首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
2.
3.
4.
Abstract Recombinant plasmids with the chloramphenicol acetyltransferase (CAT) structural gene behind several kinds of promoters were tested for expression in Escherichia coli during growth at atmospheric pressure (0.1 MPa) and at high pressure (30 MPa). Expression of the CAT gene from the lac promoter was remarkably activated (approx. 78-fold) by high pressure in the absence of the inducer isopropyl-β-d-thiogalactopyranoside (IPTG). The stimulation of the CAT activity by the lac promoter at high pressure did not simply result from an increased plasmid copy number, because the CAT activities from the other promoters and β-lactamase activities were unaffected at high pressure.  相似文献   

5.
Recombinant vaccinia viruses that express the bacteriophage T3 RNA polymerase (VV-T3pol) or the Escherichia coli lac repressor (VV-lacI) under control of the early-late vaccinia promoter P7.5 were constructed. To determine whether phage polymerase and lac repressor can function in the nucleus of mammalian cells, the bacterial chloramphenicol acetyltransferase (CAT) gene was cloned downstream of a T3 promoter (PT3-CAT) or downstream of a T3 promoter-lac operator fusion element (PT3Olac-CAT), and these reporter gene cassettes were introduced stably into NIH 3T3 or Ltk- cells. Infection of 3T3/PT3-CAT or Ltk-/PT3-CAT cells by VV-T3pol led to rapid expression of CAT (greater than 20 ng of CAT protein per 10(6) cells). The presence of hydroxyurea (which blocks virus DNA replication) did not prevent CAT production. When 3T3/PT3Olac-CAT cells were infected with both VV-T3pol and VV-lacI (multiplicities of infection of 2.5 and 10, respectively), greater than 30-fold repression of CAT gene activity by lac repressor was observed. This could be reversed to unrepressed levels by the presence of 10 mM o-nitrophenyl-beta-D-galactoside (IPTG) in the medium. Regulated expression of the target gene was observed with cell lines that had been maintained for over 1 year (greater than 50 passages in culture), and Southern blot analysis revealed the presence of the CAT gene only in the nuclear fraction in these cells, demonstrating the stability of the target gene. These results indicate that vaccinia virus-encoded proteins can function in the mammalian nucleus and provide the basis for a genetic system in which essential vaccinia virus genes, placed in the chromosome of a cell, can be used to complement defective virus particles. This approach may prove useful for other virus systems.  相似文献   

6.
We previously showed that ornithine was mainly transported via cationic amino acid transporter (CAT)-1 in human retinal pigment epithelial (RPE) cell line, human telomerase RT (hTERT)-RPE, and that CAT-1 was involved in ornithine cytotoxicity in ornithine--aminotransferase (OAT)-deficient cell produced by a OAT specific inhibitor, 5-fluoromethylornithine (5-FMO). We showed here that CAT-1 mRNA expression was increased by ornithne in OAT-deficient RPE cells, which was reversed by an inhibitor of ornithine decarboxylase (ODC), -difluoromethylornithine (DFMO). Polyamines, especially spermine, one of the metabolites of ODC, also enhanced the expression of CAT-1 mRNA. ODC mRNA expression was also increased by ornithine and polyamines, and gene silencing of ODC by siRNA decreased ornithine transport activity and its cytotoxicity. In addition, the mRNA of nuclear protein c-myc was also increased in 5-FMO- and ornithine-treated hTERT-RPE cells, and gene silencing of c-myc prevented the induction of CAT-1 and ODC. Increases in expression of CAT-1, ODC, and c-myc, and the inhibition of these stimulated expression by DFMO were also observed in primary porcine RPE cells. These results suggest that spermine plays an important role in stimulation of mRNA expression of CAT-1, which is a crucial role in ornithine cytotoxicity in OAT-deficient hTERT-RPE cells. ornithine transport; ornithine decarboxylase; c-myc  相似文献   

