ability of MSCs to induce migration of MCF-7 breast cancer cells. These data suggest that EGFR signaling regulates the ability of MSCs to sustain cancer progression through the release of growth factors that promote neo-angiogenesis and tumor cell migration.  相似文献   

13.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that stimulates the release of adenohypophyseal hormone from the pituitary in fish. In the goldfish, PACAP induces the release of somatolactin (SL), in particular, from cultured pituitary cells. SL belongs to the growth hormone and prolactin family, and comprises two molecular variants termed SL-α and SL-β in goldfish. However, there is no information about the involvement of PACAP in the regulation of SL-α and SL-β release and the expression of their mRNAs. Therefore, we examined the effect of PACAP on SL-α and SL-β release from cultured goldfish pituitary cells. Treatment with PACAP (10−10–10−7 M) increased the release of both SL-α and SL-β. The stimulatory action of PACAP (10−9 M) on SL-α and SL-β release was blocked by treatment with a PACAP-selective receptor (PAC1R) antagonist, PACAP(6–38) (10−6 M). We also examined whether PACAP affects the expression of SL-α and SL-β mRNAs in cultured pituitary cells. Treatment with PACAP (10−9 and 10−8 M) for 6 h decreased the expression level of SL-α mRNA but increased that of SL-β mRNA. The action of PACAP (10−8 M) on SL-β mRNA expression was blocked by treatment with PACAP(6–38) (10−6 M), whereas PACAP(6–38) elicited no change in the expression of SL-α mRNA. These results indicate that in cultured goldfish pituitary cells, PACAP stimulates the release of SL-α and SL-β, and expression of SL-β mRNA, via the PAC1R-signaling pathway. However, the mechanism whereby PACAP inhibits the expression of SL-α mRNA does not seem to be mediated by PAC1R signaling.  相似文献   

14.
15.
Insulin-like growth factor I (IGF-I) is a well-established mitogen in human breast cancer cells. We show here that human breast cancer MCF-7 cells, which were prevented from attaching to the substratum and were floating in medium, responded to IGF-I and initiated DNA synthesis. The addition of IGF-I to floating cells induced activation of protein kinase B (PKB)/Akt, as to cells attached to the substratum. In addition, mitogen-activated protein kinase (MAPK)/extracellular response kinase (ERK) and its upstream kinases, ERK kinase (MEK) and Raf-1, were activated by IGF-I in floating cells. While the IGF-I-induced activation of PKB/Akt was inhibited by PI3-K inhibitor LY294002 but not by MEK inhibitor PD98059, the activation of both MEK and ERK by IGF-I was inhibited by both. These findings suggest that the IGF-I signal that leads to stimulation of DNA synthesis of MCF-7 cells is transduced to ERK through PI3-K, only when they are anchorage-deficient.  相似文献   

16.
In healthy adults insulin-like growth factor (IGF)-I levels do not differ between males and females, whereas spontaneous growth hormone (GH) secretion is approximately twofold higher in females. Untreated GH-deficient (GHD) women exhibit lower IGF-I levels compared with men and the increase in serum IGF-I during GH replacement is also significantly less. These data suggest a resistance to GH in women, which in healthy subjects is compensated for by increased GH secretion. Administration of oral oestrogen in healthy postmenopausal women suppresses hepatic IGF-I production and increases pituitary GH release, and oral oestrogen replacement in women with GHD lowers IGF-I concentrations and increases the amount of GH necessary to achieve IGF-I target levels during treatment. These data clearly suggest that hepatic suppression of IGF-I production by oestrogen subserves the gender difference in GH sensitivity, but it is also likely that sex steroids may interact with the GH/IGF axis at other levels. There is also circumstantial evidence to indicate that testosterone stimulates IGF-I production and it is speculated that a certain threshold level of androgens is essential to ensure hepatic IGF-I production. Whether these data should translate into earlier discontinuation of oestrogen replacement therapy in women with hypopituitarism merits consideration.  相似文献   

