首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We compared the thrombin-activated responses in human umbilical vein endothelial cells (HUVECs) and a HUVEC-derived cell line, ECV304. Thrombin induced a 40-50% decrease in transendothelial monolayer electrical resistance and a twofold increase in 125I-albumin permeability in HUVECs, whereas it failed to alter the endothelial barrier function in ECV304 cells. Thrombin produced a brisk intracellular Ca2+ concentration transient and phosphorylation of 20-kDa myosin light chain in HUVECs but not in ECV304 cells. Thrombin-induced phosphoinositide hydrolysis was comparable in ECV304 cells and HUVECs, indicating the activation of thrombin receptors in both cell types. La3+ reduced both the thrombin-induced decrease in endothelial monolayer electrical resistance and the increase in 125I-albumin permeability in HUVECs. Because the absence of Ca2+ signaling could explain the impairment in the permeability response in ECV304 cells, we studied the effect of increasing intracellular Ca2+ concentration in ECV304 cells with thapsigargin. Exposure of ECV304 cells to thapsigargin caused decreased endothelial monolayer electrical resistance and increased 125I-albumin permeability. These results indicate that Ca2+ influx and activation of Ca2+-dependent signaling pathways are important determinants of the thrombin-induced increase in endothelial permeability.  相似文献   

2.
Sphingosine-1-phosphate (S1P) signals to enhance or destabilize the vascular endothelial barrier depending on the receptor engaged. Here, we investigated the differential barrier effects of S1P on two influential primary endothelial cell (EC) types, human umbilical vein endothelial cells (HUVECs) and human pulmonary microvascular endothelial cells (HPMECs). S1PR1 (barrier protective) and S1PR3 (barrier disruptive) surface and gene expression were quantified by flow cytometry and immunofluorescence, and RT-qPCR, respectively. Functional evaluation of EC monolayer permeability in response to S1P was quantified with transendothelial electrical resistance (TEER) and small molecule permeability. S1P significantly enhanced HUVEC barrier function, while promoting HPMEC barrier breakdown. Immunofluorescence and flow cytometry analysis showed select, S1PR3-high HPMECs, suggesting susceptibility to barrier destabilization following S1P exposure. Reevaluation of HPMEC barrier following S1P exposure under inflamed conditions demonstrated synergistic barrier disruptive effects of pro-inflammatory cytokine and S1P. The role of the Rho-ROCK signaling pathway under these conditions was confirmed through ROCK1/2 inhibition (Y-27632). Thus, the heterogeneous responses of ECs to S1P signaling are mediated through Rho-ROCK signaling, and potentially driven by differences in the surface expression of S1PR3.  相似文献   

3.
Neutrophil-induced coronary microvascular barrier dysfunction is an important pathophysiological event in heart disease. Currently, the precise cellular and molecular mechanisms of neutrophil-induced microvascular leakage are not clear. The aim of this study was to test the hypothesis that rho kinase (ROCK) increases coronary venular permeability in association with elevated endothelial tension. We assessed permeability to albumin (P(a)) in isolated porcine coronary venules and in coronary venular endothelial cell (CVEC) monolayers. Endothelial barrier function was also evaluated by measuring transendothelial electrical resistance (TER) of CVEC monolayers. In parallel, we measured isometric tension of CVECs grown on collagen gels. Transference of constitutively active (ca)-ROCK protein into isolated coronary venules or CVEC monolayers caused a significant increase in P(a) and decreased TER in CVECs. The ROCK inhibitor Y-27632 blocked the ca-ROCK-induced changes. C5a-activated neutrophils (10(6)/ml) also significantly elevated venular P(a), which was dose-dependently inhibited by Y-27632 and a structurally distinct ROCK inhibitor, H-1152. In CVEC monolayers, activated neutrophils increased permeability with a concomitant elevation in isometric tension, both of which were inhibited by Y-27632 or H-1152. Treatment with ca-ROCK also significantly increased CVEC monolayer permeability and isometric tension, coupled with actin polymerization and elevated phosphorylation of myosin regulatory light chain on Thr18/Ser19. The data suggest that during neutrophil activation, ROCK promotes microvascular leakage in association with actin-myosin-mediated tension development in endothelial cells.  相似文献   

