首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Floodplain restoration has been advocated as a means to restore several ecological services associated with floodplains: water quality improvement, fish rearing habitat, wildlife habitat, flood control, and groundwater recharge. A history of agricultural encroachment on the lower Cosumnes River has resulted in extensive channelization and levee construction. In fall 1998, an experimental floodplain was established by breaching a levee in order to restore the connection between the main channel and its historic floodplain. In this study, we examined how effective this newly restored floodplain was at processing nitrate (NO 3 ) before reentering the main channel downstream. Two methods were used to examine nitrate loss. In December 2001, we determined denitrification potentials of the floodplain soils before seasonal flooding inundated the floodplain. Next, we conducted a series of field soil column (mesocosm) experiments from March to June 2002 to study NO 3 -N loss from the overlying water in both sandy and clayey soils and at three levels of NO 3 -N (ambient, +1 mg N l−1, +5 mg N l−1). In addition, we examined NO 3 -N loss from mesocosms with water only to determine if loss was related primarily to soil or water column processes. Denitrification potentials were highly variable ranging from 1.6 to 769 ng N2O–N cm−3 h−1. In addition, the denitrification potential was highly correlated with the amount of bioavailable carbon indicating that carbon was a limiting factor for denitrification. Nitrate-N loss rates from mesocosms ranged from 2.9 to 21.0 μg N l−1 h−1 over all treatments and all 3 months examined. Significant loss of NO 3 -N (60–93%) from the water only treatment only occurred in June when warmer temperatures and solar radiation most likely increased NO 3 -N uptake by phytoplankton. When scaled up, potential NO 3 -N loss from the restored floodplain represented 0.6–4.4% of the annual N load from the Lower Cosumnes River during a typical wet year and ~24% during a dry year. During dry water years, the effectiveness of the floodplain for reducing nitrate is limited by the amount of N supplied to the floodplain. Results from this study suggest that restored floodplains can be an effective NO 3 sink.  相似文献   

2.
We examined the hydrologic controls on nitrogen biogeochemistry in the hyporheic zone of the Tanana River, a glacially-fed river, in interior Alaska. We measured hyporheic solute concentrations, gas partial pressures, water table height, and flow rates along subsurface flowpaths on two islands for three summers. Denitrification was quantified using an in situ 15NO3 push–pull technique. Hyporheic water level responded rapidly to change in river stage, with the sites flooding periodically in mid−July to early−August. Nitrate concentration was nearly 3-fold greater in river (ca. 100 μg NO3–N l−1) than hyporheic water (ca. 38 μg NO3–N l−1), but approximately 60–80% of river nitrate was removed during the first 50 m of hyporheic flowpath. Denitrification during high river stage ranged from 1.9 to 29.4 mg N kg sediment−1 day−1. Hotspots of methane partial pressure, averaging 50,000 ppmv, occurred in densely vegetated sites in conjunction with mean oxygen concentration below 0.5 mgOl−1. Hyporheic flow was an important mechanism of nitrogen supply to microbes and plant roots, transporting on average 0.41 gNO3–N m−2 day−1, 0.22 g NH4+–N m−2 day−1, and 3.6 g DON m−2 day−1 through surface sediment (top 2 m). Our results suggest that denitrification can be a major sink for river nitrate in boreal forest floodplain soils, particularly at the river-sediment interface. The stability of the river hydrograph and the resulting duration of soil saturation are key factors regulating the redox environment and anaerobic metabolism in the hyporheic zone.  相似文献   

3.
Reservoirs are intrinsically linked to the rivers that feed them, creating a river–reservoir continuum in which water and sediment inputs are a function of the surrounding watershed land use. We examined the spatial and temporal variability of sediment denitrification rates by sampling longitudinally along an agriculturally influenced river–reservoir continuum monthly for 13 months. Sediment denitrification rates ranged from 0 to 63 μg N2O g ash free dry mass of sediments (AFDM)−1 h−1 or 0–2.7 μg N2O g dry mass of sediments (DM)−1 h−1 at reservoir sites, vs. 0–12 μg N2O gAFDM−1 h−1 or 0–0.27 μg N2O gDM−1 h−1 at riverine sites. Temporally, highest denitrification activity traveled through the reservoir from upper reservoir sites to the dam, following the load of high nitrate (NO3-N) water associated with spring runoff. Annual mean sediment denitrification rates at different reservoir sites were consistently higher than at riverine sites, yet significant relationships among theses sites differed when denitrification rates were expressed per gDM vs. per gAFDM. There was a significant positive relationship between sediment denitrification rates and NO3-N concentration up to a threshold of 0.88 mg NO3 -N l−1, above which it appeared NO3-N was no longer limiting. Denitrification assays were amended seasonally with NO3-N and an organic carbon source (glucose) to determine nutrient limitation of sediment denitrification. While organic carbon never limited sediment denitrification, all sites were significantly limited by NO3-N during fall and winter when ambient NO 3-N was low.  相似文献   

