首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White spot syndrome virus (WSSV) is the causative agent of a severe disease of cultivated shrimp. Using purified WSSV virions, VP53A encoded by open reading frame wssv067 was identified as a structural protein by SDS-PAGE and proteomics. Immunoelectron microscopy with a gold-labeled secondary antibody revealed that VP53A was distributed on the viral envelope. In order to further explore the link between WSSV067 and host proteins, we performed a yeast 2-hybrid screening of a Penaeus monodon cDNA library, using WSSV067C as bait. One of the molecules that specifically interacted with WSSV067C was the P. monodon chitin-binding protein (PmCBP). An in vitro binding assay showed that c-myc-WSSV067C was capable of co-precipitating HA-PmCBP-C. Furthermore, PmCBP was expressed in almost all organs but appeared to be up-regulated at the late stage of WSSV infection.  相似文献   

2.
BALB/c mice were immunized with purified White spot syndrome virus (WSSV). Six monoclonal antibody cell lines were selected by ELISA with VP28 protein expressed in E. coli. in vitro neutralization experiments showed that 4 of them could inhibit the virus infection in crayfish. Western-blot suggested that all these monoclonal antibodies were against the conformational structure of VP28. The monoclonal antibody 7B4 was labeled with colloidal gold particles and used to locate the VP28 on virus envelope by immunogold labeling. These monoclonal antibodies could be used to develop immunological diagnosis methods for WSSV infection.  相似文献   

3.
AIMS: Construction of a recombinant vector that expresses VP292 protein of white spot syndrome virus (WSSV) and to exploit the possibility of obtaining the vaccine conferring protection against WSSV infection in shrimps. METHODS AND RESULTS: VP292 protein of WSSV was amplified from WSSV genomic DNA by PCR. The target 814 bp amplified product specific for VP292 protein was inserted in to pQE30 expression vector. The recombinant plasmid of VP292 protein was transformed and expressed in Escherichia coli under induction of isopropyl-1-1-thio-beta-D-galactoside (IPTG) and the immunoreactivity of the fusion protein was detected by Western blot. Shrimp were vaccinated by intramuscular injection of the purified protein VP292 of WSSV and challenged for 0-30 days. Vaccination trial experiments show that two injections with recombinant VP292 (rVP292) protein induced a higher resistance, with 52% relative percentage survival value, in the shrimp at the 30th day postvaccination. CONCLUSIONS: The expression system of protein VP292 of WSSV with a high efficiency has been successfully constructed. Vaccination trials show significant resistance in the shrimp vaccinated twice with recombinant VP292. SIGNIFICANCE AND IMPACT OF THE STUDY: Results of this study prosper the development of WSSV protein vaccine against WSSV infection in shrimps.  相似文献   

4.
The nucleocapsid protein VP15 of white spot syndrome virus (WSSV) is a basic DNA-binding protein. Three canonical bipartite nuclear localization signals (NLSs), called NLS1 (aa 11-27), NLS2 (aa 33-49) and NLS3 (44-60), have been detected in this protein, using the ScanProsite computer program. To determine the nuclear localization sequence of VP15, the full-length open reading frame, or the sequence of one of the three NLSs, was fused to the green fluorescent protein (GFP) gene, and transiently expressed in insect Sf9 cells. Transfection with full-length VP15 resulted in GFP fluorescence being distributed exclusively in the nucleus. NLS 1 alone could also direct GFP to the nucleus, but less efficiently. Neither of the other two NLSs (NLS2 and 3) was functional when expressed alone, but exhibited similar activity to NLS1 when they were expressed as a fusion peptide. Furthermore, a mutated VP15, in which the two basic amino acids (11RR12) of NLSI were changed to two alanines (11AA12), caused GFP to be localized only in the cytoplasm of Sf9 cells. These results demonstrated that VP15, as a nuclear localization protein, needs cooperation between its three NLSs, and that the two residues (11RR12) of NLS1 play a key role in transporting the protein to the nucleus.  相似文献   