4.
l-Glutamate is a major excitatory neurotransmitter that binds ionotropic and metabotropic glutamate receptors. Cerebral endothelial cells from many species have been shown to express several forms of glutamate receptors; however, human cerebral endothelial cells have not been shown to express either the N-methyl-D-aspartate (NMDA) receptor message or protein. This study provides evidence that human cerebral endothelial cells express the message and protein for NMDA receptors. Human cerebral endothelial cell monolayer electrical resistance changes in response to glutamate receptor agonists, antagonists, and second message blockers were tested. RT-PCR and Western blot analysis were used to demonstrate the presence of the NMDA receptor. Glutamate and NMDA (1 mM) caused a significant decrease in electrical resistance compared with sham control at 2 h postexposure; this response could be blocked significantly by MK-801 (an NMDA antagonist), 8-(N,N-diethylamino)-n-octyl-3,4,5-trimethyoxybenzoate (an intracellular Ca2+ antagonist), and N-acetyl-L-cystein (an antioxidant). Trans(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid, a metabotropic receptor agonist (1 mM), did not significantly decrease electrical resistance. Our results are consistent with a model where glutamate, at excitotoxic levels, may lead to a breakdown in the blood brain barrier via activation of NMDA receptors.  相似文献   

5.
Drug bioavailability studies commonly employ in vitro barrier tissue models consisting of epithelial and endothelial cells. These experiments require that the cell barrier quality be assessed regularly, which is usually performed using various labeled substrates and/or evaluation of transepithelial (transendothelial) electrical resistance (TEER). This technique provides information on the integrity of the monolayer, but not on differentiation-induced changes in the cell morphology. The present work shows that impedance spectroscopy can be applied to monitor both the integrity of the monolayer and the morphological changes of Caco-2 cells. The growth kinetics of the apical membrane was determined by calculating the electrical capacitance of the cell monolayer. In the course of differentiation, the most pronounced changes in the expression levels were observed for the mRNAs that encode SLC30A10 and SLC23A3 transporters. Their increase correlated with an increase in the apical membrane area, indicating that SLC30A10 and SLC23A3 mRNA levels assessed by qRT-PCR may be employed as cell differentiation biomarkers in Caco-2 models.  相似文献   

6.
BACKGROUND: The lymphatic endothelium is an important semi-permeable barrier separating lymph from the interstitial space. However, there is currently a limited understanding of the lymphatic endothelial barrier and the mechanisms of lymph formation. The objectives of this study were to investigate the potential active role of lymphatic endothelial cells in barrier regulation, and to test whether the endothelial cell agonists VEGF-A and VEGF-C can alter lymphatic endothelial barrier function. METHODS AND RESULTS: Cultured adult human dermal microlymphatic endothelial cells (HMLEC-d) and human umbilical vein endothelial cells (HUVEC) were respectively used as models of lymphatic and vascular endothelium. Transendothelial electrical resistance (TER) of endothelial monolayers served as an index of barrier function. Cells were treated with VEGF-A, VEGF-C, or the VEGFR-3 selective mutant VEGF-C156S. MAZ51 was used to inhibit VEGFR-3 signaling. The results show that while VEGF-A causes a time-dependent decrease in TER in HUVEC, there is no response in HMLEC-d. In contrast, VEGF-C and VEGF-C156S cause a similar decrease in TER in HMLEC-d that is not observed in HUVEC. These results corresponded to the protein expression of VEGFR-2 and VEGFR-3 in these cell types, determined by Western blotting. In addition, the VEGF-C- and VEGF-C156S-induced TER changes were inhibited by MAZ51. CONCLUSIONS: The results indicate differential responses of the lymphatic and vascular endothelial barriers to VEGF-A and VEGF-C. Furthermore, our data suggest that VEGF-C alters lymphatic endothelial function through a mechanism involving VEGFR-3.  相似文献   

