首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The pyruvate kinases of the desert locust fat body and flight muscle were partially purified by ammonium sulphate fractionation. 2. The fat-body enzyme is allosterically activated by very low (1mum) concentrations of fructose 1,6-diphosphate, whereas the flight-muscle enzyme is unaffected by this metabolite at physiological pH. 3. Flight-muscle pyruvate kinase is activated by preincubation at 25 degrees for 5min., whereas the fat-body enzyme is unaffected by such treatment. 4. Both enzymes require 1-2mm-ADP for maximal activity and are inhibited at higher concentrations. With the fat-body enzyme inhibition by ADP is prevented by the presence of fructose 1,6-diphosphate. 5. Both enzymes are inhibited by ATP, half-maximal inhibition occurring at about 5mm-ATP. With the fat-body enzyme ATP inhibition can be reversed by fructose 1,6-diphosphate. 6. The fat-body enzyme exhibits maximal activity at about pH7.2 and the activity decreases rapidly above this pH. This inactivation at high pH is not observed in the presence of fructose 1,6-diphosphate, i.e. maximum stimulating effects of fructose 1,6-diphosphate are observed at high pH. The flight-muscle enzyme exhibits two optima, one at about pH7.2 as with the fat-body enzyme and the other at about pH8.5. Stimulation of the enzyme activity by fructose 1,6-diphosphate was observed at pH8.5 and above.  相似文献   

2.
1. Preincubation of partially purified rat liver L-type pyruvate kinase at 25 degrees for 10min. causes a marked increase in co-operativity with respect to both the substrate, phosphoenolpyruvate, and the allosteric activator, fructose 1,6-diphosphate. 2. The results are consistent with the existence of two forms of liver L-type pyruvate kinase, designated forms L(A) and L(B). It is postulated that form L(A) has a low K(m) for phosphoenolpyruvate (about 0.1mm) and is not allosterically activated, whereas form L(B) is allosterically activated by fructose 1,6-diphosphate, exhibiting in the absence of the activator sigmoidal kinetics with half-maximal activity at about 1mm-phosphoenolpyruvate. In the presence of fructose 1,6-diphosphate, form L(B) gives Michaelis-Menten kinetics with K(m) less than 0.1mm. It is further postulated that preincubation converts form L(A) into form L(B). 3. The influence of pH on the preincubation effect was studied. 4. The inhibition of pyruvate kinase by Cu(2+) was studied in detail. Though phosphoenolpyruvate and fructose 1,6-diphosphate readily protect the enzyme against Cu(2+) inhibition, little evidence of significant reversal of the inhibition by these compounds could be found. 5. The effects of starvation, fructose feeding and preincubation on the pyruvate kinase activity of crude homogenates of various tissues of the rat were also studied.  相似文献   

3.
1. Kinetics of fructose 1,6-diphosphate activation of liver pyruvate kinase type I inhibited with MgATP and l-alanine are described as a function of enzyme and fructose 1,6-diphosphate concentrations. These results can be explained by a single pseudo-first-order transition of the enzyme into an active form, independent of the enzyme concentration. This rate constant, k(app.)=0.24s(-1) with 0.02mm-fructose 1,6-diphosphate (t(0.9) approximately 10s where t(0.9) is the time for 90% conversion), is an increasing function of fructose 1,6-diphosphate concentration far beyond that needed to maximally activate enzyme equilibrated with fructose 1,6-diphosphate (about 20mum). 2. The model equations are best analysed with numerical techniques which are described. These techniques are useful in studying similar slow transients frequently observed in stopped-flow studies of enzymes. 3. Shorter transients (t(0.9)=0.5-1.5s) were observed in the kinetic response of the enzyme to the addition of MgATP or phosphoenolpyruvate, but were not further characterized.  相似文献   

