首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal imaging requires the use of reliable long-term fluorescence methods and technology. The application of confocal imaging to in vivo monitoring of transgene expression within internal organs and tissues has been limited by the accessibility to these sites. We aimed to test the feasibility of fibred confocal fluorescence microscopy (FCFM) to image in situ green fluorescent protein (GFP) in cells of living animals. We used transgenic rabbits expressing the enhanced GFP (eGFP) gene. Detailed tissue architecture and cell morphology were visualised and identified in situ by FCFM. Imaging of vasculature by using FCFM revealed a single blood vessel or vasculature network. We also used non-transgenic female rabbits mated with transgenic males to visualise eGFP expression in extra-foetal membranes and the placenta. Expression of the eGFP gene was confirmed by FCFM. This new imaging technology offers specific characteristics: a way to gain access to organs and tissues in vivo, sensitive detection of fluorescent signals, and cellular observations with rapid acquisition at near real time. It allows an accurate visualisation of tissue anatomical structure and cell morphology. FCFM is a promising technology to study biological processes in the natural physiological environment of living animals.  相似文献   

2.
Apoptosis is a dynamic process of programmed cell death and is involved in multiple diseases. However, its mechanisms and sequence of events are still incompletely understood, partly because of the inability to visualize single cells continuously in vivo. The aim of the present study was to monitor hepatocyte apoptosis with confocal endomicroscopy in living rodents. In 73 anaesthetized mice, apoptotic liver injury was induced by injection of the CD95-agonistic antibody Jo2. Individual hepatocytes were followed for up to 240 min with a handheld confocal probe (FIVE1; Optiscan) providing 0.7 μm resolution (1,000-fold magnification). Different fluorescence staining protocols were used for cellular staining, vascular and cellular barrier function imaging, and caspase activation visualization. The time course of apoptosis could be visualized in vivo while liver perfusion and tissue integrity were maintained. In contrast to most ex vivo studies, initial cell swelling was observed that coincided with early defects in barrier function of sinusoids and hepatocytes. Cytoplasmic vesicle formation, nuclear condensation, cellular disintegration, and macrophage infiltration were captured sequentially. Labeling of caspases allowed molecular imaging. Our study allowed for the first time to continuously follow distinct morphological, functional, and molecular features of apoptosis in a solid organ in vivo and at high resolution. Intravital confocal microscopy may be a valuable tool to study the effects of therapeutic intervention on apoptosis in animal models and humans.  相似文献   

3.
Preclinical in vivo characterization of new polymeric drug conjugate candidates is crucial for understanding the effects of certain chemical modifications on distribution and elimination of these carrier systems, which is the basis for rational drug design. In our study we synthesized dual fluorescent HPMA copolymers of different architectures and molecular weights, containing one fluorescent dye coupled via a stable hydrazide bond functioning as the carrier label and the other one modeling the drug bound to a carrier via a pH-sensitive hydrolytically cleavable hydrazone bond. Thus, it was possible to track the in vivo fate, namely distribution, elimination and tumor accumulation, of the polymer drug carrier and a cleavable model drug simultaneously and noninvasively in nude mice using multispectral optical imaging. We confirmed our in vivo results by more detailed ex vivo characterization (imaging and microscopy) of autopsied organs and tumors. There was no significant difference in relative biodistribution in the body between the 30 KDa linear and 200 KDa star-like polymer, but the star-like polymer circulated much longer. We observed a moderate accumulation of the polymeric carriers in the tumors. The accumulation of the pH-sensitive releasable model drug was even higher compared to the polymer accumulation. Additionally, we were able to follow the long-term in vivo fate and to prove a time-dependent tumor accumulation of HPMA copolymers over several days.  相似文献   

4.
In vivo tracking and monitoring of adoptive cell transfer has a distinct importance in cell‐based therapy. There are many imaging modalities for in vivo monitoring of biodistribution, viability and effectiveness of transferred cells. Some of these procedures are not applicable in the human body because of low sensitivity and high possibility of tissue damages. Shortwave infrared region (SWIR) imaging is a relatively new technique by which deep biological tissues can be potentially visualized with high resolution at cellular level. Indeed, scanning of the electromagnetic spectrum (beyond 1000 nm) of SWIR has a great potential to increase sensitivity and resolution of in vivo imaging for various human tissues. In this review, molecular imaging modalities used for monitoring of biodistribution and fate of administered cells with focusing on the application of non‐invasive optical imaging at shortwave infrared region are discussed in detail.  相似文献   