7.
The expression of a monoclonal antibody Fab fragment in Escherichia coli strain RB791/pComb3, induced with either lactose or isopropyl-beta-D-thiogalactoside (IPTG), was compared to determine if lactose might provide an inexpensive alternative to induction with IPTG. Induction of Fab expression imposed a metabolic load on the recombinant cells, resulting in lower final cell yields compared to the non-induced controls. An IPTG concentration of 0.05 mM was sufficient to achieve maximal expression of soluble Fab protein when inducing in the early-, mid-, or late-log phases of batch cultures grown using either glucose or glycerol as a carbon source. The largest overall yield of Fab fragments when using 0.05 mM IPTG was achieved by increasing the final yield of cells through glycerol feeding following induction in late-log phase. Lactose was as effective as IPTG for inducing Fab expression in E. coli RB791/pComb3. The greatest overall level of Fab expression was found when cells grown on glycerol were induced with 2 g/L lactose in late-log phase. Since the cost of 0.05 mM of IPTG is significantly greater than the cost of 2 g/L lactose, lactose provides an inexpensive alternative to IPTG for inducing the expression of Fab fragments, and possibly other recombinant proteins, from the E. coli lac promoter.  相似文献   

8.
The hydrolysis of o-nitrophenyl-beta-D-galactopyranoside (ONPG) by BAL-31, a marine Pseudomonas that acts as a host for bacteriophage PM2, was studied with intact cells and with cell-free extracts. A transport system for ONPG in whole cells and a beta-galactosidase activity in extracts were evident for cells grown on lactose minimal medium. It was found that the addition of isopropylthio-beta-D-galactopyranoside (IPTG) to cells growing in rich medium induced an ONPG hydrolytic activity detectable in cell extracts but cryptic in whole cells. The existence of a transport system for IPTG, which remained cryptic for ONPG, became apparent from studies of the rates of induction of beta-galactosidase as a function of cell mass at different concentrations of IPTG. The main properties of beta-galactosidase and the lactose transport system of BAL-31 were studied in terms of how they were affected by pH, temperature, or by the presence of several sugars. IPTG competitively inhibits the hydrolysis of ONPG by cell extracts. In cells pregrown on lactose, IPTG slightly inhibits the transport of ONPG. Glucose, and with less efficiency lactose, also inhibits the hydrolysis of ONPG in cell extracts. The growth of cells on lactose minimal medium was inhibited by the addition of IPTG. A mechanism for this inhibition and for the inhibition of ONPG transport by IPTG is discussed.  相似文献   

9.
L-Arginine (L-Arg) is metabolized to nitric oxide (NO) by NO synthase (NOS) or to urea by arginase (AR). L-Arg is transported into bovine pulmonary arterial endothelial cells (BPAECs) by cationic amino acid transporter-2 (CAT-2). We hypothesized that cytokine treatment would increase L-Arg metabolism and increase CAT-2 mRNA expression. BPAECs were incubated for 24 h in medium (control) or medium with lipopolysaccharide and tumor necrosis factor-alpha (L-T). L-T increased nitrite production (3.1 +/- 0.4 nmol/24 h vs. 1.8 +/- 0.1 nmol/24 h for control; P < 0.01) and urea production (83.5 +/- 29.5 nmol/24 h vs. 17.8 +/- 8.6 nmol/24 h for control; P < 0.05). L-T-treated BPAECs had greater endothelial and inducible NOS mRNA expression compared with control cells. Increasing the medium L-Arg concentration resulted in increased nitrite and urea production in both the control and the L-T-treated BPAECs. L-T treatment resulted in measurable CAT-2 mRNA. L-T increased L-[(3)H]Arg uptake (5.78 +/- 0.41 pmol vs. 4.45 +/- 0.10 pmol for control; P < 0.05). In summary, L-T treatment increased L-Arg metabolism to both NO and urea in BPAECs and resulted in increased levels of CAT-2 mRNA. This suggests that induction of NOS and/or AR is linked to induction of CAT-2 in BPAECs and may represent a mechanism for maintaining L-Arg availability to NOS and/or AR.  相似文献   