4.
1. Extraction of rat epididymal adipose tissue with buffer containing EDTA yields a pyruvate kinase, provisionally called PyK-A, the properties of which resemble in several respects those of the allosteric pyruvate kinase of liver. These properties include co-operative interactions with phosphoenolpyruvate, Mg(2+), K(+), NH(4) (+) and ATP, and sensitivity to activation by fructose 1,6-diphosphate. 2. Extraction in the absence of EDTA yields predominantly a form, PyK-B, that shows both normal Michaelis-Menten kinetics with phosphoenolpyruvate, Mg(2+) and ATP, and co-operative interactions with K(+) and NH(4) (+); this form is insensitive towards fructose 1,6-diphosphate. 3. Both forms yield simple kinetics with ADP, though K(m) values differ in the two systems. In all cases where co-operativity has been demonstrated, Hill-plot n values are between 1.4 and 2.0. 4. The conversion of PyK-A into PyK-B is mediated specifically by fructose 1,6-diphosphate; the reverse reaction is occasioned by EDTA, ATP or citrate. It is thought that a bivalent cation may be involved in this interconversion. 5. Attempts at partial purification have revealed that the enzyme resembles the pyruvate kinase of skeletal muscle, rather than that of liver, in its solubility in ammonium sulphate and elution from DEAE-cellulose. 6. The relevance of these properties in the regulation of pyruvate kinase activity in vivo in adipose tissue is discussed.  相似文献   

5.
Kinetic studies on the regulation of rabbit liver pyruvate kinase   总被引:5,自引:5,他引:0  
Two kinetically distinct forms of pyruvate kinase (EC 2.7.1.40) were isolated from rabbit liver by using differential ammonium sulphate fractionation. The L or liver form, which is allosterically activated by fructose 1,6-diphosphate, was partially purified by DEAE-cellulose chromatography to give a maximum specific activity of 20 units/mg. The L form was allosterically activated by K(+) and optimum activity was recorded with 30mm-K(+), 4mm-MgADP(-), with a MgADP(-)/ADP(2-) ratio of 50:1, but inhibition occurred with K(+) concentrations in excess of 60mm. No inhibition occurred with either ATP or GTP when excess of Mg(2+) was added to counteract chelation by these ligands. Alanine (2.5mm) caused 50% inhibition at low concentrations of phosphoenolpyruvate (0.15mm). The homotropic effector, phosphoenolpyruvate, exhibited a complex allosteric pattern (n(H)=2.5), and negative co-operative interactions were observed in the presence of low concentrations of this substrate. The degree of this co-operative interaction was pH-dependent, with the Hill coefficient increasing from 1.1 to 3.2 as the pH was raised from 6.5 to 8.0. Fructose 1,6-diphosphate interfered with the activation by univalent ions, markedly decreased the apparent K(m) for phosphoenolpyruvate from 1.2mm to 0.2mm, and transformed the phosphoenolpyruvate saturation curve into a hyperbola. Concentrations of fructose 1,6-diphosphate in excess of 0.5mm inhibited this stimulated reaction. The M or muscle-type form of the enzyme was not activated by fructose 1,6-diphosphate and gave a maximum specific activity of 0.3 unit/mg. A Michaelis-Menten response was obtained when phosphoenolpyruvate was the variable substrate (K(m)=0.125mm), and this form was inhibited by ATP, as well as alanine, even in the presence of excess of Mg(2+).  相似文献   

6.
After 5 h of treatment with glucagon, liver L-type pyruvate kinase (ATP: pyruvate 2-0-phosphotransferase; EC 2.7.1.40) showed a significant decrease of K0.5 and the Hill coefficient (nH) in the absence of fructose 1,6-diphosphate. However, in the presence of fructose 1,6-diphosphate, liver enzymes from treated rats showed a slight decrease of K0.5 but nH remained unchanged. In both circumstances, no changes of Vmax were observed after treatment. These changes in the kinetic properties of liver L-type pyruvate kinase are consistent with the dephosphorylation of the enzyme caused by insulin release in response to treatment with glucagon.  相似文献   

