首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As biodiesel (fatty acid methyl ester (FAME)) is mainly produced from edible vegetable oils, crop soils are used for its production, increasing deforestation and producing a fuel more expensive than diesel. The use of waste lipids such as waste frying oils, waste fats, and soapstock has been proposed as low-cost alternative feedstocks. Non-edible oils such as jatropha, pongamia, and rubber seed oil are also economically attractive. In addition, microalgae, bacteria, yeast, and fungi with 20% or higher lipid content are oleaginous microorganisms known as single cell oil and have been proposed as feedstocks for FAME production. Alternative feedstocks are characterized by their elevated acid value due to the high level of free fatty acid (FFA) content, causing undesirable saponification reactions when an alkaline catalyst is used in the transesterification reaction. The production of soap consumes the conventional catalyst, diminishing FAME production yield and simultaneously preventing the effective separation of the produced FAME from the glycerin phase. These problems could be solved using biological catalysts, such as lipases or whole-cell catalysts, avoiding soap production as the FFAs are esterified to FAME. In addition, by-product glycerol can be easily recovered, and the purification of FAME is simplified using biological catalysts.  相似文献   

2.
Biodiesel production using a membrane reactor   总被引:14,自引:0,他引:14  
The immiscibility of canola oil in methanol provides a mass-transfer challenge in the early stages of the transesterification of canola oil in the production of fatty acid methyl esters (FAME or biodiesel). To overcome or rather, exploit this situation, a two-phase membrane reactor was developed to produce FAME from canola oil and methanol. The transesterification of canola oil was performed via both acid- or base-catalysis. Runs were performed in the membrane reactor in semi-batch mode at 60, 65 and 70 degrees C and at different catalyst concentrations and feed flow rates. Increases in temperature, catalyst concentration and feedstock (methanol/oil) flow rate significantly increased the conversion of oil to biodiesel. The novel reactor enabled the separation of reaction products (FAME/glycerol in methanol) from the original canola oil feed. The two-phase membrane reactor was particularly useful in removing unreacted canola oil from the FAME product yielding high purity biodiesel and shifting the reaction equilibrium to the product side.  相似文献   

3.
The high cost of commercial lipases limits their industrial application in the production of biodiesel or fatty acid methyl esters (FAME). This disadvantage has encouraged the search for lipase-producing microorganisms (LPMs) as potential whole cell catalysts for FAME production. The aim of this study, therefore, was to evaluate innovative procedures for easy selection and testing of LPMs as a low-cost whole cell catalyst, based on catalytic performance, methanol tolerance and physico-chemical cell surface properties. The latter (in particular the cell surface hydrophobicity and charge) were analyzed because of their crucial role in microbial adhesion to surfaces and the concomitant increase in cell immobilization and bioavailability of hydrophobic substrates. Biocatalysis experiments performed in the presence of nutrient, rapeseed oil and methanol were an effective tool for studying and identifying, in just two experiments, the capacity of different LPMs as biocatalysts in organic media, as well as the methanol tolerance of the cell and the lipase. This indicates the potential for using live microorganisms for FAME production. Another finding was that the inhibitory effect of methanol is more significant for lipase activity than LPM growth, indicating that the way in which alcohol is supplied to the reaction is a crucial step in FAME production by biocatalysts. According to these results, the application of these innovative assessments should simplify the search for new strains which are able to effectively catalyze the FAME production process.  相似文献   

4.
In the present study conversion of waste cooking oil to biodiesel has been carried out via simultaneous esterification and transesterification reaction over silica sulfuric acid as a solid acid catalyst. The process variables that influence the fatty acid methyl ester (FAME) conversion, such as reaction temperature, reaction time, catalyst concentration and methanol to oil molar ratio were investigated and optimized using Taguchi method. Highest FAME production obtained under the optimized condition was 98.66 %. Analysis of variance revealed that temperature was the most significant factor effecting the FAME production among four factors studied. From the kinetic study, the reaction was found to follow pseudo first-order kinetics and rate constant of the reaction under optimum condition was 0.00852 min?1.  相似文献   

5.
Fatty acid methyl esters (FAME) were produced from palm oil using eggshell modified with magnesium and potassium nitrates to form a composite, low-cost heterogeneous catalyst for transesterification. The catalyst, prepared by the combination of impregnation/co-precipitation was calcined at 830 °C for 4 h. Transesterification was conducted at a constant temperature of 65 °C in a batch reactor. Design of experiment (DOE) was used to optimize the reaction parameters, and the conditions that gave highest yield of FAME (85.8%) was 5.35 wt.% catalyst loading at 4.5 h with 16:1 methanol/oil molar ratio. The results revealed that eggshell, a solid waste, can be utilized as low-cost catalyst after modification with magnesium and potassium nitrates for biodiesel production.  相似文献   

