首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutant strains of Pseudomonas putida (arvilla) mt-2 which have lost the ability to grow at the expense of m- or p-toluate (methylbenzoate) but retain the ability to grow with benzoate arise spontaneously during growth on benzoate; this genetic loss occurs to a lesser extent during growth on nonaromatic carbon sources in the presence of mitomycin C. The mutants have totally lost the activity of the enzymes of the divergent meta pathway with the possible exception of 2-oxopent-4-enoate hydratase and 4-hydroxy-2-oxovalerate aldolase; unlike the wild type they utilize benzoate by the ortho pathway. Evidence is presented that these mutants have lost a plasmid coding for the enzymes of the meta pathway, which may be transmitted back to them or into other P. putida strains. Preliminary results from these mutants and from a mutant defective in the regulation of the plasmid-carried pathway suggest that the wild type contains two benzoate oxidase systems, one on the plasmid which is nonspecific in both its catalysis and its induction and one on the chromosome which is more specific to benzoate as substrate and is specifically induced by benzoate.  相似文献   

2.
Pseudomonas putida mt-2 carries a plasmid (TOL, pWWO) which codes for a single set of enzymes responsible for the catabolism of toluene and m- and p-xylene to central metabolites by way of benzoate and m- and p-toluate, respectively, and subsequently by a meta cleavage pathway. Characterization of strains with mutations in structural genes of this pathway demonstrates that the inducers of the enzymes responsible for further degradation of m-toluate include m-xylene, m-methylbenzyl alcohol, and m-toluate, whereas the inducers of the enzymes responsible for oxidation of m-xylene to m-toluate include m-xylene and m-methylbenzyl alcohol but not m-toluate. A regulatory mutant is described in which m-xylene and m-methylbenzyl alcohol no longer induce any of the pathway enzymes, but m-toluate is still able to induce the enzymes responsible for its own degradation. Among revertants of this mutant are some strains in which all the enzymes are expressed constitutively and are not further induced by m-xylene. A model is proposed for the regulation of the pathway in which the enzymes are in two regulatory blocks, which are under the control of two regulator gene products. The model is essentially the same as proposed earlier for the regulation of the isofunctional pathway on the TOL20 plasmid from P. putida MT20.  相似文献   

3.
Bordetella sp. strain 10d metabolizes 4-amino-3-hydroxybenzoic acid via 2-hydroxymuconic 6-semialdehyde. Cell extracts from 4-amino-3-hydroxybenzoate-grown cells showed high NAD(+)-dependent 2-hydroxymuconic 6-semialdehyde dehydrogenase, 4-oxalocrotonate tautomerase, 4-oxalocrotonate decarboxylase, and 2-oxopent-4-enoate hydratase activities, but no 2-hydroxymuconic 6-semialdehyde hydrolase activity. These enzymes involved in 4-amino-3-hydroxybenzoate metabolism were purified and characterized. When 2-hydroxymuconic 6-semialdehyde was used as substrate in a reaction mixture containing NAD(+) and cell extracts from 4-amino-3-hydroxybenzoate-grown cells, 4-oxalocrotonic acid, 2-oxopent-4-enoic acid, and 4-hydroxy-2-oxovaleric acid were identified as intermediates, and pyruvic acid was identified as the final product. A complete pathway for the metabolism of 4-amino-3-hydroxybenzoic acid in strain 10d is proposed. Strain 10d metabolized 2-hydroxymuconic 6-semialdehyde derived from 4-amino-3-hydroxybenzoic acid via a dehydrogenative route, not via a hydrolytic route. This proposed metabolic pathway differs considerably from the modified meta-cleavage pathway of 2-aminophenol and those previously reported for methyl- and chloro-derivatives.  相似文献   