7.
A method of purification of pyruvate kinase (EC 2.7.1.40) from light-grown Euglena gracilis var. bacillaris was developed which yielded an enzyme preparation purified 115-fold over crude extracts. During organelle formation, levels of pyruvate kinase in extracts prepared from cells engaged in light-induced chloroplast development do not change significantly. The enzyme has a molecular weight of approximately 240,000 and a requirement for both K+ and Mg2+. Fructose 1,6-diphosphate activates the enzyme when the concentration of phosphoenol-pyruvate is limiting; it does not activate when the concentration of ADP is limiting. ATP, citrate, and Ca2+ are inhibitors of the enzyme and inhibit the fructose 1,6-diphosphate stimulation of the enzyme activity. ATP inhibition is only partially reversed by high concentrations of fructose 1,6-diphosphate. Further reversal of inhibition can be achieved by dialysis. Ca2+-dependent inhibition can be reversed by a chelating agent but not by increased concentrations of Mg2+.  相似文献   

8.
Pyruvate Kinase of Streptococcus lactis   总被引:18,自引:14,他引:4       下载免费PDF全文
The kinetic properties of pyruvate kinase (ATP:pyruvate-phosphotransferase, EC 2.7.1.40) from Streptococcus lactis have been investigated. Positive homotropic kinetics were observed with phosphoenolpyruvate and adenosine 5′-diphosphate, resulting in a sigmoid relationship between reaction velocity and substrate concentrations. This relationship was abolished with an excess of the heterotropic effector fructose-1,6-diphosphate, giving a typical Michaelis-Menten relationship. Increasing the concentration of fructose-1,6-diphosphate increased the apparent Vmax values and decreased the Km values for both substrates. Catalysis by pyruvate kinase proceeded optimally at pH 6.9 to 7.5 and was markedly inhibited by inorganic phosphate and sulfate ions. Under certain conditions adenosine 5′-triphosphate also caused inhibition. The Km values for phosphoenolpyruvate and adenosine 5′-diphosphate in the presence of 2 mM fructose-1,6-diphosphate were 0.17 mM and 1 mM, respectively. The concentration of fructose-1,6-diphosphate giving one-half maximal velocity with 2 mM phosphoenolpyruvate and 5 mM adenosine 5′-diphosphate was 0.07 mM. The intracellular concentrations of these metabolites (0.8 mM phosphoenolpyruvate, 2.4 mM adenosine 5′-diphosphate, and 18 mM fructose-1,6-diphosphate) suggest that the pyruvate kinase in S. lactis approaches maximal activity in exponentially growing cells. The role of pyruvate kinase in the regulation of the glycolytic pathway in lactic streptococci is discussed.  相似文献   

9.
Preparation of the L form of rabbit liver pyruvate kinase (EC 2.7.1.40) in the presence of fructose 1,6-diphosphate yielded an enzyme which was kinetically identical with the M or muscle-type form of pyruvate kinase found in liver. Chromatographic and dialysis studies of this complex showed that most of the fructose 1,6-diphosphate molecules were loosely bound to the enzyme, but dilution-dissociation studies and binding experiments established that there was a high initial affinity between the enzyme and fructose 1,6-diphosphate (K(assoc.)=2.3x10(9)), and that binding of the loosely bound fructose 1,6-diphosphate was concentration-dependent and a necessary condition to overcome the co-operative interaction observed with the homotropic effector phosphoenolpyruvate. Preparation of the liver enzyme in the absence of EDTA did not yield a predominantly M form of the enzyme, and incubation of the M form in the presence of EDTA did not convert it into the L form, but resulted in inhibition of enzyme activity. Immunological studies confirmed that the L and M forms in liver were distinct, and that preparation of the L form in the presence of fructose 1,6-diphosphate did not produce an enzyme antigenically different from the L form prepared in the absence of this heterotropic effector.  相似文献   

