首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action mechanism of vanadocene dichloride, Cp2VCl2 (Cp=eta5-C5H5), has been investigated by interaction with human serum transferrin for its promising antitumor activities. Our results have shown that Cp2VCl2 binds to transferrin and form a new complex, and the calculated apparent association constant is 1.37 x 10(5)M(-1) from the fluorescence quenching. Simultaneously, the variation of the secondary structure of transferrin occurs, most probably due to the coordination of the amino residues of protein with VIV. It was evidenced that Cp is released free in solution after VIV binding to transferrin by 1H NMR measurements. These results have shown that Cp2VCl2 forms a complex with transferrin, which may provide a possible pathway in the transport and targeted delivery of the antitumor agent.  相似文献   

2.
Transferrin (Tf), a naturally existing protein, has received considerable attention in the area of drug targeting since it is biodegradable, non-toxic, and non-immunogenic. The efficient cellular uptake of Tf shows it has potential in the delivery of anti-cancer drugs, proteins, and therapeutic genes into proliferating malignant cells that overexpress transferrin receptor (TfR). In human serum, about 30% of Tf exists in the iron-saturated form (Fe(2)-Tf) and the remainder exists as apotransferrin (apo-Tf). Understanding the uptake of apo-Tf by cells will provide key insights into studies on Tf-mediated drug delivery. In the present study, we investigated visually the transport of apo-Tf into K562 cells and its intracellular localization by laser-scanning confocal microscopy (LSCM) and flow cytometry analysis (FCA). It was found that, like Fe(2)-Tf, apo-Tf can be taken up into the cells. The process is time- and temperature-dependent, competitively inhibited by Fe(2)-Tf, and significantly abolished by pronase pretreatment. Visual evidence showed that the transport of apo-Tf into K562 cells is a TfR-mediated process. Furthermore, the investigations using optical-slicing technique demonstrated that the distribution of apo-Tf is similar to that of Fe(2)-Tf, both appearing in the perinuclear region in ball-in-bowl shape.  相似文献   

3.
Angiogenesis is an important process in cancer growth and metastasis. During the tumor angiogenic process, endothelial cells express various cell surface receptors which can be utilized for molecular imaging and targeted drug delivery. One such protein receptor of interest is the integrin alphav beta3. Our group is involved in the development of molecular imaging probes and drug delivery systems targeting alphav beta3. Based on extensive lead optimization study with the integrin antagonist compounds, we have developed a new generation of integrin alphav beta3 compound (IA) which has superior binding affinity to alphav beta3. Utilizing this IA as a targeting agent, we have developed a novel integrin-targeted nanoparticle (ITNP) system for targ alphav beta3 was observed. These ITNPs also were rapidly taken up by cells that express alphav beta3. The ITNPs accumulated in the angiogenic vessels, after systemic administration in a murine squamous cell carcinoma model. This novel intergrin targeted ITNP platform will likely have an application in targeted delivery of drugs and genes in vivo and can also be used for molecular imaging.  相似文献   