7.
Previous studies have described a protective effect of atrial natriuretic peptide (ANP) against agonist-induced permeability in endothelial cells derived from various vascular beds. In the current study, we assessed the effects of the three natriuretic peptides on thrombin-induced barrier dysfunction in rat lung microvascular endothelial cells (LMVEC). Both ANP and brain natriuretic peptide (BNP) attenuated the effect of thrombin on increased endothelial monolayer permeability and significantly enhanced the rate of barrier restoration. C-type natriuretic peptide (CNP) had no effect on the degree of thrombin-induced monolayer permeability, but did enhance the restoration of the endothelial barrier, similar to ANP and BNP. In contrast, the non-guanylyl cyclase-linked natriuretic peptide receptor specific ligand, cyclic-atrial natriuretic factor (c-ANF), delayed the rate of barrier restoration following exposure to thrombin. All three natriuretic peptides promoted cGMP production in the endothelial cells; however, 8-bromo-cGMP alone did not significantly affect thrombin modulation of endothelial barrier function. ANP and BNP, but not CNP or c-ANF, blunted thrombin-induced RhoA GTPase activation. We conclude that ANP and BNP protect against thrombin-induced barrier dysfunction in the pulmonary microcirculation by a cGMP-independent mechanism, possibly by attenuation of RhoA activation.  相似文献   

8.
Sphingosine 1-phosphate (S1P) rapidly increases endothelial barrier function and induces the assembly of the adherens junction proteins vascular endothelial (VE)-cadherin and catenins. Since VE-cadherin contributes to the stabilization of the endothelial barrier, we determined whether the rapid, barrier-enhancing activity of S1P requires VE-cadherin. Ca(2+)-dependent, homophilic VE-cadherin binding of endothelial cells, derived from human umbilical veins and grown as monolayers, was disrupted with EGTA, an antibody to the extracellular domain of VE-cadherin, or gene silencing of VE-cadherin with small interfering RNA. All three protocols caused a reduction in the immunofluorescent localization of VE-cadherin at intercellular junctions, the separation of adjacent cells, and a decrease in basal endothelial electrical resistance. In all three conditions, S1P rapidly increased endothelial electrical resistance. These findings demonstrate that S1P enhances the endothelial barrier independently of homophilic VE-cadherin binding. Junctional localization of VE-cadherin, however, was associated with the sustained activity of S1P. Imaging with phase-contrast and differential interference contrast optics revealed that S1P induced cell spreading and closure of intercellular gaps. Pretreatment with latrunculin B, an inhibitor of actin polymerization, or Y-27632, a Rho kinase inhibitor, attenuated cell spreading and the rapid increase in electrical resistance induced by S1P. We conclude that S1P rapidly closes intercellular gaps, resulting in an increased electrical resistance across endothelial cell monolayers, via cell spreading and Rho kinase and independently of VE-cadherin.  相似文献   

9.
Radiation-induced changes in capillaries constitute a basic injury in the pathogenesis of chronic radiation damage to the heart, lung, liver, kidney and brain. It is important to identify new radioprotectors for capillary endothelial cells for use during radiotherapy to minimize normal tissue damage and possibly to increase the deliverable dose. Previously we demonstrated that exposure to ionizing radiation (10 Gy) results in death of bovine adrenal capillary endothelial cells in confluent monolayers by apoptosis. We also showed that retinoids inhibit the growth of endothelial cells, induce their differentiation, down-regulate matrix metalloproteinase (MMP) production, and up-regulate tissue inhibitors of matrix metalloproteinases (TIMPs). In the present studies, we demonstrated that radiation (10 Gy) induced an immediate increase in the amounts and activation of MMP1 and MMP2 in the cell fraction and medium of bovine capillary endothelial cells followed by an incidence of apoptosis. We also obtained data indicating that radiation-induced apoptosis can be inhibited by exposing bovine capillary endothelial cells to all-trans-retinol or all-trans-retinoic acid for 6 days before irradiation, even when the vitamins were removed 24 h before irradiation. Finally, we determined that inhibition of MMPs by TIMP was sufficient to block radiation-induced apoptosis, suggesting that the mechanism of protection by retinoids is through the alteration of levels of MMPs and TIMPs produced by the cells.  相似文献   