10.
The regulation of pyruvate kinase in isolated hepatocytes from fasted rats was studied where the intracellular level of fructose 1,6-bisphosphate was elevated 5-fold by the addition of 5 mM dihydroxyacetone. In this case, flux through pyruvate kinase was increased. The increase in flux correlated with an elevation in fructose bisphosphate levels but not with P-enolpyruvate levels which were unchanged. Pyruvate kinase was activated and its affinity for P-enolpyruvate was increased 7-fold in hepatocyte homogenates. Precipitation of the enzyme from homogenates with ammonium sulfate removed fructose 1,6-bisphosphate and activation was no longer observed. These results indicate that flux through and activity of pyruvate kinase can be controlled by the intracellular level of fructose 1,6-bisphosphate. The effect of elevated fructose 1,6-bisphosphate levels on the ability of glucagon to inactivate pyruvate kinase was also studied where only covalent enzyme modification is observed. Inactivation by maximally effective hormone concentrations was unaffected by elevated levels of fructose 1,6-bisphosphate, but the half-maximally effective concentration was increased from 0.3 to 0.8 nM. Activation of the cyclic AMP-dependent protein kinase by 0.3 nM glucagon was unaffected, but the initial rate of pyruvate kinase inactivation was suppressed. These results suggest that alterations in the level of fructose 1,6-bisphosphate can affect the ability of physiological concentrations of glucagon to inactivate pyruvate kinase by opposing phosphorylation of the enzyme. Consistent with this view was the finding that physiological concentrations of fructose 1,6-bisphosphate inhibited in vitro phosphorylation of purified pyruvate kinase. Inactivation of pyruvate kinase by 0.3 nM glucagon or 1 microM phenylephrine was also suppressed by 10 nM insulin. Insulin did not act by increasing fructose 1,6-bisphosphate levels. The antagonism to glucagon correlated well with the ability of insulin to suppress activation of the cyclic AMP-dependent protein kinase. However, no such correlation was observed with phenylephrine in the absence or presence of insulin. Thus, insulin can enhance pyruvate kinase activity by both cyclic AMP-dependent and independent mechanisms.  相似文献   

11.
Pyruvate kinase (ATP: pyruvate phosphotransferase, EC 2.7.1.40) from Trypanosoma brucei has been partially purified by carboxymethylcellulose chromatography, and gel filtration. The enzyme is unstable in aqueous solution and requires the presence of a thiol protecting reagent as well as glycerol for the maintenance of activity. Dithiothreitol activates as well as stabilizes the enzyme. Phosphoenolpyruvate allosterically activates trypanosome pyruvate kinase whereas hyperbolic kinetics are found when ADP is the variable substrate. Mg2+ or Mn2+ ions and a monovalent cation are essential for enzyme activity. Fructose 1,6-diphosphate acts as a heterotropic allosteric activator, markedly decreasing the S0.5 value for phosphoenolpyruvate from 1.34 to 0.25 mm at 1 mm fructose 1,6-diphosphate and transforms the phosphoenolpyruvate saturation curve from a sigmoidal to a hyperbolic form. The enzyme has a pH optimum of 6.5–7.0 and a molecular weight of 270,000 ± 27,000 as estimated by gel chromatography. Purine nucleotides are the preferred coenzymes for the reaction, having much lower Km values than the pyrimidine nucleotides. The possible role of pyruvate kinase in the regulation of glycolysis in T. brucei is discussed.  相似文献   