5.
White spot syndrome virus (WSSV) is one of the most serious pathogens of penaeid shrimp. Although its genome has been completely characterized, the functions of most of its putative proteins are not yet known. It has been suggested that the major nucleocapsid protein VP15 is involved in packaging of the WSSV genome during virion formation. However, little is known in its relationship with shrimp host cells. Using the yeast two-hybrid approach to screen a shrimp lymphoid organ (LO) cDNA library for proteins that might interact with VP15, a protein named PmFKBP46 was identified. It had high sequence similarity to a 46 kDa-immunophilin called FKBP46 from the lepidopteran Spodoptera frugiperda (the fall armyworm). The full length PmFKBP46 consisted of a 1,257-nucleotide open reading frame with a deduced amino acid sequence of 418 residues containing a putative FKBP-PPIase domain in the C-terminal region. Results from a GST pull-down assay and histological co-localization revealed that VP15 physically interacted with PmFKBP46 and that both proteins shared the same subcellular location in the nucleus. An electrophoretic mobility shift assay indicated that PmFKBP46 possessed DNA-binding activity and functionally co-interacted with VP15 in DNA binding. The overall results suggested that host PmFKBP46 might be involved in genome packaging by viral VP15 during virion assembly.  相似文献   

6.
7.
8.
Since our first report in 1998, white spot syndrome virus (WSSV) has become wide-spread on the southern and western coasts of Korea. Almost all shrimp in ponds die within 3 to 4 d after the first dead shrimp are observed with gross lesions ranging from abnormal red body discoloration to white spots in the cuticle. From one isolate, we cloned and sequenced WSSV genomic DNA coding for VP19 and VP28 envelope proteins and VP15 and VP35 nucleocapsid proteins. Putative protein sequences were submitted to GenBank and assigned accession numbers AY316119 (VP19), AY324881 (VP28), AY374120 (VP15) and AY325896 (VP35). At the nucleotide level, VP19, VP28 and VP15 sequences were, respectively, 99, 100 and 100% identical to those of China, Indonesia, Japan and the United States and the VP35 sequence was 100% identical to that of a Taiwanese isolate. The deduced amino-acid sequences were 99 to 100% identical to those from other countries. In VP19, C and T in the foreign isolates were replaced by T and A in the Korean isolate at Positions 57 and 218 nt, respectively, downstream of A (+) of the VP19 start codon. The change at Position 218 nt resulted in valine in the foreign isolates being replaced by aspartate in the Korean isolate.  相似文献   

9.
Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2′-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18-22 nm and a height of 2.0 ± 0.4 nm, which consist of several (n = 6-8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin-ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.  相似文献   

10.
VP37 of white spot syndrome virus interact with shrimp cells   总被引:2,自引:0,他引:2  
Aims:  To investigate VP37 [WSV 254 of White spot syndrome virus (WSSV) genome] interacting with shrimp cells and protecting shrimp against WSSV infection.
Methods and Results:  VP37 was expressed in Escherichia coli and was confirmed by Western blotting. Virus overlay protein binding assay (VOPBA) technique was used to analyse the rVP37 interaction with shrimp and the results showed that rVP37 interacted with shrimp cell membrane. Binding assay of recombinant VP37 with shrimp cell membrane by ELISA confirmed that purified rVP37 had a high-binding activity with shrimp cell membrane. Binding of rVP37 to shrimp cell membrane was a dose-dependent. Competition ELISA result showed that the envelope protein VP37 could compete with WSSV to bind to shrimp cells. In vivo inhibition experiment showed that rVP37 provided 40% protection. Inhibition of virus infection by rVP37 in primary cell culture revealed that rVP37 counterparted virus infection within the experiment period.
Conclusions:  VP37 has been successfully expressed in E . coli . VP37 interacted with shrimp cells.
Significance and Impact of the Study:  The results suggest that rVP37 has a potential application in prevention of virus infection.  相似文献   

11.
Metabolic functions of fibroblasts are tightly regulated by the extracellular environment. When cultivated in tridimensional collagen lattices, fibroblasts exhibit a lowered activity of protein synthesis, especially concerning extracellular matrix proteins. We have previously shown that extracellular collagen impaired the processing of ribosomal RNA (rRNA) in nucleoli by generating changes in the expression of nucleolar proteins and a premature degradation of neosynthesized rRNA. In this study, we have investigated whether inhibiting the synthesis of fibrillarin, a major nucleolar protein with decreased expression in collagen lattices, could mimic the effects of extracellular matrix. Monolayer-cultured fibroblasts were transfected with anti-fibrillarin antisense oligodeoxynucleotides, which significantly decreased fibrillarin content. Downregulation of fibrillarin expression inhibited procollagen secretion into the extracellular medium, without altering total collagen production. No changes of pro1(I)collagen mRNA expression or proline hydroxylation were found. A concomitant intracellular retention of collagen and its chaperone protein HSP47 was found, but no effect on the production of other extracellular matrix macromolecules or remodelling enzymes was observed. These data show that collagen processing depends on unknown mechanisms, involving proteins primarily located in the nucleolar compartment with other demonstrated functions, and suggest specific links between nucleolar machinery and extracellular matrix.  相似文献   