10.
Endothelial monolayer permeability to macromolecules   总被引:9,自引:0,他引:9  
The barrier function of the endothelial monolayer has not been extensively investigated using the cultured endothelium. The in vitro approach may contribute to a more complete understanding of microvessel wall permeability. Our studies using an in vitro endothelial monolayer system have led us to the following conclusions: the endothelial monolayer is more permeable to small-molecular-weight substances than to large molecules; the permeability of albumin is different for endothelial cells derived from different vascular sites (higher for pulmonary venous than pulmonary arterial endothelium); basement membrane components may have a significant role in the permeability of albumin across the endothelium; control of endothelial monolayer permeability is determined not only by the characteristics of the macromolecule (i.e., size and charge) but also by the shape of the endothelial cells and the size of interendothelial space.  相似文献   

11.
Endothelium lining the inner surface of vessels regulates permeability of vascular wall by providing exchange between blood circulation in vessels and tissue fluid and therefore performs a barrier function. Endothelial cells (ECs) in culture are able to maintain the barrier function peculiar to cells of vascular endothelium in vivo. The endothelial monolayer in vitro is a unique model system that allows studying interaction of cytoskeletal and adhesive structures of endotheliocytes from the earliest stages of its formation. In the present work, we described and quantitatively characterized the changes of EC cytoskeleton from the moment of spreading of endotheliocytes on glass and the formation of the first contacts between neighbor cells until formation of a functional confluent monolayer. The main type of intermediate filaments of ECs are vimentin filaments. At different stages of endothelial monolayer formation, disposition of vimentin filaments and their amount do not change essentially, they occupy more than 80% of the cell area. Actin filaments system of endotheliocytes is represented by cortical actin at the cell periphery and by bundles of actin stress fibers organized in parallel. With formation of contacts between cells in native endothelial cells, the number of actin filaments rises and thickness of their bundles increases. With formation of endothelial monolayer, there are also changes in the microtubules system—their number increases at the cell edge. At all stages of EC monolayer formation, the number of microtubules in the region of the already formed intercellular contacts exceeds the number of microtubules in the free lamella region of the cell.  相似文献   

12.
In vivo and in vitro studies indicate that 4-hydroxy-2-nonenal (4-HNE), generated by cellular lipid peroxidation or after oxidative stress, affects endothelial permeability and vascular tone. However, the mechanism(s) of 4-HNE-induced endothelial barrier function is not well defined. Here we provide evidence for the first time on the involvement of mitogen-activated protein kinases (MAPKs) in 4-HNE-mediated actin stress fiber formation and barrier function in lung endothelial cells. Treatment of bovine lung microvascular endothelial cells with hydrogen peroxide (H(2)O(2)), as a model oxidant, resulted in accumulation of 4-HNE as evidenced by the formation of 4-HNE-Michael protein adducts. Exposure of cells to 4-HNE, in a dose- and time-dependent manner, decreased endothelial cell permeability measured as transendothelial electrical resistance. The 4-HNE-induced permeability changes were not because of cytotoxicity or endothelial cell apoptosis, which occurred after prolonged treatment and at higher concentrations of 4-HNE. 4-HNE-induced changes in transendothelial electrical resistance were calcium independent, as 4-HNE did not alter intracellular free calcium levels as compared with H(2)O(2) or diperoxovanadate. Stimulation of quiescent cells with 4-HNE (1-100 microm) resulted in phosphorylation of ERK1/2, JNK, and p38 MAPKs, and actin cytoskeleton remodeling. Furthermore, pretreatment of bovine lung microvascular endothelial cells with PD 98059 (25 microm), an inhibitor of MEK1/2, or SP 600125 (25 microm), an inhibitor of JNK, or SB 202190 (25 microm), an inhibitor of p38 MAPK, partially attenuated 4-HNE-mediated barrier function and cytoskeletal remodeling. These results suggest that the activation of ERK, JNK, and p38 MAP kinases is involved in 4-HNE-mediated actin remodeling and endothelial barrier function.  相似文献   