5.
This study presents a new multimodal imaging approach that includes high-frequency ultrasound, fluorescence intensity, confocal, and spectral imaging to improve the preclinical evaluation of new therapeutics in vivo. Here we use this approach to assess in vivo the therapeutic efficacy of the novel chemotherapy construct, HerDox during and after treatment. HerDox is comprised of doxorubicin non-covalently assembled in a viral-like particle targeted to HER2+ tumor cells, causing tumor cell death at over 10-fold lower dose compared to the untargeted drug, while sparing the heart. Whereas our initial proof-of-principle studies on HerDox used tumor growth/shrinkage rates as a measure of therapeutic efficacy, here we show that multimodal imaging deployed during and after treatment can supplement traditional modes of tumor monitoring to further characterize the particle in tissues of treated mice. Specifically, we show here that tumor cell apoptosis elicited by HerDox can be monitored in vivo during treatment using high frequency ultrasound imaging, while in situ confocal imaging of excised tumors shows that HerDox indeed penetrated tumor tissue and can be detected at the subcellular level, including in the nucleus, via Dox fluorescence. In addition, ratiometric spectral imaging of the same tumor tissue enables quantitative discrimination of HerDox fluorescence from autofluorescence in situ. In contrast to standard approaches of preclinical assessment, this new method provides multiple/complementary information that may shorten the time required for initial evaluation of in vivo efficacy, thus potentially reducing the time and cost for translating new drug molecules into the clinic.  相似文献   

6.
Increased accumulation of specific carotenoids in plastids through plant breeding or genetic engineering requires an understanding of the limitations that storage sites for these compounds may impose on that accumulation. Here, using Capsicum annuum L. fruit, we demonstrate directly the unique sub‐organellar accumulation sites of specific carotenoids using live cell hyperspectral confocal Raman microscopy. Further, we show that chromoplasts from specific cultivars vary in shape and size, and these structural variations are associated with carotenoid compositional differences. Live‐cell imaging utilizing laser scanning confocal (LSCM) and confocal Raman microscopy, as well as fixed tissue imaging by scanning and transmission electron microscopy (SEM and TEM), all demonstrated morphological differences with high concordance for the measurements across the multiple imaging modalities. These results reveal additional opportunities for genetic controls on fruit color and carotenoid‐based phenotypes.  相似文献   

7.
The field of biological imaging is progressing at an amazing rate. Advances in both laser-scanning microscopy and green fluorescent protein (GFP) technology are combining to make possible imaging-based approaches for studying developmental mechanisms that were previously impossible. Modern confocal and multi-photon microscopes are pushing the envelope of speed, sensitivity, spectral resolution, and depth resolution to allow in vivo imaging of whole, live embryos at cellular resolution over extended periods of time. In toto imaging, in which nearly every cell in an embryo or tissue can be tracked through space and time during development, may become a standard technique for small transparent embryos such as zebrafish and early stage chick and mouse embryos. GFP and its spectral variants can be used to mark a wide range of in vivo biological information for in toto imaging including gene expression patterns, mutant phenotypes, and protein subcellular localization patterns. Combining in toto imaging and GFP transgenic approaches on a large scale may usher in an explosion of in vivo, developmental data as has happened in the past several years with genomic data. There are significant challenges that must be met to reach these goals. This paper will discuss the current state-of-the-art, the challenges, and the prospects of in toto imaging in the areas of imaging, image analysis, and informatics.  相似文献   

8.
Although the discovery of double fertilization in flowering plants took place at the end of the nineteenth century little progress had been made in understanding the cellular and molecular mechanisms involved until the end of the twentieth century. After attempts to study fertilization with isolated male and female gametes, researchers turned to Arabidopsis thaliana as a model for genetic analysis and in vivo imaging. The development of confocal imaging and fluorescent proteins, coupled with new molecular insights into cell fate specification of plant gametes, allowed the development of robust markers for cells participating in double fertilization. These markers enabled the imaging of double fertilization in vivo in Arabidopsis. These studies have been coupled with the identification and molecular characterization of genes controlling fertilization in Arabidopsis. Live imaging has already provided new insights on sperm cell delivery, the equivalence of the fate of the sperm cells, gamete fusion, and re-initiation of the zygotic life. This review covers these topics and outlines many important aspects of double fertilization that remain unknown.  相似文献   

9.
内窥式共焦显微术是将共焦显微术和光纤技术结合起来的新技术,既具有共焦显微术的独特优点:高分辨率和三维成像;又能对体内器官组织进行在体成像.分析共焦成像的原理,阐述了内窥式共焦成像系统,详细讨论其研究进展以及我们的研究结果,并分析了其优点及在生物医学领域的应用.  相似文献   