12.
The kinetics of rat liver L-type pyruvate kinase (EC 2.7.1.40), phosphorylated with cyclic AMP-stimulated protein kinase from the same source, and the unphosphorylated enzyme have been compared. The effects of pH and various concentrations of substrates, Mg2+, K+ and modifiers were studied. In the absence of fructose 1, 6-diphosphate at pH 7.3, the phosphorylated pyruvate kinase appeared to have a lower affinity for phosphoenolpyruvate (K0.5=0.8 mM) than the unphosphorylated enzyme (K0.5=0.3 mM). The enzyme activity vs. phosphoenolpyruvate concentration curve was more sigmoidal for the phosphorylated enzyme with a Hill coefficient of 2.6 compared to 1.6 for the unphosphorylated enzyme. Fructose 1, 6-diphosphate increased the apparent affinity of both enzyme forms for phosphoenolpyruvate. At saturating concentrations of this activator, the kinetics of both enzyme forms were transformed to approximately the same hyperbolic curve, with a Hill coefficient of 1.0 and K0.5 of about 0.04 mM for phosphoenolpyruvate. The apparent affinity of the enzyme for fructose 1, 6-diphosphate was high at 0.2 mM phosphoenolpyruvate with a K0.5=0.06 muM for the unphosphorylated pyruvate kinase and 0.13 muM for the phosphorylated enzyme. However, in the presence of 0.5 mM alanine plus 1.5 mM ATP, a higher fructose 1, 6-diphosphate concentration was needed for activation, with K0.5 of 0.4 muM for the unphosphorylated enzyme and of 1.4 muM for the phosphorylated enzyme. The results obtained strongly indicate that phosphorylation of pyruvate kinase may also inhibit the enzyme in vivo. Such an inhibition should be important during gluconeogenesis.  相似文献   

13.
The influence of fructose 1,6-bisphosphate and L-alanine on the kinetics of pyruvate kinase (ATP:pyruvate O2-phosphotransferase, EC 2.7.1.40) from Phycomyces blakesleeanus NRRL 1555 (-) was studied at pH 7.5. By addition of fructose 1,6-bisphosphate the sigmoid kinetics with respect to phosphoenol pyruvate and Mg2+ were abolished and the velocity curves became hyperbolic. In the presence of L-alanine the positive homotropic cooperativity with respect to phosphoenol pyruvate increased with Hill coefficient values close to 4, while the sigmoid kinetics with respect to Mg2+ became hyperbolic. Fructose 1,6-bisphosphate overcomes the inhibition produced by L-alanine, the antagonism between phosphoenol pyruvate and L-alanine also being evident. Inhibition has been found at high Mg2+ concentrations, compatible with the binding of the magnesium ions to an inactive conformational state of the enzyme. The data were analysed on the basis of the two-states concerted-symmetry model of Monod, Wyman and Changeux, and the parameters of the model were calculated. Phosphoenol pyruvate and fructose 1,6-bisphosphate appeared to show exclusive binding to the active conformational state (R), whereas magnesium ions bind preferentially, by a factor of 45, to the R state. L-Alanine binds more readily to the inactive T state of the enzyme.  相似文献   

14.
M U Tsao  T I Madley 《Microbios》1975,12(49):125-142
Pyruvate kinase (ATP:pyruvate phosphotransferase, EC 2.7.1.40), extracted from the mycelium of Neurospora crassa has been purified 560-fold by precipitation with ammonium sulphate, chromatography with DEAE-Sephadex, and gel filtration with Sephadex G-200. Potassium and magnesium are required for enzyme activity. Fructose, 1,6-diphosphate is the only physiological activator found for the enzyme. In decreasing order of potency, citrate, oxalacetate, calcium, and ATP are inhibitors. Phosphoenolpyruvate is cooperatively bound by the enzyme and the cooperatively is reduced by ATP and completely eliminated by fructose-1,6-diphosphate. Lowering of pH from 7-5 to 5-5 changes the Hill coefficient from 2-7 to 1-0. Substitution of ADP by other nucleotides reduces enzyme activity. Manganese can substitute for the cofactor magnesium, but the reaction velocity is then reduced. MgADP- is cooperatively bound by the enzyme and inhibition of the enzyme occurs only when either magnesium or ADP is in excess of the other beyond the optimum concentration. These kinetics properties of pyruvate kinase are compatible with the role of a regulator of glycolysis in Neurospora crassa.  相似文献   