13.
Li HB  Ge YK  Zhang L  Zheng XX 《Life sciences》2006,79(12):1186-1193
The purpose of the present study was to examine the effects of astragaloside IV, a saponin isolated from Astragalus membranaceus (Fisch) Bge, on the impairment of barrier function induced by acute high glucose in cultured human vein endothelial cells. High glucose (27.8 mM) induced a decrease in transendothelial electrical impedance and an increase in cell monolayer permeability in human umbilical vein endothelial cells. Endothelial barrier dysfunction stimulated by high glucose was accompanied by translocation and activation of protein kinase C (PKC), the redistribution of F-actin and formation of intercellular gaps, suggesting that increases in PKC activity and rearrangement of F-actin could be associated with endothelial barrier dysfunction induced by acute high glucose. Application of astragaloside IV inhibited high glucose-induced endothelial barrier dysfunction in a dose-dependent manner, which is compatible with inhibition of PKC translocation and improvement of F-actin rearrangements. Western blot analysis revealed that high glucose-induced PKC alpha and beta2 overexpression in the membrane fraction were significantly reduced by astragaloside IV. These findings indicate that astragaloside IV protected endothelial cells from high glucose-induced barrier impairment by inhibiting PKC activation, as well as improving cytoskeleton remodeling.  相似文献   

14.
It has been shown both in vivo and in culture that astrocytes communicate with brain microvessel endothelial cells (BMECs) to induce many of the blood-brain barrier characteristics attributed to these unique cells. However, the results using cultured cells are conflicting as to whether this communication is dependent upon cell-cell contact. In this study we used primary cultures of bovine BMECs grown as monolayers on polycarbonate filters to study the formation of the barrier in vitro and examine its modulation by rat C6 glioma cells. Effects were examined by treating postconfluent BMEC monolayers with medium conditioned continually by C6 cells from the basolateral side to mimic the in vivo orientation. Cell monolayer integrity was assessed using electrical resistance and by measuring diffusion of uncharged molecules. BMEC monolayers form a functionally polarized and leaky barrier, with maximal resistance of 160 omega . cm2 and significant flux of molecules of molecular weight less than 350 Da. Treatment with rat or human astroglioma cells rather than pericytoma cells or transformed fibroblasts results in a concentration-dependent 200-440% increase in electrical resistance and a coincident 50% decrease in permeability to sucrose and dextran (70 kDa). The decrease in passive diffusion is most likely due to a change in tight junctions and not to transcellular vesicular traffic. The findings support that astroglioma cells release one or more signals that are required for cultured BMECs to express a "differentiated" phenotype associated with a tighter barrier, increased gamma-glutamyl transpeptidase activity, and decreased pinocytic activity. The relative ease and quickness of this culture system makes it amenable to studies on cell-cell interaction and regulation of barrier maintenance.  相似文献   

15.
Endothelial cells (ECs) form a monolayer that serves as a barrier between the blood and the underlying tissue. ECs tightly regulate their cell-cell junctions, controlling the passage of soluble materials and immune cells across the monolayer barrier. We studied the role of N-WASP, a key regulator of Arp2/3 complex and actin assembly, in EC monolayers. We report that N-WASP regulates endothelial monolayer integrity by affecting the organization of cell junctions. Depletion of N-WASP resulted in an increase in transendothelial electrical resistance, a measure of monolayer integrity. N-WASP depletion increased the width of cell-cell junctions and altered the organization of F-actin and VE-cadherin at junctions. N-WASP was not present at cell-cell junctions in monolayers under resting conditions, but it was recruited following treatment with sphingosine-1-phosphate. Taken together, our results reveal a novel role for N-WASP in remodeling EC junctions, which is critical for monolayer integrity and function.  相似文献   