4.
We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation.  相似文献   

5.
Guo M  Sun H  McArdle HJ  Gambling L  Sadler PJ 《Biochemistry》2000,39(33):10023-10033
The organometallic anticancer agent titanocene dichloride, Cp(2)TiCl(2), is now in phase II clinical trials as an anticancer drug, but its mechanism of action is poorly understood. We show here that the interactions of Cp(2)TiCl(2) with human serum transferrin (hTF) and that of Ti(2)-hTF with adenosine triphosphate (ATP) have characteristics that could allow transferrin to act as a mediator for titanium delivery to tumor cells. Such reactions may therefore be important to the anticancer activity of this new class of drugs. Cp(2)TiCl(2) reacts rapidly with human apo-transferrin under physiological conditions (100 mM NaCl, 25 mM bicarbonate, and 4 mM phosphate, pH 7.4) with carbonate as a synergistic anion. The Cp ligands are released from the drug. Two-dimensional [(1)H, (13)C] NMR studies of epsilon-[(13)C]Met-hTF show that Ti(IV) loads the C-lobe first followed by the N-lobe and binds in the specific Fe(III) sites. The protein conformational changes induced by Ti(IV) appear to be similar to those induced by Fe(III). Carbonate can act as a synergistic anion in Ti(2)-hTF but does not appear to be essential. A specific Ti(IV)-hTF adduct is formed even in the absence of bicarbonate. When the pH of Ti(2)-hTF solutions is lowered, no Ti(IV) is released at the endosomal pH of ca. 5.0-5.5, but one Ti(IV) dissociates between pH 4.5-2.0. In contrast, in the presence of 1 mM ATP, all Ti(IV) is readily released from both lobes when the pH is lowered from 7.0 to 4.5. Moreover, Fe(III) displaces Ti(IV) rapidly from the C-lobe of Ti(2)-hTF (<5 min) but only slowly (days) from the N-lobe. Thus, the species Fe(C)Ti(N)-hTF might also provide a route for Ti(IV) entry into tumor cells via the transferrin receptor. Ti(2)-hTF effectively blocked cell uptake of radiolabeled (59)Fe-hTF into BeWo cells, a human placental choriocarcinoma cell line in culture. These results imply that titanium transferrin might be recognized by the transferrin receptor and be taken up into cancer cells.  相似文献   

6.
聚合物胶束作为药物载体具有良好的稳定性和生物相容性,提高疏水性药物溶解性等优势,是一类很有应用潜力的药物传输系统。本研究以合成的共价键连D-甘露糖的双亲性聚合物分子(PGMA-Mannose)为药物载体,包载抗癌药物阿霉素(DOX)制备具有甘露糖受体靶向性和pH敏感药物释放特性的新型载药聚合物胶束。利用激光共聚焦显微镜和MTT细胞毒性评价方法对载药胶束的细胞内吞摄取和毒性进行评价。实验结果表明,载药胶束能特异性识别人乳腺癌细胞MDA-MB-231表面过度表达的甘露糖受体,被癌细胞大量摄取并在细胞溶酶体酸性环境内释放药物,而载药胶束在表面甘露糖受体低表达的HEK293细胞中只有少量摄取。与原药DOX相比,该载药胶束对癌细胞的毒性显著提高,而对正常细胞的毒性较低。因此,该PGMA-Mannose聚合物胶束有望成为一种新型的靶向药物输送系统应用于癌症的治疗。  相似文献   

7.
Human transferrin receptor 1 (TfR) binds iron-loaded transferrin (Fe-Tf) and transports it to acidic endosomes where iron is released in a TfR-facilitated process. Consistent with our hypothesis that TfR binding stimulates iron release from Fe-Tf at acidic pH by stabilizing the apo-Tf conformation, a TfR mutant (W641A/F760A-TfR) that binds Fe-Tf, but not apo-Tf, cannot stimulate iron release from Fe-Tf, and less iron is released from Fe-Tf inside cells expressing W641A/F760A-TfR than cells expressing wild-type TfR (wtTfR). Electron paramagnetic resonance spectroscopy shows that binding at acidic pH to wtTfR, but not W641A/F760A-TfR, changes the Tf iron binding site > or =30 A from the TfR W641/F760 patch. Mutation of Tf histidine residues predicted to interact with the W641/F760 patch eliminates TfR-dependent acceleration of iron release. Identification of TfR and Tf residues critical for TfR-facilitated iron release, yet distant from a Tf iron binding site, demonstrates that TfR transmits long-range conformational changes and stabilizes the conformation of apo-Tf to accelerate iron release from Fe-Tf.  相似文献   