12.
Detection of fibrillarin in nucleolar remnants and the nucleolar matrix   总被引:3,自引:0,他引:3  
In order to gain further insights into the fundamental structure of the nucleolus, nucleolar remnants of Xenopus and chickens were examined for the presence of fibrillarin and nucleolus organizer region (NOR) silver staining. Nucleolar remnants of Xenopus nucleated red blood cells were found to contain easily detectable amounts of fibrillarin and NOR silver staining. Upon examination of various tissues, fibrillarin and NOR silver staining were detected in nucleoli of Xenopus liver hepatocytes and within nucleoli of oocytes and follicle cells from ovaries of mature female toads. By comparison, nucleolar remnants of adult chicken nucleated red blood cells contained only trace amounts of fibrillarin and NOR silver staining, whereas red blood cell nucleolar remnants of immature chicks had easily detectable amounts of fibrillarin and NOR silver staining. Nucleoli from hepatocytes of both adult and immature chickens demonstrated comparable levels of fibrillarin and NOR silver staining. Since fibrillarin was found in nucleolar remnant structures, we tested for (and detected) its presence in residual nucleoli of in situ nuclear matrix derived from HeLa cells. These findings are discussed in terms of the basic structural and functional organization of the nucleolus.  相似文献   

13.
Yoo D  Wootton SK  Li G  Song C  Rowland RR 《Journal of virology》2003,77(22):12173-12183
Porcine reproductive and respiratory syndrome virus (PRRSV) replicates in the cytoplasm of infected cells, but its nucleocapsid (N) protein localizes specifically to the nucleus and nucleolus. The mechanism of nuclear translocation and whether N associates with particular nucleolar components are unknown. In the present study, we show by confocal microscopy that the PRRSV N protein colocalizes with the small nucleolar RNA (snoRNA)-associated protein fibrillarin. Direct and specific interaction of N with fibrillarin was demonstrated in vivo by the mammalian two-hybrid assay in cells cotransfected with the N and fibrillarin genes and in vitro by the glutathione S-transferase pull-down assay using the expressed fibrillarin protein. Using a series of deletion mutants, the interactive domain of N with fibrillarin was mapped to a region of amino acids 30 to 37. For fibrillarin, the first 80 amino acids, which contain the glycine-arginine-rich region (the GAR domain), was determined to be the domain interactive with N. The N protein was able to bind to the full-length genomic RNA of PRRSV, and the RNA binding domain was identified as the region overlapping with the nuclear localization signal situated at positions 41 to 47. These results suggest that the N protein nuclear transport may be controlled by the binding of RNA to N. The PRRSV N protein was also able to bind to both 28S and 18S ribosomal RNAs. The protein-protein interaction between N and fibrillarin was RNA dependent but independent of N protein phosphorylation. Taken together, our studies demonstrate a specific interaction of the PRRSV nucleocapsid protein with the host cell protein fibrillarin in the nucleolus, and they imply a potential linkage of viral strategies for the modulation of host cell functions, possibly through rRNA precursor processing and ribosome biogenesis.  相似文献   

14.
Wan Q  Xu L  Yang F 《Journal of virology》2008,82(24):12598-12601
The envelopment of the nucleocapsid is an important step in white spot syndrome virus (WSSV) assembly. Previous studies showed that VP26, a major envelope protein of WSSV, can interact with viral nucleocapsid. In this study, using the biotin label transfer technique, we found that the biotin label was transferred from Bio-rVP26 to the viral capsid protein VP51 or from Bio-MBP-VP51 to VP26. Far-Western analyses provided further evidence for direct interaction between VP26 and VP51. Therefore, we conclude that VP26 functions as a matrix-like linker protein between the viral envelope and nucleocapsid, which suggests that VP26 is a key factor in the envelopment of WSSV virion.  相似文献   