10.
The metabolism of urea by urease enzymes of oral bacteria profoundly influences oral biofilm pH homeostasis and oral microbial ecology. The purpose of this study was to gain insight into the regulation of expression of the low pH-inducible urease genes in populations of Streptococcus salivarius growing in vitro in biofilms and to explore whether urease regulation or the levels of urease expression in biofilm cells differed significantly from planktonic cells. Two strains of S. salivarius harbouring urease promoter fusions to a chloramphenicol acetyltransferase (cat) gene were used: PurelCAT, containing a fusion to the full-length, pH-sensitive promoter; or Pureldelta100CAT, a constitutively derepressed deletion derivative of the urease gene promoter. The strains were grown in a Rototorque biofilm reactor in a tryptone-yeast extract-sucrose medium with or without pH control. Both CAT and urease activities in biofilms were measured at 'quasi-steady state' and after a 25mM glucose pulse. The results showed that CAT expression in PurelCAT was repressed at relatively neutral pH values, and that expression could be induced by acidic pH after carbohydrate challenge. Biofilms of PurelCAT grown at low pH, without buffering, had about 20-fold higher CAT levels, and only a modest further induction could be elicited with carbohydrate pulsing. The levels of CAT in biofilms of PurelCAT grown in buffered medium were slightly higher than those reported for planktonic cells cultured at pH 7.0, and the levels of CAT in Purel-CAT growing at low pH or after induction were similar to those reported for fully induced planktonic cells. CAT activity in Pureldelta100CAT was constitutively high, regardless of growth conditions. Interestingly, urease activity detected in biofilms of the parent strain, S. salivarius 57.1, could be as much as 130-fold higher than that reported for fluid chemostat cultures grown under similar conditions. The higher level of urease activity in biofilms was probably caused by the accumulation of the stable urease enzyme within biofilm cells, low pH microenvironments and the growth phase of populations of cells in the biofilm. The ability of S. salivarius biofilm cells to upregulate urease expression in response to pH gradients and to accumulate greater quantities of urease enzyme when growing in biofilms may have a significant impact on oral biofilm pH homeostasis and microbial ecology in vivo. Additionally, S. salivarius carrying the pH-sensitive urease gene promoter fused to an appropriate reporter gene may be a useful biological probe for sensing biofilm pH in situ.  相似文献   

11.
CATs,a family of three distinct mammalian cationic amino acid transporters   总被引:2,自引:0,他引:2  
E. I. Closs 《Amino acids》1996,11(2):193-208
Summary Three related mammalian carrier proteins that mediate the transport of cationic amino acids through the plasma membrane have been identified in murine and human cells (CAT for cationic amino acid transporter). Models of the CAT proteins in the membrane suggest they have 12 or 14 transmembrane domains connected by short hydrophilic loops and intracellular N- and C-termini. The transport activity of the CAT proteins is sensitive to trans-stimulation and independent of the presence of sodium ions. These features agree with the behaviour of carrier proteins mediating facilitated diffusion. The three CAT proteins, CAT-1, CAT-2A and CAT-2(B) are encoded by two different genes (CAT-1 and CAT-2). CAT-1 and CAT-2(B) exhibit transport properties consistent with system y+, the principal mechanism for cellular uptake of cationic amino acids. In contrast, CAT-2A has tenfold lower substrate affinity, greater apparent maximal velocity and it is much less sensitive to trans-stimulation. In addition to structural and functional aspects, this review discusses the role of the CAT proteins for supplying substrate to NO synthases and the property of the rodent CAT-1 proteins to function as virus receptors.Abbreviations CAT cationic amino acid transporter - m mouse - h human - r rat - Tea T cell early activation protein - CAA cationic amino acids - TM transmembrane spanning domain - rBAT related to b0,+ amino acid transporter - 4F2hc 4F2 heavy chain cell surface antigen - MuLV murine leukemia viruses - Km Michaelis Menten constant  相似文献   

12.
In steady state E. coli cells growing at their maximal rate in broth, maximum induction of beta-galactosidase occurs at 0.10 mM isopropyl-thio-beta-D-galactoside (IPTG). Although induction of lac is near zero in steady state cells that are growing in 0.01 mM IPTG, induction at mildly subdued levels persists down to at least 0.001 mM in post-steady state cultures. Meanwhile, thiogalactoside transacetylase remains uninduced over the full range in which the cells are in steady state.  相似文献   