4.
A study of the degradation of phenol, p-cresol, and m- and p-toluate by Alcaligenes eutrophus 345 has provided evidence that these compounds are metabolized via separate catechol meta-cleavage pathways. Analysis of the enzymes synthesized by wild-type and mutant strains and by strains cured of the plasmid pRA1000, which encodes m- and p-toluate degradation, indicated that two or more isofunctional enzymes mediated several steps in the pathway. The formation of three catechol 2,3-oxygenases and two 2-hydroxymuconic semialdehyde hydrolases was indicated from an examination of the ratio of the specific activities of these enzymes against various substrates. Evidence for two 2-hydroxymuconic semialdehyde dehydrogenases, two 4-oxalocrotonate isomerases and decarboxylases, and three 2-ketopent-4-enoate hydratases was derived from the induction of these enzymes under different growth conditions. Each activity was detected when the wild type was grown in the presence of m-toluate, but not when grown with phenol (except for a hydratase) or p-cresol, whereas in strains cured of pRA1000, growth with phenol or p-cresol, but not with m-toluate, induced these enzymes. Hydroxylation of phenol and p-cresol appears to be mediated by the same enzyme.  相似文献   

5.
The meta-cleavage pathway of catechol is a major mechanism for degradation of aromatic compounds. In this pathway, the aromatic ring of catechol is cleaved by catechol 2,3-dioxygenase and its product, 2-hydroxymuconic semialdehyde, is further metabolized by either a hydrolytic or dehydrogenative route. In the dehydrogenative route, 2-hydroxymuconic semialdehyde is oxidized to the enol form of 4-oxalocrotonate by a dehydrogenase and then further metabolized to acetaldehyde and pyruvate by the actions of 4-oxalocrotonate isomerase, 4-oxalocrotonate decarboxylase, 2-oxopent-4-enoate hydratase, and 4-hydroxy-2-oxovalerate aldolase. In this study, the isomerase, decarboxylase, and hydratase encoded in the TOL plasmid pWW0 of Pseudomonas putida mt-2 were purified and characterized. The 28-kilodalton isomerase was formed by association of extremely small identical protein subunits with an apparent molecular weight of 3,500. The decarboxylase and the hydratase were 27- and 28-kilodalton polypeptides, respectively, and were copurified by high-performance-liquid chromatography with anion-exchange, hydrophobic interaction, and gel filtration columns. The structural genes for the decarboxylase (xylI) and the hydratase (xylJ) were cloned into Escherichia coli. The elution profile in anion-exchange chromatography of the decarboxylase and the hydratase isolated from E. coli XylI+XylJ- and XylI-XylJ+ clones, respectively, were different from those isolated from XylI+ XylJ+ bacteria. This suggests that the carboxylase and the hydratase form a complex in vivo. The keto but not the enol form of 4-oxalocrotonate was a substrate for the decarboxylase. The product of decarboxylation was 2-hydroxypent-2,4-dienoate rather than its keto form, 2-oxopent-4-enoate. The hydratase acts on the former but not the latter isomer. Because 2-hydroxypent-2,4-dienoate is chemically unstable, formation of a complex between the decarboxylase and the hydratase may assure efficient transformation of this unstable intermediate in vivo.  相似文献   

6.
Bacterial degradation of biphenyl and polychlorinated biphenyls proceeds by a well-studied pathway which produces benzoate and 2-hydroxypent-2,4-dienoate (or, in the case of polychlorinated biphenyls, the chlorinated derivatives of these compounds). Pseudomonas cepacia P166 utilizes 4-chlorobiphenyl for growth and produces 4-chlorobenzoate as a central intermediate. In this study we found that strain P166 further transforms 4-chlorobenzoate to 4-chlorocatechol, which is mineralized by a meta cleavage pathway. Key metabolites which we identified include the meta cleavage product (5-chloro-2-hydroxymuconic semialdehyde), 5-chloro-2-hydroxymuconate, 5-chloro-2-oxopent-4-enoate, 5-chloro-4-hydroxy-2-oxopentanoate, and chloroacetate. Chloroacetate accumulated transiently, and slow but stoichiometric dehalogenation was observed.  相似文献   