16.
Endothelial monolayer hyperpermeability is regulated by a myosin light chain phosphorylation (MLCP)-dependent contractile mechanism. In this study, we tested the role of Src-dependent tyrosine phosphorylation to modulate endothelial contraction and monolayer barrier function with the use of the myosin phosphatase inhibitor calyculin A (CalA) to directly elevate MLCP with the Src family tyrosine kinase inhibitor herbimycin A (HA) in bovine pulmonary artery endothelial cells (EC). CalA stimulated an increase in MLCP, Src kinase activity, an increase in the tyrosine phosphorylation of paxillin and focal adhesion (FA) kinase (p125(FAK)), and monolayer hyperpermeability. Microscopic examination of CalA-treated EC revealed a contractile morphology characterized by peripheral contractile bands of actomyosin filaments and stress fibers linked to phosphotyrosine-containing FAs. These CalA-dependent events were HA sensitive. HA alone stimulated an improvement in monolayer barrier formation by reducing the levels of MLCP and phosphotyrosine-containing proteins and the number of large paracellular holes. These data show that Src kinase plays an important role in regulating monolayer hyperpermeability through adjustments in tyrosine phosphorylation, MLCP, and EC contraction.  相似文献   

17.
Hindered barrier function has been implicated in the initiation and progression of atherosclerosis, a disease of focal nature associated with altered hemodynamics. In this study, endothelial permeability to macromolecules and endothelial electrical resistance were investigated in vitro in monolayers exposed to disturbed flow fields that model spatial variations in fluid shear stress found at arterial bifurcations. After 5 h of flow, areas of high shear stress gradients showed a 5.5-fold increase in transendothelial transport of dextran (molecular weight 70,000) compared with no-flow controls. Areas of undisturbed fully developed flow, within the same monolayer, showed a 2.9-fold increase. Monolayer electrical resistance decreased with exposure to flow. The resistance measured during flow and the rate of change in monolayer resistance after removal of flow were lowest in the vicinity of flow reattachment (highest shear stress gradients). These results demonstrate that endothelial barrier function and permeability to macromolecules are regulated by spatial variations in shear stress forces in vitro.  相似文献   

18.
The mechanism of blood-brain barrier breakdown in the complex pathogenesis of cerebral malaria is not well understood. In this study, primary cultures of porcine brain capillary endothelial cells (PBCEC) were used as in vitro model. Membrane-associated malaria antigens obtained from lysed Plasmodium falciparum schizont-infected erythrocytes stimulated human peripheral blood mononuclear cells (PBMC) to secrete tumor necrosis factor alpha. In co-cultivation with the brain endothelial cell model, the malaria-activated PBMC stimulated the expression of E-selectin and ICAM-1 on the PBCEC. Using electric cell-substrate impedance sensing, we detected a significant decrease of endothelial barrier function within 4h of incubation with the malaria-activated PBMC. Correspondingly, immunocytochemical studies showed the disruption of tight junctional complexes. Combination of biochemical and biophysical techniques provides a promising tool to study changes in the blood-brain barrier function associated with cerebral malaria. Moreover, it is shown that the porcine endothelial model is able to respond to human inflammatory cells.  相似文献   

19.
为探索星形胶质细胞在血脑屏障内皮细胞紧密连接形成中的重要意义,通过内皮细胞系ECV304与星形胶质细胞体外接触共培养的方法,采用电镜及内皮细胞紧密连接的银染观察星形胶质细胞对内皮细胞系紧密连接的诱导作用。运用Millipore-ERS系统检测紧密连接的功能状况。结果发现,星形胶质细胞可以诱导内皮细胞系形成广泛而连续的紧密连接并产生较高的跨内皮阻抗(transendothelial electrical resistance,TER),于第10d可达321.3Ωcm^2。提示,星形胶质细胞可以诱导ECV304细胞产生紧密连接。同时,ECV304细胞与星形胶质细胞的体外共培养可以作为研究血脑屏障紧密连接结构与功能的一种可靠而简便的体外实验方法。  相似文献   

20.
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号