17.
The aim of this work was to study the effect of cyclosporine on the somatotropic axis. Accordingly, growth hormone (GH) secretion, circulating insulin-like growth factor I (IGF-I) and IGF binding proteins (IGFBPs) in response to cyclosporin A (CsA) treatment were examined in adult male Wistar rats. Cyclosporine administration (5, 10 or 20 mg/Kg daily) over 8 days did not modify the body weight, but it did decrease serum concentration of corticosterone and increased serum IGF-I and GH levels. Rats treated with 5 and 10 mg/Kg of cyclosporine had similar levels of serum IGFBPs to control rats, but there was an increase in circulating IGFBP-3 and IGFPB-1,2 in the group treated with 20 mg/Kg of CsA. The increase in circulating GH correlates with a decrease in pituitary GH content in CsA treated rats, with no modification in hypothalamic somatostatin content, suggesting an increase in pituitary GH release. In order to test this hypothesis, anterior pituitary cell cultures were exposed to different CsA concentrations during a 4 h incubation period. Cyclosporine increased GH secretion in cultured pituitary cells (p<0.05). These data suggest that cyclosporine increases circulating IGF-I and GH by stimulating pituitary GH release.  相似文献   

18.
Expression of the insulin-like growth factor-binding protein 5 (IGFBP-5) gene in vascular smooth muscle cells is up-regulated by IGF-I through an IGF-I receptor-mediated mechanism. In this study, we studied the possible involvement of the mitogen-activated protein kinase (MAPK) and PI 3-kinase signaling pathways in mediating IGF-I-regulated IGFBP-5 gene expression. The addition of Des(1-3)IGF-I, an IGF analog with reduced affinity to IGFBPs, resulted in a transient activation of p44 and p42 MAPK. Inhibition of the MAPK activation by PD98059, however, did not affect IGF-I-stimulated IGFBP-5 expression. Des(1-3)IGF-I treatment also strongly activated PI 3-kinase. This activation was probably mediated through IRS-1, because IGF-I stimulation resulted in a significant increase in IRS-1- but not IRS-2-associated PI 3-kinase activity. This activation occurred within 5 min and was sustained at high levels for over 6 h. Likewise, Des(1-3)IGF-I caused a long lasting activation of PKB/Akt and p70(s6k). When LY294002 and wortmannin, two specific inhibitors of PI 3-kinase, were added with Des(1-3)IGF-I, the IGF-I-regulated IGFBP-5 expression was negated. The addition of rapamycin, which inhibits IGF-I-induced p70(s6k) activation, significantly inhibited IGF-I-regulated IGFBP-5 gene expression. These results suggest that the action of IGF-I on IGFBP-5 gene expression requires the activation of the PI 3-kinase-PKB/Akt-p70(s6k) pathway but not the MAPK pathway in vascular smooth muscle cells.  相似文献   

19.
Mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) signaling pathways are pivotal and intensively studied signaling pathways in hypoxic conditions. However, the roles of MAPK and PI3K in the regulation of hypoxia-induced atrial natriuretic peptide (ANP) secretion are not well understood. The purpose of the present study was to investigate the mechanism by which the MAPK/ERK (extracellular signal-regulated kinase) and PI3K signaling pathways regulate the acute hypoxia-induced ANP secretion in isolated beating rabbit atria. An acute hypoxic perfused beating rabbit atrial model was used. The ANP levels in the atrial perfusates were measured by radioimmunoassay, and the hypoxia-inducible factor-1α (HIF-1α) mRNA and protein levels in the atrial tissue were determined by RT-PCR and Western blot. Acute hypoxia significantly increased ANP secretion and HIF-1α mRNA and protein levels. Hypoxia-induced ANP secretion was markedly attenuated by the HIF-1α inhibitors, rotenone (0.5 μmol/L) and CAY10585 (10 μmol/L), concomitantly with downregulation of the hypoxia-induced HIF-1α mRNA and protein levels. PD098059 (30 μmol/L) and LY294002 (30 μmol/L), inhibitors of MAPK and PI3K, markedly abolished the hypoxia-induced ANP secretion and atrial HIF-1α mRNA and protein levels. The hypoxia-suppressed atrial dynamics were significantly attenuated by PD098059 and LY294002. Acute hypoxia in isolated perfused beating rabbit atria, markedly increased ANP secretion through HIF-1α upregulation, which was regulated by the MAPK/ERK and PI3K pathways. ANP appears to be part of the protective program regulated by HIF-1α in the response to acute hypoxic conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号