7.
Thirteen bacteria have been isolated from nine different soil samples by selective enrichment culture on m-toluate (m-methylbenzoate) minimal medium. Eight of these were classified as Pseudomonas putida, one as a fluorescent Pseudomonas sp., and four as nonfluorescent Pseudomonas sp. All 13 strains appeared to carry TOL plasmids superficially similar to that previously described in P. putida mt-2 in that: (i) all the wild-type strains could utilize toluene, m-xylene, and p-xylene as sole carbon and energy sources, (ii) these growth substrates were metabolized through the corresponding alcohols and aldehydes to benzoate, m-toluate, and p-toluate, respectively, and thence by the divergent meta (or alpha-ketoacid) pathway, and (iii) the isolates could simultaneously and spontaneously lose their ability to utilize the hydrocarbons, alcohols, aldehydes, and acids, particularly during growth on benzoate, giving rise to cured strains which could grow only on benzaldehyde and benzoate of the aromatic substrates by the alternative ortho (or beta-ketoadipate) pathway. Eight of the isolates were able to transfer their TOL plasmids into their own cured strains, but only five were able to transfer them in interstrain conjugation into the cured strains, but only five were able to transfer them in interstrain conjugation into the cured derivative of P. putida mt-2. However, P. putida mt-2 was able to transfer its TOL plasmid into 11 of the cured isolates, and eight of these were able to retransmit this foreign plasmid in intrastrain conjugation with their own cured derivatives. Three of the isolates, MT 14, MT 15, and MT 20, differed significantly from the others in that the wild-type strains dissimilated the p-methyl-substituted substrates poorly, and also, during growth on benzoate, in addition to the cured derivatives, they gave rise to derivatives with a phenotype intermediate between the cured and wild-type strains, the biochemical and genetic nature of which has not been elucidated.  相似文献   

8.
The meta-cleavage operon of the TOL plasmid pWW0 of Pseudomonas putida contains 13 genes responsible for the oxidation of benzoate and toluates to Krebs cycle intermediates via estradiol (meta) cleavage of (methyl)catechol. The functions of all the genes are known with the exception of xylT. We constructed pWW0 mutants defective in the xylT gene, and found that these mutants were not able to grow on p-toluate while they were still capable of growing on benzoate and m-toluate. In the xylT mutants, all the meta-cleavage enzymes were induced by p-toluate with the exception of catechol 2,3-dioxygenase whose activity was 1% of the p-toluate-induced activity in wild-type cells. Addition of 4-methylcatechol to m-toluate-grown wild-type and xylT cells resulted in the inactivation of catechol 2,3-dioxygenase in these cells. In the wild-type strain but not in the xylT mutant, the catechol 2,3-dioxygenase activity was regenerated in a short time. The regeneration of the catechol 2,3-dioxygenase activity was also observed in H2O2-treated wild-type cells, but not in H2O2-treated xylT cells. We concluded that the xylT product is required for the regeneration of catechol 2,3-dioxygenase.  相似文献   

9.
Two reactions in the catabolism of catechol by meta-fission, namely, hydration of 2-oxopent-4-enoate (vinylpyruvate) and aldol fission of the product, are catalyzed by stereospecific enzymes. The absolute configuration of this hydration product was shown to be l(S)-4-hydroxy-2-oxopentanoate. Vinylpyruvate hydratase, purified almost to homogeneity, had a molecular weight of about 287,000 and was dissociated in sodium dodecyl sulfate, without prior treatment with mercaptoethanol, into a species with an approximate molecular weight of 28,000. The hydratase was highly specific for its substrates; thus, although 2-oxo-cis-hex-4-enoate was also hydrated, structurally similar compounds such as the trans isomer, vinylacetic and crotonic acids, and the ring-fission products of catechol and methylcatechols were not attacked. Vinylpyruvate hydratase was activated by Mn(2+) ions. On the basis of these observations, a mechanism is proposed which closely resembles that for 4-hydroxy-2-oxopentanoate aldolase. A possible evolutionary connection between functionally related, divalent cation-activated hydro-lyases and aldolases is discussed. It was also demonstrated that l-(S)-4-hydroxy-2-oxohexanoate is the biologically active enantiomer of this hydroxy acid.  相似文献   