8.
In this study, we have explored the possibility of the combination of the high reactivity of nano Fe3O4 or Au nanoparticles and daunomycin, one of the most important antitumor drugs in the treatment of acute leukemia clinically, to inhibit MDR of K562/A02 cells. Initially, to determine whether the magnetic nanoparticle Fe3O4 and Au can facilitate the anticancer drug to reverse the resistance of cancer cells, we have explored the cytotoxic effect of daunomycin (DNR) with and without the magnetic nano-Fe3O4 or nano-Au on K562 and K562/A02 cells by MTT assay. Besides, the intracellular DNR concentration and apoptosis of the K562/A02 cells was further investigated by flow cytometry and confocal fluorescence microscopic studies. The MDR1 gene expression of the K562/A02 cells was also studied by RT-PCR method. Our results indicate that 5.0 x 10(-7) M nano-Fe3O4 or 2.0 x 10(-8) M nano-Au is biocompatible and can apparently raise the intracellular DNR accumulation of the K562/A02 cells and increase the apoptosis of tumor cells. Moreover, our observations illustrate that although these two kinds of nanoparticles themselves could not lower the MDRI gene expression of the K562/A02 cells, yet they could degrade the MDR1 gene level when combining with anticancer drug DNR. This raises the possibility to combine the nano-Fe3O4 or nano-Au with DNR to reverse the drug resistance of K562/A02 cells, which could offer a new strategy for the promising efficient chemotherapy of the leukemia patients.  相似文献   

9.
The possibility of increasing the effectiveness of antitumor drugs such as doxorubicin by preparing its complex with ultrafine magnetic iron oxide nanoparticles is considered. A method for binding doxorubicin molecules to magnetic nanoparticles via citric acid is proposed. The main magnetic properties of the obtained conjugates were studied by proton relaxometry and Mössbauer spectroscopy, while their cytotoxic activity was evaluated via spectrophotometric MTT assay in HeLa cells. It was shown that the conjugates of magnetite nanoparticles with doxorubicin are characterized by a high level of contrast in magnetic resonance imaging. The magnetic properties of doxorubicin-free and bound magnetite nanoparticles are mainly determined by the average size of nanoobjects and the phase composition and slightly depend on the composition of the stabilizing shell. The cytotoxic effect of the synthesized conjugates of magnetite nanoparticles with doxorubicin is higher than that of unbound doxorubicin. This makes it possible to increase the antitumor effect of doxorubicin and control the dynamics of its delivery in the form of a conjugate into the disease focus due to the magnetic contrast properties of nanoparticles.  相似文献   

10.
《Phytomedicine》2014,21(11):1264-1272
ObjectiveMultidrug resistance (MDR) of cancer cells to a broad spectrum of anticancer drugs is an obstacle to successful chemotherapy. Overexpression of P-glycoprotein (P-gp), an ATP-binding cassette (ABC) membrane transporter, can mediate the efflux of cytotoxic drugs out of cancer cells, leading to MDR and chemotherapy failure. Thus, development of safe and effective P-gp inhibitors plays an important role in circumvention of MDR. This study investigated the reversal of P-gp mediated multidrug resistance in colon cancer cells by five tanshinones including tanshinone I, tanshinone IIA, cryptotanshinone, dihydrotanshinone and miltirone isolated from Salvia miltiorrhiza (Danshen), known to be safe in traditional Chinese medicine.MethodsThe inhibitory effects of tanshinones on P-gp function were compared using digoxin bi-directional transport assay in Caco-2 cells. The potentiation of cytotoxicity of anticancer drugs by effective tanshinones were evaluated by MTT assay. Doxorubicin efflux assay by flow cytometry, P-gp protein expression by western blot analysis, immunofluorescence for P-gp by confocal microscopy, quantitative real-time PCR and P-gp ATPase activity assay were used to study the possible underlying mechanisms of action of effective tanshinones.ResultsBi-directional transport assay showed that only cryptotanshinone and dihydrotanshinone decreased digoxin efflux ratio in a concentration-dependent manner, indicating their inhibitory effects on P-gp function; whereas, tanshinone I, tanshinone IIA and miltirone had no inhibitory effects. Moreover, both cryptotanshinone and dihydrotanshinone could potentiate the cytotoxicity of doxorubicin and irinotecan in P-gp overexpressing SW620 Ad300 colon cancer cells. Results from mechanistic studies revealed that these two tanshinones increased intracellular accumulation of the P-gp substrate anticancer drugs, presumably by down-regulating P-gp mRNA and protein levels, and inhibiting P-gp ATPase activity.ConclusionsTaken together, these findings suggest that cryptotanshinone and dihydrotanshinone could be further developed for sensitizing resistant cancer cells and used as an adjuvant therapy together with anticancer drugs to improve their therapeutic efficacies for colon cancer.  相似文献   