4.
Liu H  Guo J  Qu J  Lian J  Jefferson W  Yang J  Li H 《Biodegradation》2012,23(3):399-405
The accelerating effect of non-dissolved redox mediator (1,5-dichloroanthraquinone) on the biological denitrification was investigated in this paper using 1,5-dichloroanthraquinone immobilized by calcium alginate (CA) and a heterotrophic denitrification bacterium of Paracoccus versutus (GU111570). The results suggested that the denitrification rate was enhanced 2.1 fold by 25 mmol l−1 1,5-dichloroanthraquinone of this study, and a positive correlation was found for the denitrification rate and 1,5-dichloroanthraquinone concentrations from 0 to 25 mmol l−1. According to the change characteristic of NO3 and NO2 during the denitrification process, the tentative accelerating mechanism of the denitrification by redox mediators was put forward, and redox mediator might play the role of reduced cofactors like NADH, N(A)DH and SDH, or the similar ubiquinol/ubiquinone (Q/QH2) role during the denitrification process.  相似文献   

5.
A fundamental challenge in understanding the global nitrogen cycle is the quantification of denitrification on large heterogeneous landscapes. Because floodplains are important sites for denitrification and nitrogen retention, we developed a generalized floodplain biogeochemical model to determine whether dams and flood‐control levees affect floodplain denitrification by altering floodplain inundation. We combined a statistical model of floodplain topography with a model of hydrology and nitrogen biogeochemistry to simulate floods of different magnitude. The model predicted substantial decreases in NO3‐N processing on floodplains whose overbank floods have been altered by levees and upstream dams. Our simulations suggest that dams may reduce nitrate processing more than setback levees. Levees increased areal floodplain denitrification rates, but this effect was offset by a reduction in the area inundated. Scenarios that involved a levee also resulted in more variability in N processing among replicate floodplains. Nitrate loss occurred rapidly and completely in our model floodplains. As a consequence, total flood volume and the initial mass of nitrate reaching a floodplain may provide reasonable estimates of total N processing on floodplains during floods. This finding suggests that quantifying the impact of dams and levees on floodplain denitrification may be possible using recent advances in remote sensing of floodplain topography and flood stage. Furthermore, when considering flooding over the long‐term, the cumulative N processed by frequent smaller floods was estimated to be quite large relative to that processed by larger, less frequent floods. Our results suggest that floodplain denitrification may be greatly influenced by the pervasive anthropogenic flood‐control measures that currently exist on most majors river floodplains throughout the world, and may have the potential to be impacted by future changes in flood probabilities that will likely occur as a result of climate shifts.  相似文献   

6.
We conducted 15NO3 stable isotope tracer releases in nine streams with varied intensities and types of human impacts in the upstream watershed to measure nitrate (NO3) cycling dynamics. Mean ambient NO3 concentrations of the streams ranged from 0.9 to 21,000 μg l−1 NO3–N. Major N-transforming processes, including uptake, nitrification, and denitrification, all increased approximately two to three orders of magnitude along the same gradient. Despite increases in transformation rates, the efficiency with which stream biota utilized available NO3-decreased along the gradient of increasing NO3. Observed functional relationships of biological N transformations (uptake and nitrification) with NO3 concentration did not support a 1st order model and did not show signs of Michaelis–Menten type saturation. The empirical relationship was best described by a Efficiency Loss model, in which log-transformed rates (uptake and nitrification) increase with log-transformed nitrate concentration with a slope less than one. Denitrification increased linearly across the gradient of NO3 concentrations, but only accounted for ∼1% of total NO3 uptake. On average, 20% of stream water NO3 was lost to denitrification per km, but the percentage removed in most streams was <5% km−1. Although the rate of cycling was greater in streams with larger NO3 concentrations, the relative proportion of NO3 retained per unit length of stream decreased as NO3 concentration increased. Due to the rapid rate of NO3 turnover, these streams have a great potential for short-term retention of N from the landscape, but the ability to remove N through denitrification is highly variable.  相似文献   