10.
A comparative study of the NAH and TOL catabolic plasmids was carried out to provide information for future genetic manipulation experiments involving these two plasmids. The plasmids were studied in a strain of P. putida and its mutant derivatives. The NAH and TOL plasmids were found to be incompatible. Under the conditions used in these experiments the TOL plasmid transferred into some strains into which NAH was unable to transfer. The use of mutants to remove certain catabolic activities encoded by the bacterial host cell facilitated the allocation of growth genotypes to the NAH and TOL plasmids. TOL encoded the degradation of benzoate, m-toluate and p-toluate, whereas NAH encoded the degradation of naphthalene and salicylate. The other plasmid-associated growth phenotypes were partly plasmid-specified and partly specified by the host cell. The pH optimum of the catechol 2,3-dioxygenase specified by the TOL plasmid was approximately 6.7, whereas that of the NAH-encoded enzyme was approximately 8.3.  相似文献   

11.
The ability to degrade aromatic amines and m-toluate (Tdn+ phenotype), encoded by plasmid pTDN1, was lost from Pseudomonas putida hosts after subculture in benzoate, succinate, acetate and glucose minimal medium, the fastest rate of loss occurring where benzoate was the substrate. Tdn- cells had either lost the entire pTDN1 plasmid or suffered a recombinational deletion of a specific 26 kbp region. Proportional increase of Tdn- cells resulted from their growth-rate advantage, and additionally, where benzoate was the substrate, from its metabolism via the chromosomal ortho-cleavage pathway incorporating a short lag phase. The ratio of whole plasmid loss to deletion was substrate and pH dependent. Deletion of catabolic genes was not required for loss of pTDN1 but by comparison was a prerequisite for loss of TOL plasmid pWW0. It appeared that m-toluate and benzoate were channelled via chromosomally encoded benzoate oxygenase and dihydroxycyclohexadiene carboxylate dehydrogenase prior to pTDN1 encoded meta-cleavage.  相似文献   

12.
J. Hollender  J. Hopp    W. Dott 《Applied microbiology》1997,63(11):4567-4572
Comamonas testosteroni JH5 used 4-chlorophenol (4-CP) as its sole source of energy and carbon up to a concentration of 1.8 mM, accompanied by the stoichiometric release of chloride. The degradation of 4-CP mixed with the isomeric 2-CP by resting cells led to the accumulation of 3-chlorocatechol (3-CC), which inactivated the catechol 2,3-dioxygenase. As a result, further 4-CP breakdown was inhibited and 4-CC accumulated as a metabolite. In the crude extract of 4-CP-grown cells, catechol 1,2-dioxygenase and muconate cycloisomerase activities were not detected, whereas the activities of catechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, 2-hydroxymuconic semialdehyde hydrolase, and 2-oxopent-4-enoate hydratase were detected. These enzymes of the meta cleavage pathway showed activity with 4-CC and with 5-chloro-2-hydroxymuconic semialdehyde. The activities of the dioxygenase and semialdehyde dehydrogenase were constitutive. Two key metabolites of the meta cleavage pathway, the meta cleavage product (5-chloro-2-hydroxymuconic semialdehyde) and 5-chloro-2-hydroxymuconic acid, were detected. Thus, our previous postulation that C. testosteroni JH5 uses the meta cleavage pathway for the complete mineralization of 4-CP was confirmed.  相似文献   