6.
采用浸渍法制备K2CO3/γ-Al2O3负载型固体碱催化剂,用X线衍射(XRD)和热质量分析法(DSC-TGA)表征催化剂的物化性质,考察催化剂在棕榈油和甲醇酯交换制备生物柴油中的反应性能。结果表明:活性组分已成功负载到载体γ-Al2O3上,且在高温焙烧过程中K2CO3和γ-Al2O3之间产生了相互作用;在K2CO3负载量22.6%、醇油摩尔比12∶1、反应时间3h、催化剂质量分数3%、反应温度65℃的条件下,甲酯产率最高可达91.6%。  相似文献   

7.
许多不皂化物成分作为药效成分被应用于恶性肿瘤的临床治疗中,五谷虫不皂化物的提取分离可以充分发挥这种传统中药材的功效。通过单因素实验得到不皂化物酸值较低而产率较高的最佳工艺条件是石油醚添加量为10mL/g,碱添加过量5%,在60℃的条件下反应15min,0.5mol/L的KCl溶液添加量为50mL/g。通过响应面优化后,得到最佳的不皂化物酸值和提取率分别为70.21mg KOH/g和58.05%。  相似文献   

8.
The new type of catalyst for fatty acid methyl esters (FAME or biodiesel) synthesis with K2CO3 as active component on alumina/silica support was synthesized using sol–gel method. Corresponding catalyst (xerogel) was prepared by 12 h drying the wet gel in air at 300 °C, 600 °C or 1000 °C at atmospheric pressure. The catalysts activity in the methanolysis of sunflower oil was compared to the activity of the pure K2CO3. The effects of various reaction variables on the yield of FAME were investigated. It was found that the temperature of 120 °C and methanol to oil molar ratio of 15:1, are optimal conditions for FAME synthesis with synthesized catalyst. Repeated use of same amount of catalyst indicated that effect of potassium leaching obviously existed leading to decrease of catalyst activity.  相似文献   

9.
In order to achieve a viable biodiesel industry, new catalyst technology is needed which can process a variety of less expensive waste oils, such as yellow grease and brown grease. However, for these catalysts to be effective for biodiesel production using these feedstocks, they must be able to tolerate higher concentrations of free fatty acids (FFA), water, and sulfur. We have developed a class of zirconia supported metaloxide catalysts that achieve high FAME yields through esterification of FFAs while simultaneously performing desulfurization and de-metallization functions. In fact, methanolysis, with the zirconia supported catalysts, was more effective for desulfurization than an acid washing process. In addition, using zirconia supported catalysts to convert waste grease, high in sulfur content, resulted in a FAME product that could meet the in-use ASTM diesel fuel sulfur specification (<500 ppm). Possible mechanisms of desulfurization and de-metallization by methanolysis were proposed to explain this activity.  相似文献   

10.
The presence of high levels of free fatty acids (FFA) in oil is a barrier to one‐step biodiesel production. Undesirable soaps are formed during conventional chemical methods, and enzyme deactivation occurs when enzymatic methods are used. This work investigates an efficient technique to simultaneously convert a mixture of free fatty acids and triglycerides (TAG). A partial soybean hydrolysate containing 73.04% free fatty acids and 24.81% triglycerides was used as a substrate for the enzymatic production of fatty acid methyl ester (FAME). Whole‐cell Candida antarctica lipase B‐expressing Aspergillus oryzae, and Novozym 435 produced only 75.2 and 73.5% FAME, respectively. Fusarium heterosporum lipase‐expressing A. oryzae produced more than 93% FAME in 72 h using three molar equivalents of methanol. FFA and TAG were converted simultaneously in the presence of increasing water content that resulted from esterification. Therefore, F. heterosporum lipase with a noted high level of tolerance of water could be useful in the industrial production of biodiesel from feedstock that has high proportion of free fatty acids.  相似文献   

11.
The distillate produced by deodorization of palm oil (DDPO) is a waste that corresponds to 4% of the product formed in this process. DDPO is 83% free of fatty acids (FFA), making it a good material for biodiesel production. In this paper, a catalyst prepared from a waste material, Amazon flint kaolin, was used for the esterification of DDPO with methanol. Leached metakaolin treated at 950 °C and activated with 4 M sulfuric acid (labeled as MF9S4) offered maximum esterification activity (92.8%) at 160 °C with a DDPO:methanol molar ratio of 1:60 and a 4-h reaction time. The influences of reaction parameters, such as the molar ratio of the reactants, alcohol chain length, temperature, time and the presence of glycerides and unsaponifiable matter, have also been investigated. Based on the catalytic results, esterification of DDPO using MF9S4 can be a cheaper alternative for production of sustainable fuels.  相似文献   