15.
The bifunctional allosteric enzyme HPr kinase/phosphatase (HPrK/P) from Bacillus subtilis is a key enzyme in the main mechanism of carbon catabolite repression/activation (i.e. a means for the bacteria to adapt rapidly to environmental changes in carbon sources). In this regulation system, the enzyme can phosphorylate and dephosphorylate two proteins, HPr/HPr(Ser(P)) and Crh/Crh(Ser(P)), sensing the metabolic state of the cell. To acquire further insight into the properties of HPrK/P, electrospray ionization mass spectrometry, dynamic light scattering, and BIACORE were used to determine the oligomeric state of the protein under native conditions, revealing that the enzyme exists as a hexamer at pH 6.8 and as a monomer and dimer at pH 9.5. Using an in vitro radioactive assay, the influence of divalent cations, pH, temperature, and different glycolytic intermediates on the activity as well as kinetic parameters were investigated. The presence of divalent cations was found to be essential for both opposing activities of the enzyme. Furthermore, pH values equal to the internal pH of vegetative cells seem to favor the kinase activity, whereas lower pH values increased the phosphatase activity. Among the glycolytic intermediates evaluated, fructose 1,6-diphosphate and fructose 2,6-diphosphate were found to be allosteric activators in the kinase assay, whereas high concentrations inhibited the phosphatase activity, except for fructose 1,6-diphosphate in the case of HPr(Ser(P)). Phosphatase activity was induced by inorganic phosphate as well as acetyl phosphate and glyceraldehyde 3-phosphate. Kinetic parameters indicate a preference for binding of HPr compared with Crh to the enzyme and supported a strong positive cooperativity. This work suggests that the oligomeric state of the enzyme is influenced by several effectors and is correlated to the kinase or phosphatase activity. The phosphatase activity is mainly supported by the hexameric form.  相似文献   

16.
1. The properties of fructose diphosphatase from the liver of rainbow trout (Salmo gairdnerii) were examined over the physiological temperature range of the organism. 2. Saturation curves for substrate (fructose 1,6-diphosphate) and a cofactor (Mg(2+)) are sigmoidal, and Hill plots of the results suggest a minimum of two interacting fructose 1,6-diphosphate sites and two interacting Mg(2+) sites per molecule of enzyme. 3. Mn(2+)-saturation curves are hyperbolic, and the K(a) for Mn(2+), which inhibits the enzyme at high concentrations, is 50-100-fold lower than the K(a) for Mg(2+). 4. Fructose diphosphatase is inhibited by low concentrations of AMP; this inhibition appears to be decreased and reversed by increasing the concentrations of Mg(2+) and Mn(2+). Higher concentrations of AMP are required to inhibit the trout fructose diphosphatase in the presence of Mn(2+). 5. The affinities of fructose diphosphatase for fructose diphosphate and Mn(2+) appear to be temperature-independent, whereas the affinities for Mg(2+) and AMP are highly temperature-dependent. 6. The pH optimum of the enzyme depends on the concentrations of Mg(2+) and Mn(2+). In addition, pH determines the K(a) for Mg(2+); at high pH, K(a) for Mg(2+) is lowered. 7. The enzyme is inhibited by Ca(2+) and Zn(2+), and the inhibition is competitive with respect to both cations. 8. The possible roles of these ions and AMP in the modulation of fructose diphosphatase and gluconeogenic activity are discussed in relation to temperature adaptation.  相似文献   

17.
The kinetic properties of purified sheep hepatic pyruvate kinase change upon storage. Assayed at 0.5 mM fructose-1,6-diphosphate and 2 mM ADP, saturation of fresh enzyme with phosphoenolpyruvate is hyperbolic, with KPEP = 0.1 mM (pH 7.5, and 30 degrees C). Under similar conditions enzyme stored at -20 degrees C for 1 week or more yields a nonlinear Lineweaver-Burk plot for PEP. The data may be accounted for by the appearance of two enzymic forms with identical turnover numbers, but different KPEP (0.035 +/- 0.005 and 12.4 +/- 0.6 mM). Storage also increases the concentration of fructose-1,6-diphosphate required for maximal activation from nanomolar to millimolar levels. Assayed at 2 mM ADP and 2 mM PEP, the apparent KFDP is 10 mM. Preincubation of stored enzyme with PEP in the presence of mercaptoethanol leads to significant reversion to original kinetic properties. Available data suggest that the storage-dependent change in kinetic behavior rises from changes in subunit conformation and not from dissociation into subunits.  相似文献   