13.
Hybrid plasmids containing the regulated meta-cleavage pathway operon of TOL plasmid pWWO were mutagenized with transposon Tn1000 or Tn5. The resulting insertion mutant plasmids were examined for their ability to express eight of the catabolic enzymes in Escherichia coli. The physical locations of the insertions in each of 28 Tn1000 and 5 Tn5 derivative plasmids were determined by restriction endonuclease cleavage analysis. This information permitted the construction of a precise physical and genetic map of the meta-cleavage pathway operon. The gene order xylD (toluate dioxygenase), L (dihydroxycyclohexidiene carboxylate dehydrogenase), E (catechol 2,3-dioxygenase), G (hydroxymuconic semialdehyde dehydrogenase), F (hydroxymuconic semialdehyde hydrolase), J (2-oxopent-4-enoate hydratase), I (4-oxalocrotonate decarboxylase), and H (4-oxalocrotonate tautomerase) was established, and gene sizes were estimated. Tn1000 insertions within catabolic genes exerted polar effects on distal structural genes of the operon, but not on an adjacent regulatory gene xylS.  相似文献   

14.
Pseudomonas putida BG1 was isolated from soil by enrichment with p-toluate and selection for growth with p-xylene. Other hydrocarbons that served as growth substrates were toluene, m-xylene, 3-ethyltoluene, and 1,2,4-trimethylbenzene. The enzymes responsible for growth on these substrates are encoded by a large plasmid with properties similar to those of TOL plasmids isolated from other strains of Pseudomonas. Treatment of P. putida BG1 with nitrosoguanidine led to the isolation of a mutant strain which, when grown with fructose, oxidized both p-xylene and p-toluate to (-)-cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylic acid (cis-p-toluate diol). The structure of the diol was determined by conventional chemical techniques including identification of the products formed by acid-catalyzed dehydration and characterization of a methyl ester derivative. The cis-relative stereochemistry of the hydroxyl groups was determined by the isolation and characterization of an isopropylidene derivative. p-Xylene-grown cells contained an inducible NAD+-dependent dehydrogenase which formed catechols from cis-p-toluate diol and the analogous acid diols formed from the other hydrocarbon substrates listed above. The catechols were converted to meta ring fission products by an inducible catechol-2,3-dioxygenase which was partially purified from p-xylene-grown cells of P. putida BG1.  相似文献   

15.
Pseudomonas putida (arvilla) mt-2 carries genes for the catabolism of toluene, m-xylene, and p-xylene on a transmissible plasmid, TOL. These compounds are degraded by oxidation of one of the methyl substituents via the corresponding alcohols and aldehydes to benzoate and m- and p-toluates, respectively, which are then further metabolised by the meta pathway, also coded for by the TOL plasmid. The specificities of the benzyl alcohol dehydrogenase and the benzaldehyde dehydrogenase for their three respective substrates are independent of the carbon source used for growth, suggesting that a single set of nonspecific enzymes is responsible for the dissimilation of the breakdown products of toluene and m- and p-xylene. Benzyl alcohol dehydrogenase and benzaldehyde dehydrogenase are coincidently and possible coordinately induced by toluene and the xylenes, and by the corresponding alcohols and aldehydes. They are not induced in cells grown on m-toluate but catechol 2,3-oxygenase can be induced by m-xylene.  相似文献   

16.
Mutant derivatives of the TOL plasmid pWW0-161, containing Tn5 insertions in the xylS and xylR regulatory genes of the catabolic pathway, have been identified and characterized. The two genes are located together on a 1.5- to 3.0-kilobase segment of TOL, just downstream of genes of the enzymes of the meta-cleavage pathway. As predicted by a current model for regulation of the TOL catabolic pathway, benzyl alcohol dehydrogenase, a representative enzyme of the upper (hydrocarbon leads to carboxylic acid) pathway, was induced by m-methylbenzyl alcohol in xylS mutant bacteria but not in a xylR mutant, whereas catechol 2,3-oxygenase, a representative enzyme of the lower (meta-cleavage) pathway, was induced by m-toluate in a xylR mutant but not in the xylS mutants. Unexpectedly, however, catechol 2,3-oxygenase was not induced by m-methylbenzyl alcohol in xylS mutants but was induced by benzyl alcohol and benzoate. These results indicate that expression of the TOL plasmid-encoded catabolic pathway is regulated by at least three control elements, two of which (the products of the xylS and xylR genes) interact in the induction of the lower pathway by methylated hydrocarbons and alcohols and one of which responds only to nonmethylated substrates.  相似文献   