12.
Enzymatic lipase transesterification of palm oil to biodiesel in a packed‐bed reactor (PBR) using a novel strain of the fungus Aspergillus niger, immobilized within polyurethane biomass support particles (BSPs), was investigated. A three‐step addition of methanol was used to reduce lipase inhibition by immiscible methanol. The influence of water content and PBR flow rate was investigated. FAME yield was enhanced with an increase of PBR flow rate in the range of 0.15–30 L h?1, where inefficient mixing of the reaction mixture at lower flow rates resulted in low conversion rates i.e. 69% after 72‐h reaction. Adding the third mole equivalent of methanol resulted in lipase inhibition due to methanol migration into the accumulated glycerol layer. Glutaraldehyde (GA) solution (0.5 vol.%) was used to stabilize lipase activity, which led to a high FAME yield (>90%) in the PBR after 72‐h of reaction time at a flow rate of 15 L h?1, and a water content of 15%. Moreover, a high conversion rate (>85%) was maintained after four palm oil batch conversion cycles in the PBR. In contrast, lipase activity of non‐GA‐treated cells decreased with each PBR batch cycle, where only 70% FAME was produced after the forth PBR cycle. Transesterification of palm oil in a PBR system using BSPs‐immobilized A. niger as a whole‐cell biocatalyst is a viable process for enzymatic biodiesel production.  相似文献   

13.
A lipase from Candida sp., suitable for transesterification of fats and oils to produce fatty acid methyl ester (FAME), was immobilized on a cheap cotton membrane, in this paper. The conversion ratio of salad oil to biodiesel could reach up to 96% with the optimal reaction conditions. Continuous reaction in a fixed bed reactor was also investigated. A three-step transesterification with methanol (methanolysis) of oil was conducted by using a series of nine columns packed with immobilized Candida sp. 99–125 lipase. As substrate of the first reaction step, plant or waste oil was used together with 1/3 molar equivalent of methanol against total fatty acids in the oil. Mixtures of the first- and second-step eluates and 1/3 molar equivalent of methanol were used for the second- and third-reaction steps. A hydrocyclone was used in order to on-line separate the by-product glycerol after every 1/3 molar equivalent of methanol was added. Petroleum ether was used as solvent (3/2, v/v of oil) and the pump was operated with a flow rate of 15 L/h giving an annual throughput of 100 t. The final conversion ratio of the FAME from plant oil and waste oil under the optimal condition was 90% and 92%, respectively. The life of the immobilized lipase was more than 10 days. This new technique has many strongpoints such as low pollution, environmentally friendly, and low energy costs.  相似文献   

14.
Lipids of Algae     
A fresh cake of Scenedesmus. cells was extracted with hot acetone, and the extracts were saponified. The yield of the unsaponifiable matter was 4.5% of the dry matter. Hydrocarbons and alcohols were extracted with petroleum ether from this unsaponifiable matter. The petroleum ether extracts were fractionated by the vacuum distillation. Each of the fractions was further separated by column chromatography or/and by the solubility difference of the urea adducts. Phytol was the major component of the unsaponifiable matter. Small amounts of n-hexadecane, n-hexacosene and n-eicosanol were isolated. On the other hand, the residue of the petroleum ether extraction was extracted with ether to separate sterols, of which the major component was found to be chondrillasterol.  相似文献   

15.
Analysis of several different schemes for industrial FAME production at higher pressure and temperature (catalytic or non-catalytic synthesis) was realized with the aim to find the best route to reduce the energy consumption (EC) and to improve the life cycle energy efficiency. Obtained results indicated that the EC (MJ/kg FAME) mainly depends on degree of conversion of triglycerides being almost 25% smaller if degree of conversion increase from 97 mass% to complete conversion. Further significant decrease of EC might be obtained at subcritical conditions but only after substantial decrease of methanol to oil molar ratio (from 42 to 15) which requires use of appropriate catalyst. On account of that, the kinetics of heterogeneous catalyzed methanolysis of triglycerides was analyzed using data published in literature (CaO) as well as own experimental data (K2CO3/Al–O–Si) with a goal to obtain reliable kinetic rate constant which might be used for process simulation.This study shows that if heterogeneous process of biodiesel synthesis is realized at subcritical conditions then further decrease of EC is possible.  相似文献   