11.
The effects of various forms of lactoferrin (Lf) interacting with ceruloplasmin (Cp, ferro-O2-oxidoreductase, EC 1.16.3.1) on oxidase activity of the latter were studied. Comparing the incorporation of Fe3+ oxidized by Cp into Lf and serum transferrin (Tf) showed that at pH 5.5 apo-Lf binds the oxidized iron seven times and at pH 7.4 four times faster than apo-Tf under the same conditions. Apo-Lf increased the oxidation rate of Fe2+ by Cp 1.25 times when Cp/Lf ratio was 1 : 1. Lf saturated with Fe3+ or Cu2+ increased the oxidation rate of iron 1.6 and 2 times when Cp to holo-Lf ratios were 1 : 1 and 1 : 2, respectively. Upon adding to Cp the excess amounts of apo-Lf (Cp/apo-Lf < 1 : 1) or of holo-Lf (Cp/holo-Lf < 1 : 2) the oxidation rate of iron no longer changed. Complex Cp-Lf demonstrating ferroxidase activity was discovered in breast milk.  相似文献   

12.
The effect of anticancer drugs and toxic compounds on cultures of human leukemic cells was evaluated by an enzyme-linked immunosorbent assay (Apoptosis ELISA) that uses a monoclonal antibody against single-stranded DNA to quantitate the apoptotic cells. The concentrations of 13 anticancer drugs, which increased Apoptosis ELISA absorbance, were close to the cytotoxic concentrations determined by the long-term cell survival assay. Short-term tetrazolium-based microculture tetrazolium (MTT) assay was significantly less sensitive than the Apoptosis ELISA and the cell survival assay for all anticancer drugs. For 6 drugs, cytotoxic concentrations measured by the MTT assay were at least 1 log higher than the concentrations inducing apoptosis. Importantly, in contrast to the anticancer drugs, 14 toxic chemicals did not increase the Apoptosis ELISA absorbance at cytotoxic concentrations. The difference in apoptosis induction by the anticancer drugs and the toxic chemicals was especially large in cultures treated with drug concentrations 2-fold higher than the IC(50) dose. Although all of the anticancer drugs tested induced intense ELISA reaction (mean absorbance 2.0), all toxic chemicals tested did not induce apoptosis. The Apoptosis ELISA assay could have useful applications in drug development as it can distinguish between clinically useful anticancer drugs and toxic compounds, has sensitivity similar to that of the long-term cell survival assay, and provides insight into the mechanism of drug cytotoxicity by differentiating between compounds killing cells by apoptosis and necrosis.  相似文献   

13.
Cyclic Arg-Gly-Asp-D-Phe-Lys [c(RGDfK)] targeted poly(L-glutamic acid) (PGA)-(Gd-DO3A) conjugate with a biodegradable cystamine spacer was prepared and evaluated for in vivo detection of an angiogenesis biomarker, alpha(v)beta3 integrin, in neoplastic tissues with T1 mapping, a quantitative magnetic resonance imaging (MRI) technique. The binding activity of the c(RGDfK) containing conjugate was investigated using in vitro vitronectin assay with human prostate carcinoma DU145 cell line and Kaposi's sarcoma SLK cell line. The peptide c(RGDfK) and PGA-cystamine-(Gd-DO3A) conjugate were used as controls. The binding affinity of polymer bound c(RGDfK) was slightly lower than free c(RGDfK) peptide. The RGD targeted conjugate had higher binding affinity to the DU145 cells than the SLK cells, which was consistent to free c(RGDfK). The imaging of alpha(v)beta3 integrin with targeted PGA-cystamine-(Gd-DO3A) was evaluated in nude mice bearing DU145 and SLK xenografts at a dose of 5 micromol-Gd/kg. The targeted conjugate demonstrated higher in vivo binding affinity to the DU145 xenografts than the SLK xenografts, resulting in a significant decrease of T1 values of water protons in the periphery of the DU145 tumors as shown in the MR T1 maps. No significant decrease of T1 values was observed in the SLK tumor with the targeted conjugate and in both tumors with the non-targeted conjugate. The targeted polymeric Gd(III) chelate conjugate with a degradable spacer has the potential to be a new paradigm for safe and effective probes in molecular imaging with quantitative MR T1 mapping.  相似文献   