17.
Moraxella sp. isolated from soil grows anaerobically on benzoate by nitrate respiration; nitrate or nitrite are obligatory electron acceptors, being reduced to molecular N2 during the catabolism of the substrate. This bacterium also grows aerobically on benzoate. 2. Aerobically, benzoate is metabolized by ortho cleavage of catechol followed by the beta-oxoadipate pathway. 3. Cells of Moraxella grown anaerobically on benzoate are devoid of ortho and meta cleavage enzymes; cyclohexanecarboxylate and 2-hydroxycyclohexanecarboxylate were detected in the anaerobic culture fluid. 4. [ring-U-14C]Benzoate, incubated anaerobically with cells in nitrate-phosphate buffer, gave rise to labelled 2-hydroxycyclohexanecarboxylate and adipate. When [carboxy-14C]benzoate was used, 2-hydroxycyclohexanecarboxylate was radioactive but the adipate was not labelled. A decarboxylation reaction intervenes at some stage between these two metabolites. 5. The anaerobic metabolism of benzoate by Moraxella sp. through nitrate respiration takes place by the reductive pathway (Dutton & Evans, 1969). Hydrogenation of the aromatic ring probably occurs via cyclohexa-2,5-dienecarboxylate and cyclohex-1-enecarboxylate to give cyclohexanecarboxylate. The biochemistry of this reductive process remains unclear. 6. CoA thiol esterification of cyclohexanecarboxylate followed by beta-oxidation via the unsaturated and hydroxy esters, would afford 2-oxocyclohexanecarboxylate. Subsequent events in the Moraxella culture differ from those occurring with Rhodopseudomonas palustris; decarboxylation precedes hydrolytic cleavage of the alicyclic ring to produce adipate in the former, whereas in the latter the keto ester undergoes direct hydrolytic fission to pimelate.  相似文献   

18.
Isopropylbenzene-degrading bacteria, including Pseudomonas putida RE204, transform benzothiophene to a mixture of compounds. Induced strain RE204 and a number of its Tn5 mutant derivatives were used to accumulate these compounds and their precursors from benzothiophene. These metabolites were subsequently identified by 1H and 13C nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. When strain RE204 was incubated with benzothiophene, it produced a bright yellow compound, identified as trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate, formed by the rearrangement of cis-4-(3-keto-2,3-dihydrothienyl)-2-hydroxybuta-2,4-dieno ate, the product of 3-isopropylcatechol-2,3-dioxygenase-catalyzed ring cleavage of 4,5-dihydroxybenzothiophene, as well as 2-mercaptophenylglyoxalate and 2'-mercaptomandelaldehyde. A dihydrodiol dehydrogenase-deficient mutant, strain RE213, converted benzothiophene to cis-4,5-dihydroxy-4,5-dihydrobenzothiophene and 2'-mercaptomandelaldehyde; neither trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate nor 2-mercaptophenylglyoxalate was detected. Cell extracts of strain RE204 catalyzed the conversion of cis-4,5-dihydroxy-4,5-dihydrobenzothiophene to trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate in the presence of NAD+. Under the same conditions, extracts of the 3-isopropylcatechol-2,3-dioxygenase-deficient mutant RE215 acted on cis-4,5-dihydroxy-4,5-dihydrobenzothiophene, forming 4,5-dihydroxybenzothiophene. These data indicate that oxidation of benzothiophene by strain RE204 is initiated at either ring. Transformation initiated at the 4,5 position on the benzene ring proceeds by three enzyme-catalyzed reactions through ring cleavage. The sequence of events that occurs following attack at the 2,3 position of the thiophene ring is less clear, but it is proposed that 2,3 dioxygenation yields a product that is both a cis-dihydrodiol and a thiohemiacetal, which as a result of this structure undergoes two competing reactions: either spontaneous opening of the ring, yielding 2'-mercaptomandelaldehyde, or oxidation by the dihydrodiol dehydrogenase to another thiohemiacetal, 2-hydroxy-3-oxo-2,3-dihydrobenzothiophene, which is not a substrate for the ring cleavage dioxygenase but which spontaneously opens to form 2-mercaptophenylglyoxaldehyde and subsequently 2-mercaptophenylglyoxalate. The yellow product, trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate, is a structural analog of trans-o-hydroxybenzylidenepyruvate, an intermediate of the naphthalene catabolic pathway; extracts of recombinant bacteria containing trans-o-hydroxybenzylidenepyruvate hydratase-aldolase catalyzed the conversion of trans-4-[3-hydroxy-2-thienyl]-2-oxobut-3-enoate to 3-hydroxythiophene-2-carboxaldehyde, which could then be further acted on, in the presence of NAD+, by extracts of recombinant bacteria containing the subsequent enzyme of the naphthalene pathway, salicylaldehyde dehydrogenase.  相似文献   