15.
The intracellular distribution of nucleolar phosphoproteins B23 and nucleolin was studied during mouse spermatogenesis, a process that is characterized by a progressive reduction of nucleolar activity. Biochemical analyses of isolated germ cell fractions were performed in parallel with the in situ ultrastructural immunolocalization of these two proteins by means of specific antibodies and colloidal gold markers, and by silver staining. RNA blot experiments showed that mRNA for nucleolin progressively decreased during spermatogenesis whereas mRNA for B23 increased in amount during early spermatogenic stages. Immunoblotting confirmed that both proteins were present during early spermatogenesis up to the round spermatid stage and absent from mature sperm. Immunoelectron microscopy revealed that in spermatogonia, leptotene and pachtyene spermatocytes, and in Golgi phase spermatids, B23 and nucleolin were localized in the dense fibrillar component and granular component of the nucleolus but not in the fibrillar centers. In the dense fibrillar residue of the cap phase spermatids, labeling with anti-nucleolin but not with anti-B23 was observed. During nucleolar inactivation, neither of the two polypeptides was dispersed to the nucleoplasm. Silver salts stained the fibrillar centers and dense fibrillar component but not the granular component of the nucleolus. Our results suggest that there is no direct relationship between nucleolar activity and the occurrence of B23 and nucleolin or silver staining. Moreover, we confirm that silver staining and the presence of B23 or nucleolin are not directly related to each other.by M. Trendelenburg  相似文献   

16.
Tang X  Wu J  Sivaraman J  Hew CL 《Journal of virology》2007,81(12):6709-6717
White spot syndrome virus (WSSV) is a virulent pathogen known to infect various crustaceans. It has bacilliform morphology with a tail-like appendage at one end. The envelope consists of four major proteins. Envelope structural proteins play a crucial role in viral infection and are believed to be the first molecules to interact with the host. Here, we report the localization and crystal structure of major envelope proteins VP26 and VP28 from WSSV at resolutions of 2.2 and 2.0 A, respectively. These two proteins alone account for approximately 60% of the envelope, and their structures represent the first two structural envelope proteins of WSSV. Structural comparisons among VP26, VP28, and other viral proteins reveal an evolutionary relationship between WSSV envelope proteins and structural proteins from other viruses. Both proteins adopt beta-barrel architecture with a protruding N-terminal region. We have investigated the localization of VP26 and VP28 using immunoelectron microscopy. This study suggests that VP26 and VP28 are located on the outer surface of the virus and are observed as a surface protrusion in the WSSV envelope, and this is the first convincing observation for VP26. Based on our studies combined with the literature, we speculate that the predicted N-terminal transmembrane region of VP26 and VP28 may anchor on the viral envelope membrane, making the core beta-barrel protrude outside the envelope, possibly to interact with the host receptor or to fuse with the host cell membrane for effective transfer of the viral infection. Furthermore, it is tempting to extend this host interaction mode to other structural viral proteins of similar structures. Our finding has the potential to extend further toward drug and vaccine development against WSSV.  相似文献   

17.
WSSV particles were detected in separated granular cells (GCs) and semigranular cells (SGCs) by in situ hybridisation from WSSV-infected crayfish and the prevalence of WSSV-infected GCs was 5%, whereas it was 22% in SGCs. This indicates that SGCs are more susceptible to WSSV and that this virus replicated more rapidly in SGCs than in GCs and as a result the number of SGCs gradually decreased from the blood circulation. The effect of haemocyte lysate supernatant (HLS), containing the degranulation factor (peroxinectin), phorbol 12-myristate 13-acetate (PMA), the Ca(2+) ionophore A23187 on GCs from WSSV-infected and sham-injected crayfish was studied. The results showed that the percentage of degranulated GCs of WSSV-infected crayfish treated with HLS or PMA was significantly lower than that in the control, whereas no significant difference was observed when treated with the Ca(2+) ionophore. It was previously shown that peroxinectin and PMA have a degranulation effect via intracellular signalling involving protein kinase C (PKC), whereas the Ca(2+) ionophore uses an alternative pathway. HLS treatment of GCs and SGCs from WSSV-infected crayfish results in three different morphological types: non-spread, spread and degranulated cells. The non-spread cell group from both GCs and SGCs after treatment with HLS had more WSSV positive cells than degranulated cells, when detected by in situ hybridisation. Taken together, it is reasonable to speculate that the PKC pathway might be affected during WSSV infection. Another interesting phenomenon was that GCs from non-infected crayfish exhibited melanisation, when incubated in L-15 medium, while no melanisation was found in GCs of WSSV-infected crayfish. However, the phenoloxidase activities of both sham- and WSSV-injected crayfish in HLS were the same as well as proPO expression as detected by RT-PCR. This suggests that the WSSV inhibits the proPO system upstream of phenoloxidase or simply consumes the native substrate for the enzyme so that no activity is shown. The percentage of apoptotic haemocytes in WSSV-infected crayfish was very low, but it was significantly higher than that in the sham-injected crayfish on day 3 or 5 post-infection. The TEM observation in haematopoietic cells (hpt cells) suggests that WSSV infect specific cell types in haematopoietic tissue and non-granular hpt cells seem more favourable to WSSV infection.  相似文献   