10.
Real‐time microscopic imaging of freshly excised tissue enables a rapid bedside‐pathology. A possible application of interest is the detection of oral squamous cell carcinomas (OSCCs). The aim of this study was to analyze the sensitivity and specificity of ex vivo fluorescence confocal microscopy (FCM) for OSCCs and to compare confocal images visually and qualitatively with gold standard histopathology. Two hundred eighty ex vivo FCM images were prospectively collected and evaluated immediately after excision. Every confocal image was blindly assessed for the presence or absence of malignancy by two clinicians and one pathologist. The results were compared with conventional histopathology with hematoxylin and eosin staining. OSCCs were detected with a very high sensitivity of 0.991, specificity of 0.9527, positive predictive value of 0.9322 and negative predictive value of 0.9938. The results demonstrate the potential of ex vivo FCM in fresh tissue for rapid real‐time surgical pathology.  相似文献   

11.
Stem cell populations exist in "niches" that hold them and regulate their fate decisions. Identification and characterization of these niches is essential for understanding stem cell maintenance and tissue regeneration. Here we report on the identification of a novel stem cell niche in Botryllus schlosseri, a colonial urochordate with high stem cell-mediated developmental activities. Using in vivo cell labeling, engraftment, confocal microscopy, and time-lapse imaging, we have identified cells with stemness capabilities in the anterior ventral region of the Botryllus' endostyle. These cells proliferate and migrate to regenerating organs in developing buds and buds of chimeric partners but do not contribute to the germ line. When cells are transplanted from the endostyle region, they contribute to tissue development and induce long-term chimerism in allogeneic tissues. In contrast, cells from other Botryllus' regions do not show comparable stemness capabilities. Cumulatively, these results define the Botryllus' endostyle region as an adult somatic stem cell niche.  相似文献   

12.
Our group has developed a new molecular tool based on the use of a regioselectively addressable, functionalized template (RAFT) scaffold, where four cyclic (Arg-Gly-Asp) (cRGD) peptide motifs were grafted. The aim of this study was to determine whether RAFT-c(-RGDfK-)4 combined with optical imaging could allow noninvasive detection of deep ovarian metastases. Human ovarian adenocarcinoma IGROV1 cells expressing low levels of integrin alphaVbeta3 (the main receptor for the cRGD peptide) were used for in vitro and in vivo assays in combination with Cy5-labeled RAFT-c(-RGDfK-)4, cRGD, or RAFT-c(-RbetaADfK-)4. In vivo fluorescence imaging was performed on subcutaneous (SC) tumors and intraperitoneal IGROV1 metastases in nude mice. The accumulation of RGD-Cy5 conjugates in cultured cells or in tumor tissues was examined using confocal laser scanning microscopy. RAFT-c(-RGDfK-)4 exhibited stronger staining in vitro, enhanced tumor-to-background ratio for sc tumors, and allowed early detection of 1- to 5-mm large intraabdominal nodules using noninvasive optical imaging. Histological study revealed that RAFT-c(-RGDfK-)4 accumulated into tumor neovasculature but also into tumor cells. Our data demonstrate that a Cy5-labeled RAFT-c(-RGDfK-)4 is an efficient optical probe for early and noninvasive tumor detection.  相似文献   

13.
The initial phase of malaria infection is the pre-erythrocytic phase, which begins when parasites are injected by the mosquito into the dermis and ends when parasites are released from hepatocytes into the blood. We present here a protocol for the in vivo imaging of GFP-expressing sporozoites in the dermis of rodents, using the combination of a high-speed spinning-disk confocal microscope and a high-speed charge-coupled device (CCD) camera permitting rapid in vivo acquisitions. The steps of this protocol indicate how to infect mice through the bite of infected Anopheles stephensi mosquitoes, record the sporozoites' fate in the mouse ear and to present the data as maximum-fluorescence-intensity projections, time-lapse representations and movie clips. This protocol permits investigating the various aspects of sporozoite behavior in a quantitative manner, such as motility in the matrix, cell traversal, crossing the endothelial barrier of both blood and lymphatic vessels and intravascular gliding. Applied to genetically modified parasites and/or mice, these imaging techniques should be useful for studying the cellular and molecular bases of Plasmodium sporozoite infection in vivo.  相似文献   

14.
We present a novel organ-explant imaging system for easy and cost-effective extended-time observation of host-pathogen interactions at mucosal interfaces. Data are complemented by parallel cytokine measurements at high temporal resolution. The set-up is based on a custom-built reusable organ chamber compatible with standard microscopes. Luminal and basal side of the explanted mucosa are connected to separate channels for optimized incubation and cytokine measurements, oxygen is provided via membrane oxygenation. Dynamic imaging with confocal microscopy permits a detailed analysis of the dynamics of pathogen-host cell interactions at the mucosal interface and the neighbouring tissue at high resolution. The system can be applied to various hollow organs with few modifications. Here we present first applications to study representative infections such as uropathogenic Escherichia coli (UPEC) infections in the urinary bladder or amoebiasis of the colon by using mouse organs. We show (i) intracellular bacteria in UPEC infections, (ii) phagocytic events on tissue during infection, as well as (iii) tissue invasion of virulent protozoans into epithelia. The versatility of this system and its higher degree of control in comparison with both traditional explant microscopy and in vivo two photon imaging solutions make it a valuable and easy-to-use addition to other current imaging techniques.  相似文献   