14.
Mechanism for multiple ligand recognition by the human transferrin receptor   总被引:3,自引:1,他引:2  
Transferrin receptor 1 (TfR) plays a critical role in cellular iron import for most higher organisms. Cell surface TfR binds to circulating iron-loaded transferrin (Fe-Tf) and transports it to acidic endosomes, where low pH promotes iron to dissociate from transferrin (Tf) in a TfR-assisted process. The iron-free form of Tf (apo-Tf) remains bound to TfR and is recycled to the cell surface, where the complex dissociates upon exposure to the slightly basic pH of the blood. Fe-Tf competes for binding to TfR with HFE, the protein mutated in the iron-overload disease hereditary hemochromatosis. We used a quantitative surface plasmon resonance assay to determine the binding affinities of an extensive set of site-directed TfR mutants to HFE and Fe-Tf at pH 7.4 and to apo-Tf at pH 6.3. These results confirm the previous finding that Fe-Tf and HFE compete for the receptor by binding to an overlapping site on the TfR helical domain. Spatially distant mutations in the TfR protease-like domain affect binding of Fe-Tf, but not iron-loaded Tf C-lobe, apo-Tf, or HFE, and mutations at the edge of the TfR helical domain affect binding of apo-Tf, but not Fe-Tf or HFE. The binding data presented here reveal the binding footprints on TfR for Fe-Tf and apo-Tf. These data support a model in which the Tf C-lobe contacts the TfR helical domain and the Tf N-lobe contacts the base of the TfR protease-like domain. The differential effects of some TfR mutations on binding to Fe-Tf and apo-Tf suggest differences in the contact points between TfR and the two forms of Tf that could be caused by pH-dependent conformational changes in Tf, TfR, or both. From these data, we propose a structure-based model for the mechanism of TfR-assisted iron release from Fe-Tf.  相似文献   

15.
P-glycoprotein (P-gp) is one of the cell membrane pumps which mediate the efflux of molecules such as anticancer drugs to the extracellular matrix of tumor cells. P_gp is a member of the ATP-binding cassette (ABC) transporter family that is implicated in cancer multidrug resistance (MDR). Since MDR is a contributor to cancer chemotherapy failure, modulation of efflux pumps is a viable therapeutic strategy. In this study, new synthetic 1,4 dihydropiridine (DHP) derivatives containing thiophenyl substitution were tested as inhibitors of P-gp. Efflux assay was conducted to evaluate the intracellular accumulation of Rhodamine123 (Rh123) as a pump substrate. MTT assay, cell cycle analysis and in silico methods were also examined. Flow cytometric analysis revealed that synthetic DHP derivatives (15 µM) increased intracellular concentration of the substrate by 2–3 folds compared with verapamil as a standard P-gp inhibitor. MTT assay on EPG85-257P and its drug-resistant EPG85-257RDB cell line revealed antitumor effects (30–45%) for new DHP derivatives at 15 µM following 72 h incubation. However, MTT test on normal cell line showed negligible toxic effects. Finally combination of synthetic derivatives with doxorubicin showed that these compounds decrease IC50 of doxorubicin in resistant cell lines from 9 to 1.5 µM. Sub-G1 peak-related apoptotic cells showed a stronger effect of synthetic compounds at 5 µM compared with verapamil. Molecular dynamic results showed a high binding affinity between DHP derivative and protein at drug binding site. Findings of these biological tests indicated the antitumor activity and P-gp inhibitory effects of new 1,4-DHP derivatives.  相似文献   