13.
Regulation of argininosuccinate synthetase (AS) was studied by using minigenes containing 3 kilobases of DNA upstream from the TATAA box and 9 kilobases downstream (including the first four exons of the AS gene) ligated to either the cDNA for AS or to the chloramphenicol acetyltransferase (CAT) gene. Unlike the endogenous AS gene, expression of the CAT minigene was not elevated in Canr1 cells, which overproduce AS compared with parental RPMI-2650 cells. Expression of the CAT minigene in both stable and transient analyses was four- to five-fold higher in RPMI-2650 cells grown in citrulline medium than in cells grown in arginine medium. Although endogenous AS activity is not subject to metabolite regulation in Canr1 cells and expression of the CAT minigene in Canr1 cells was not increased when cells were grown in citrulline medium, expression of the CAT minigene was 10- to 22-fold greater when intracellular arginine pools were depleted by transient starvation for arginine and citrulline.  相似文献   

14.
The inducible lac operator-repressor system is functional in mammalian cells   总被引:29,自引:0,他引:29  
M C Hu  N Davidson 《Cell》1987,48(4):555-566
  相似文献   

15.
16.
Regulated uptake of extracellular l-arginine by cationic amino acid transporters (CATs) is required for inducible nitric oxide synthase and arginase activity. Both enzymes were recently recognized as important in the pathophysiology of psoriasis because of their contribution to epidermal hyperproliferation. We here characterize the expression pattern of CATs in psoriatic skin compared to healthy skin. CAT-1 mRNA expression was strongly upregulated in lesional and nonlesional areas of psoriatic skin compared to healthy skin, whereas expression of CAT-2A and the inducible isoform CAT-2B was unaltered in psoriatic skin. Furthermore, we tested the hypothesis that arginase-1 overexpression regulates CAT expression via intracellular l-arginine concentration. In in vitro experiments with arginase-1 overexpressing HaCaT cells, CAT-1 mRNA expression was increased. Likewise, this occurs in l-arginine-starved HaCaT cells. Both CAT-2 isoforms were not affected. Arginase-1 overexpression limits the synthesis of NO at physiological, but not supraphysiological, l-arginine levels. Plasma l-arginine concentration was diminished in psoriasis patients and the arginase product l-ornithine was significantly increased compared to healthy controls. In summary, arginase-1 overexpression leads to upregulated CAT-1 expression in psoriatic skin, which is due to lowered intracellular l-arginine levels and limits NO synthesis at physiological l-arginine concentrations.  相似文献   

17.
18.
An experimental study was undertaken to identify and quantitate the effects of plasmid amplification and recombinant gene expression on Escherichia coli growth kinetics. Identification of these effects was possible because recombinant gene expression and plasmid copy number were controlled by different mechanisms on plasmid pVH106/172. Recombinant gene expression of the lactose operon structural genes was under the control of the lac promoter and was activated by the addition of the chemicals, IPTG and cyclic AMP, to the fermentation medium. Plasmid content was amplified in a separate fermentation by increasing culture temperature since the plasmid replicon was temperature-sensitive. A final fermentation was performed in which both plasmid content and recombinant gene expression were induced simultaneously by adding chemicals and raising the culture temperature. Recombinant growth rates were found to be reduced by the expression of high levels of recombinant lac proteins in the chemical induction experiments and by the amplification of plasmid levels in the temperature induction experiment. High expression of recombinant lac proteins following chemical induction was accompanied by a loss in recombinant cell viability. In the plasmid amplification experiment, the recombinant cells did not lose viability but the recombinant product yields were much lower than those achieved in the chemical induction experiments. Combining temperature and chemical induction increased the recombinant product yield by a factor of 4400 but also lowered cellular growth rates by 70%.  相似文献   

19.
20.
In this work, feeding policies aimed to avoid cellular stress responses as indicated by an increase in ATP-dependent proteolysis are tested. A set of experiments was carried out where glucose, IPTG (inducer), and phenylalanine (rate-limiting precursor) were added gradually in a fed-batch fashion. A significant increase in CAT activity was found compared with pulse-induction. In addition, there was a substantial increase in the rate of CAT synthesis as well as in the final specific CAT activity when phenylatanine and the inducer were added simultaneously. CAT degradation was confirmed through Western blotting analysis. Protease analysis (SDS-GPAGE) indicated lower proteolytic activity for the IPTG and phenylalanine fed-batch cases. GroEL immunoas-says indicated that amplification of stress proteins occurred upon CAT induction. This research impacts the yield of soluble cytoplasmic proteins in Escherichia coli and suggests that metabolically based induction/feeding policies are beneficial. (c) 1995 John Wiley & Sons Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号