19.
Toluate dioxygenase (TADO) of Pseudomonas putida mt-2 catalyzes the dihydroxylation of a broad range of substituted benzoates. The two components of this enzyme were hyperexpressed and anaerobically purified. Reconstituted TADO had a specific activity of 3.8 U/mg with m-toluate, and each component had a full complement of their respective Fe(2)S(2) centers. Steady-state kinetics data obtained by using an oxygraph assay and by varying the toluate and dioxygen concentrations were analyzed by a compulsory order ternary complex mechanism. TADO had greatest specificity for m-toluate, displaying apparent parameters of KmA = 9 +/- 1 microM, k(cat) = 3.9 +/- 0.2 s(-1), and K(m)O(2) = 16 +/- 2 microM (100 mM sodium phosphate, pH 7.0; 25 degrees C), where K(m)O(2) represents the K(m) for O(2) and KmA represents the K(m) for the aromatic substrate. The enzyme utilized benzoates in the following order of specificity: m-toluate > benzoate approximately 3-chlorobenzoate > p-toluate approximately 4-chlorobenzoate > o-toluate approximately 2-chlorobenzoate. The transformation of each of the first five compounds was well coupled to O(2) utilization and yielded the corresponding 1,2-cis-dihydrodiol. In contrast, the transformation of ortho-substituted benzoates was poorly coupled to O(2) utilization, with >10 times more O(2) being consumed than benzoate. However, the apparent K(m) of TADO for these benzoates was >100 microM, indicating that they do not effectively inhibit the turnover of good substrates.  相似文献   

20.
The meta cleavage operon of TOL degradative plasmid pWWO comprises 13 genes   总被引:3,自引:0,他引:3  
Summary The meta-cleavage operon of TOL plasmid pWWO of Pseudomonas putida encodes a set of enzymes which transform benzoate/toluates to Krebs cycle intermediates via extradiol (meta-) cleavage of (methyl)catechol. The genetic organization of the operon was characterized by cloning of the meta-cleavage genes into an expression vector and identification of their products in Escherichia coli maxicells. This analysis showed that the meta-cleavage operon contains 13 genes whose order and products (in kilodaltons) are The xyIXYZ genes encode three subunits of toluate 1,2-dioxygenase. The xylL, xyIE, xyIG, xylF, xylJ, xylK, xylI and xylH genes encode 1,2-dihydroxy-3,5-cyclohexadiene-1-carboxylate dehydrogenase, catechol 2,3-dioxygenase, 2-hydroxymuconic semialdehyde dehydrogenase, 2-hydroxymuconic semialdehyde hydrolase, 2-oxopent-4-enoate hydratase, 4-hydroxy-2-oxovalerate aldolase, 4-oxalocrotonate decarboxylase and 4-oxalocrotonate tautomerase, respectively. The functions of xyIT and xylQ are not known at present. The comparison of the coding capacity and the sizes of the products of the meta-cleavage operon genes indicated that most of the DNA between xyIX and xyIH consists of coding sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号