18.
Pyruvate kinase (EC 2.7.1.40) from Azotobacter vinelandii responds sharply to the adenylate energy charge, with a decrease in activity at high values of charge, as expected for an enzyme of an adenosine triphosphate-regenerating sequence. Glycolytic intermediates, especially glucose 6-phosphate, fructose 6-phosphate, and fructose-1,6-diphosphate, strongly stimulate the reaction and overcome the inhibition caused by high values of energy charge. Thus, the properties of this enzyme depend on interaction between energy charge and the concentrations of hexose phosphates. The properties of pyruvate kinase, together with those of phosphoenolpyruvate carboxylase, aspartokinase, and citrate synthase, seem adapted to provide appropriate partitioning of phosphoenolpyruvate between competing pathways in response to metabolic need.  相似文献   

19.
When a buffered, aerobic suspension of ethanol-grown cells of Saccharomyces cerevisiae is treated with ethanol, a rapid flux of metabolism is observed from endogenous phosphoenolpyruvate to hexose monophosphates. Intracellular concentrations of phosphoenolpyruvate, 2-phosphoglycerate, and 3-phosphoglycerate record a monotonic drop, while those of triose phosphates and fructose 1,6-diphosphate fall after an early rise; fructose 6-phosphate, mannose 6-phosphate, and glucose 6-phosphate levels rise to a plateau. Prior growth on glucose extinguishes fructose 1,6-diphosphatase activity and completely arrests the rise of the hexose monophosphates. By using mutants blocked at a number of glycolytic steps it has been concluded that the metabolic flow takes place along the Embden-Meyerhof pathway in the reverse direction bypassing pyruvate kinase and fructose 6-phosphate kinase. Ethanol acts as a trigger by supplying NADH at the glyceraldehyde 3-phosphate dehydrogenase step. The rate of the reversal in the span phosphoenolpyruvate to fructose 1,6-diphosphate approaches 40 μ mol of 3-carbon units per minute per gram of wet cells. The in vivo activity of fructose 1,6-diphosphatase is nearly a quarter of this rate.  相似文献   

20.
Purified bovine hepatic fructose-1,6-diphosphatase, which exhibits maximal activity at neutral pH, is competitively inhibited by several analogs of its substrate, fructose 1,6-diphosphate. These include glucose 1,6-diphosphate (Ki = 9.4 X 10(-5) M), hexitol 1,6-diphosphate (Ki = 2.3 X 10(-4) M), and 2,5-anhydro-D-mannitol 1,6-diphosphate (Ki = 3.3 X 10(-8) M), and 2,5-anhydro-D-glucitol 1,6-diphosphate (Ki = 5.5 X 10(-7) M). The Ki values for both 2,5-anhydro-D-mannitol 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate are lower than the Km of 1.4 X 10(-6) M for fructose 1,6-diphosphate. Since 2,5-anhydro-D-mannitol 1,6-diphosphate is an analog of the beta anomer of fructose 1,6-diphosphate and 2,5-anhydro-D-glucitol 1,6-diphosphate is an analog of the alpha anomer, the lower Ki for the mannitol analog may indicate that the beta anomer of fructose 1,6-diphosphate, which predominates in solution, is the true substrate. The substrate analog 1,5-pentanediol diphosphate inhibits slightly (K0.5 = 5 X 10(-3) M), but 1,4-cyclohexyldiol diphosphate does not. The Ki for product inhibition by sodium phosphate is 9.4 X 10(-3) M. 2,5-Anhydro-D-mannitol 1,6-diphosphate and alpha-D-glucose 1,6-diphosphate are substrates at pH 9.0, but not at pH 6.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号