15.
Polyethylene glycol (PEG)ylated and rhodamine-labeled liposomes loaded with maghemite nanocrystals provide a novel nanoscaled hybrid system for magnetic targeting to solid tumors in possible combination with double in vivo imaging by fluorescence microscopy and magnetic resonance imaging (MRI). Human prostate adenocarcinoma tumors implanted in mice were used as a system model. A magnetic field gradient was produced at the tumor level by external apposition of a magnet. Noninvasive fibered confocal fluorescence microscopy was successfully used to track the liposomes in vivo within organs and tumor blood vessels. Active targeting to the magnet-exposed tumors was clearly shown, in agreement with previous MRI studies. The liposomes were driven and accumulated within the microvasculature through a process that preserved vesicle structure and content.  相似文献   

16.
Nitroxides are a class of stable free radicals that have several biomedical applications including radioprotection and noninvasive assessment of tissue redox status. For both of these applications, it is necessary to understand the in vivo biodistribution and reduction of nitroxides. In this study, magnetic resonance imaging was used to compare tissue accumulation (concentration) and reduction of two commonly studied nitroxides: the piperidine nitroxide Tempol and the pyrrolidine nitroxide 3-CP. It was found that 3-CP was reduced 3 to 11 times slower (depending on the tissue) than Tempol in vivo and that maximum tissue concentration varies substantially between tissues (0.6-7.2mM). For a given tissue, the maximum concentration usually did not vary between the two nitroxides. Furthermore, using electron paramagnetic resonance spectroscopy, we showed that the nitroxide reduction rate depends only weakly on cellular pO(2) in the oxygen range expected in vivo. These observations, taken with the marked variation in nitroxide reduction rates observed between tissues, suggest that tissue pO(2) is not a major determinant of the nitroxide reduction rate in vivo. For the purpose of redox imaging, 3-CP was shown to be an optimal choice based on the achievable concentrations and bioreduction observed in vivo.  相似文献   

17.
For clinical application of stem cell-based therapies, noninvasive detection of applied stem cells is of high importance. We report on the feasibility of detecting implanted neural progenitor cells (NPCs) noninvasively and follow their fate and functional status by sequential multimodal molecular imaging and reporter gene technology. We investigated C17.2 cells stably expressing herpes simplex virus type 1-thymidine kinase (HSV-1-tk) and green fluorescent protein (gfp) (C17.2-tkIRESgfp = C17.2-TIG) or HSV-1-tk, gfp, and firefly luciferase (luc) (C17.2-lucIREStkgfp = C17.2-LITG) and determined the detection sensitivity of positron emission tomography (PET) and bioluminescence imaging (BLI) for these cells in culture and in vivo in subcutaneous and intracranial glioma models. In addition, PET and BLI were used to further investigate and follow the fate of implanted C17.2-LITG cells in an intracranial glioma model. We show that both imaging modalities are sensitive in detecting reporter gene expressing NPCs; however, PET, by the use of 9-[4-[(18)F]fluoro-3-hydroxymethyl)butyl]guanine ([(18)F]FHBG), detects NPCs only at sites of disrupted blood-brain barrier. Furthermore, both imaging modalities can be used to detect stem cell fate and migration and indicate excessive proliferation and aberrant migration. In conclusion, multimodal imaging can be used for longitudinal noninvasive monitoring of grafted NPCs in rodents.  相似文献   

18.
We have used confocal and widefield microscopy to image thrombus formation in real time in the microcirculation of a living mouse. This system provides high-speed, near-simultaneous acquisition of images of multiple fluorescent probes and of a brightfield channel. Vascular injury is induced with a laser focused through the microscope optics. We observed platelet deposition, tissue factor accumulation and fibrin generation after laser-induced endothelial injury in a single developing thrombus. The initiation of blood coagulation in vivo entailed the initial accumulation of tissue factor on the upstream and thrombus-vessel wall interface of the developing thrombus. Subsequently tissue factor was associated with the interior of the thrombus. Tissue factor was biologically active, and was associated with fibrin generation within the thrombus.  相似文献   

19.
The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR) are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS) as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [(123)I]-(R)-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals (p < .05). These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [(11)C]-(R)-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.  相似文献   

20.
Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号