16.
The feasibility of using the commercial immobilized lipase from Candida antarctica (Novozyme 435) to synthesize biodiesel from sunflower oil in a solvent-free system has been proved. Using methanol as an acyl acceptor and the response surface methodology as an optimization technique, the optimal conditions for the transesterification has been found to be: 45 oC, 3% of enzyme based on oil weight, 3:1 methanol to oil molar ratio and with no added water in the system. Under these conditions, >99% of oil conversion to fatty acid methyl ester (FAME) has been achieved after 50 h of reaction, but the activity of the immobilized lipase decreased markedly over the course of repeated runs. In order to improve the enzyme stability, several alternative acyl acceptors have been tested for biodiesel production under solvent-free conditions. The use of methyl acetate seems to be of great interest, resulting in high FAME yield (95.65%) and increasing the half-life of the immobilized lipase by about 20.1 times as compared to methanol. The reaction has also been verified in the industrially feasible reaction system including both a batch stirred tank reactor and a packed bed reactor. Although satisfactory performance in the batch stirred tank reactor has been achieved, the kinetics in a packed bed reactor system seems to have a slightly better profile (93.6 ± 3.75% FAME yield after 8–10 h), corresponding to the volumetric productivity of 48.5 g/(dm3 h). The packed bed reactor has operated for up to 72 h with almost no loss in productivity, implying that the proposed process and the immobilized system could provide a promising solution for the biodiesel synthesis at the industrial scale.  相似文献   

17.
Rapeseed oil methyl esters preparation using heterogeneous catalysts   总被引:56,自引:0,他引:56  
The classical method of fatty acids methyl esters (FAME) production is based on triglyceride transesterification to methyl esters. Sodium hydroxide dissolved in methanol is used as a catalyst. The purpose of this work was to examine a heterogeneous catalyst, in particular calcium compounds, to produce methyl esters of rapeseed oil. This research showed that the transesterification of rapeseed oil by methyl alcohol can be catalysed effectively by basic alkaline-earth metal compounds: calcium oxide, calcium methoxide and barium hydroxide. Calcium catalysts, due to their weak solubility in the reaction medium, are less active than sodium hydroxide. However, calcium catalysts are cheaper and lead to decreases in the number of technological stages and the amount of unwanted waste products. It was found that the transesterification reaction rate can be enhanced by ultrasound as well as by introducing an appropriate reagent into a reactor to promote methanol solubility in the rapeseed oil. Tetrahydrofuran was used as additive to accelerate the transesterification process.  相似文献   

18.
Biodiesel is an alternative fuel for diesel engines produced through transesterification of oleaginous feedstocks. To analyze the influence of the fatty-acid composition on biodiesel optimization, transesterification of several vegetable oils has been studied. Reactions were carried out in flasks filled with vegetable oils, heated to the reaction temperature and stirred at 1100 rpm. The reactions started when the methanol and potassium hydroxide solutions were added to the flasks. Concentration of catalyst, amount of methanol, reaction temperature and time were optimized using a factorial design and a surface response design. Also, a kinetics study was carried out to optimize the reaction time. Results showed that reaction parameters optimal values depend on the oil chemical and physical properties. It can be concluded from this field trial that the effect of both catalyst concentration and reaction time over the transesterification yield is greatly influenced by the saturation degree and fatty-acid chain length.  相似文献   

19.
The synthesis of fatty acid methyl esters (FAME) as a substitute to petroleum diesel was investigated in this study from crude jatropha oil (CJO), a non-edible, low-cost alternative feedstock, using aluminium modified heterogeneous basic oxide (Mg-Zn) catalyst. The transesterification reaction with methanol to methyl esters yielded 94% in 6 h with methanol-oil ratio of 11:1, catalyst loading of 8.68 wt.% at 182 °C and the properties of CJO fuel produced were determine and found to be comparable to the standards according to ASTM. In the range of experimental parameters investigated, it showed that the catalyst is selective to production of methyl esters from oil with high free fatty acid (FFA) and water content of 7.23% and 3.28%, respectively in a single stage process. Thus, jatropha oil is a promising feedstock for methyl ester production and large scale cultivation will help to reduce the product cost.  相似文献   

20.
Pithecellobium dulce has been used in traditional medicine to treat various ailments owing to its restorative properties. The biological activities and chemical profiles of the lipophilic fraction of P. dulce bark and leaves were assessed herein. Fatty acid methyl esters (FAME) and unsaponifiable matter (USM) were prepared and analyzed by GC/MS. A total of 40 compounds were identified in the bark saponifiable fraction, whereas 9 compounds were annotated in the leaves. Palmitic acid methyl ester was the major compound identified accounting for 41.48 % of the bark and 19.03 % of the leaves composition. Besides, linolenic acid methyl ester (22.40 %) and linoleic acid (12.69 %) were annotated in the leaves saponifiable fraction. A total of 63 compounds were detected in the bark USM and 4 compounds were identified in the leaves. Phytol represented the major component in the leaves (52.57 %) followed by lupeol (20.68 %) and lupenone (8.60 %). Meanwhile, n‐dodecane dominated in the bark USM accounting for 24.69 % of the total composition. The leaves and bark lipophilic fractions revealed moderate antioxidant and antibacterial activities. Both extracts showed no antifungal activity. No cytotoxicity was observed for both lipophilic fractions. P. dulce offers a good source of antioxidant compounds that can be introduced to food and pharmaceutical industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号