16.
17.
Wang D  Su Y  Jin C  Zhu B  Pang Y  Zhu L  Liu J  Tu C  Yan D  Zhu X 《Biomacromolecules》2011,12(4):1370-1379
Novel supramolecular copolymer micelles with stimuli-responsive abilities were successfully prepared through the complementary multiple hydrogen bonds of nucleobases and then applied for rapid intracellular release of drugs. First, both adenine-terminated poly(ε-caprolactone) (PCL-A) and uracil-terminated poly(ethylene glycol) (PEG-U) were synthesized. The supramolecular amphiphilic block copolymers (PCL-A:U-PEG) were formed based on multiple hydrogen bonding interactions between PCL-A and PEG-U. The micelles self-assembled from PCL-A:U-PEG were sufficiently stable in water but prone to fast aggregation in acidic condition due to the dynamic and sensitive nature of noncovalent interactions. The low cytotoxicity of supramolecular copolymer micelles was confirmed by MTT assay against NIH/3T3 normal cells. As a hydrophobic anticancer model drug, doxorubicin (DOX) was encapsulated into these supramolecular copolymer micelles. In vitro release studies demonstrated that the release of DOX from micelles was significantly faster at mildly acid pH of 5.0 compared to physiological pH. MTT assay against HeLa cancer cells showed DOX-loaded micelles had high anticancer efficacy. Hence, these supramolecular copolymer micelles based on the complementary multiple hydrogen bonds of nucleobases are very promising candidates for rapid controlled release of drugs.  相似文献   

18.
Hyaluronic acid (HA) coated drug carriers (HCDCs) were successfully synthesized by chemical conjugation method for targeted delivery of doxorubicin (DOX) as a prototype anticancer drug to CD44 expressed human breast cancer cell. From XPS analysis, the HCDCs by conjugation methods demonstrated the superior HA fixation amount and colloidal stability compared with the nanoparticles by nanoprecipitation. The cytotoxicity of the HCDCs formulation accessed by the MTT assay against the higher CD44 expressed cell line (MDA-MB-231) and lower CD44 expressed cell line (ZR-75-1) human breast cancer cell lines demonstrated that the HCDCs formulation exhibited excellent tumoricidal effect and their affinity to cancer cells was predominant. The in vitro drug release profile of the HCDCs showed sustained release behavior and after 14 days, 80% of the encapsulated DOX was released due to a high release rate of DOX from HCDCs. We synthesized that HCDCs have therapeutic potentials of cancer as a target specific fashion by increasing the tumoricidal efficacy of targeted cancer cells while reducing their cytotoxicity of non-targeted cells to minimize the side effect.  相似文献   

19.

Background  

Many anticancer agents have poor water solubility and therefore the development of novel delivery systems for such molecules has received significant attention. Nanocarriers show great potential in delivering therapeutic agents into the targeted organs or cells and have recently emerged as a promising approach to cancer treatments. The aim of this study was to prepare and use poly-2-hydroxyethyl methacrylate (PHEMA) nanoparticles for the controlled release of the anticancer drug doxorubicin.  相似文献   

20.
Sesquiterpenes have attracted much interest with respect to their protective effect against oxidative damage that may be the cause of many diseases including several neurodegenerative disorders and cancer. Our previous unpublished work suggested that cyclosativene (CSV), a tetracyclic sesquiterpene, has antioxidant and anticarcinogenic features. However, little is known about the effects of CSV on oxidative stress induced neurotoxicity. We used hydrogen peroxide (H2O2) exposure for 6 h to model oxidative stress. Therefore, this experimental design allowed us to explore the neuroprotective potential of CSV in H2O2-induced toxicity in new-born rat cerebral cortex cell cultures for the first time. For this aim, MTT and lactate dehydrogenase release assays were carried out to evaluate cytotoxicity. Total antioxidant capacity (TAC) and total oxidative stress (TOS) parameters were used to evaluate oxidative changes. In addition to determining of 8-hydroxy-2-deoxyguanosine (8-OH-dG) levels, the single cell gel electrophoresis (or Comet assay) was also performed for measuring the resistance of neuronal DNA to H2O2-induced challenge. Our results showed that survival and TAC levels of the cells decreased, while TOS, 8-OH-dG levels and the mean values of the total scores of cells showing DNA damage (Comet assay) increased in the H2O2 alone treated cultures. But pre-treatment of CSV suppressed the cytotoxicity, genotoxicity and oxidative stress which were increased by H2O2. On the basis of these observations, it is suggested that CSV as a natural product with an antioxidant capacity in mitigating oxidative injuries in the field of neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号