18.
Disruption of the survival motor neuron (SMN) gene leads to selective loss of spinal motor neurons, resulting in the fatal human neurodegenerative disorder spinal muscular atrophy (SMA). SMN has been shown to function in spliceosomal small nuclear ribonucleoprotein (snRNP) biogenesis and pre-mRNA splicing. We have demonstrated that SMN also interacts with fibrillarin, a highly conserved nucleolar protein that is associated with all Box C/D small nucleolar RNAs and functions in processing and modification of rRNA. Fibrillarin and SMN co-immunoprecipitate from HeLa cell extracts indicating that the proteins exist as a complex in vivo. Furthermore, in vitro binding studies indicate that the interaction between SMN and fibrillarin is direct and salt-stable. We show that the glycine/arginine-rich domain of fibrillarin is necessary and sufficient for SMN binding and that the region of SMN encoded by exon 3, including the Tudor domain, mediates the binding of fibrillarin. Tudor domain missense mutations, including one found in an SMA patient, impair the interaction between SMN and fibrillarin (as well as the common snRNP protein SmB). Our results suggest a function for SMN in small nucleolar RNP biogenesis (akin to its known role as an snRNP assembly factor) and reveal a potential link between small nucleolar RNP biogenesis and SMA.  相似文献   

19.
Electroporation of exponentially growing human larynx epidermoid carcinoma cells (HEp-2) with a serum against nucleolin, one of the most abundant non-histone nuclear proteins, has shown, 24 h after electroporation, a significant increase in the size of the nucleolus of these cells compared with normal HEp-2 cells (non-electroporated) and electroporated HEp-2 cells in the absence of antinucleolin serum (P < 0.01). Image analysis evaluation of the different nucleolar components proved a major contribution of the dense fibrillar component to the total nucleolar size in cells electroporated with anti-nucleolin antibodies, more than that corresponding to the dense fibrillar component in cells from any of the control groups (P < 0.01), indicating that the reported increase in nucleolar size was due to a marked enlargement of the dense fibrillar regions. These results, in agreement with previous biochemical and molecular biology studies, suggest a pivotal role for nucleolin in pre-rRNA processing and constitute morphological evidence supporting this role. Following nucleolin inhibition, impaired pre-rRNA processing might result in an accumulation of this molecular species in the dense fibrillar component of the nucleolus, where pre-rRNA is first present.  相似文献   

20.
Previous studies identify VP28 envelope protein of white spot syndrome virus (WSSV) as its main antigenic protein. Although implicated in viral infectivity, its functional role remains unclear. In the current study, we described the production of polyclonal antibodies to recombinant truncated VP28 proteins including deleted N-terminal (rVP28ΔN), C-terminal (rVP28ΔC) and middle (rVP28ΔM). In antigenicity assays, antibodies developed from VP28 truncations lacking the N-terminal or middle regions showed significantly lowered neutralization of WSSV in crayfish, Procambarus clarkii. Further immunogenicity analysis showed reduced relative percent survival (RPS) in crayfish vaccinating with these truncations before challenge with WSSV. These results indicated that N-terminal (residues 1–27) and middle region (residues 35–95) were essential to maintain the neutralizing linear epitopes of VP28 and responsible in eliciting immune response. Thus, it is most likely that these regions are exposed on VP28, and will be useful for rational design of effective vaccines targeting VP28 of WSSV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号