7.
The performance of enriched sludge augmented with the B21 strain of Alcaligenes defragrans was compared with that of enriched sludge, as well as with pure Alcaligenes defragrans B21, in the context of a sulfur-oxidizing denitrification (SOD) process. In synthetic wastewater treatment containing 100–1,000 mg NO3-N/L, the single strain-seeded system exhibited superior performance, featuring higher efficiency and a shorter startup period, provided nitrate loading rate was less than 0.2 kg NO3-N/m3 per day. At nitrate loading rate of more than 0.5 kg NO3-N/m3 per day, the bioaugmented sludge system showed higher resistance to shock loading than two other systems. However, no advantage of the bioaugmented system over the enriched sludge system without B21 strain was observed in overall efficiency of denitrification. Both the bioaugmented sludge and enriched sludge systems obtained stable denitrification performance of more than 80% at nitrate loading rate of up to 2 kg NO3-N/m3 per day.  相似文献   

8.
Urban streams often contain elevated concentrations of nitrogen (N) which can be amplified in systems receiving effluent from wastewater treatment plants (WWTP). In this study, we evaluated the importance of denitrification in a stream draining urban Greensboro, NC, USA, using two approaches: (1) natural abundance of 15N–NO3 in conjunction with background NO3–N concentrations along a 7 km transect downstream of a WWTP; and (2) C2H2 block experiments at three sites and at three habitat types within each site. Overall lack of a longitudinal pattern of δ15N–NO3 and NO3–N, combined with high concentrations of NO3–N suggested that other factors were controlling NO3–N flux in the study transect. However, denitrification did appear to be significant along one portion of the transect. C2H2 block experiments showed that denitrification rates were much higher downstream of the WWTP compared to upstream, and showed that denitrification rates were highest in erosional and depositional areas downstream of the WWTP and in erosional areas upstream of the plant. Thus, the combination of the two methods for evaluating denitrification provided more insight into the spatial dynamics of denitrification activity than either approach alone. Denitrification appeared to be a significant sink for NO3–N upstream of the WWTP, but not downstream. Approximately 46% of the total NO3–N load was removed via denitrification in the upstream, urban section of the stream, while only 2.3% of NO3–N was lost downstream of the plant. This result suggests that controlling NO3–N loading from the plant could result in considerable improvement of downstream water quality.  相似文献   

9.
Nitrate removal from drinking water using a membrane-fixed biofilm reactor   总被引:4,自引:0,他引:4  
Biological treatment of drinking water is a cost-effective alternative to conventional physico/chemical processes. A new concept was tested to overcome the main disadvantage of biological denitrification, the intensive post-treatment process to remove microorganisms and remnant carbon source. The biological reaction zone and carbon supply were separated from the raw water stream by a nitrate-permeable membrane. Denitrification takes place in a biofilm, which is immobilized at the membrane. In a series of bench-scale runs, different types of membranes and reactor configurations were investigated. The best denitrification rates achieved were 1230 mg NO3 -N m−2 day−1. In one run, raw water containing 100 mg NO3 l−1 was completely freed from nitrate. The membrane and the attached biofilm also represent a barrier against the passage of the C source and nutrients into the raw water. At concentrations of 20 mg l−1 ethanol and 15 mg l−1 phosphate in the bioreactor no diffusion through the membrane into the treated water was observed. Without any post-treatment, the effluent met nearly all the relevant criteria for drinking water; only the colony count was slightly increased. Received: 18 December 1996 / Received last revision: 14 April 1997 / Accepted: 19 April 1997  相似文献   

10.
The influence of land use on potential fates of nitrate (NO3 ) in stream ecosystems, ranging from denitrification to storage in organic matter, has not been documented extensively. Here, we describe the Pacific Northwest component of Lotic Intersite Nitrogen eXperiment, phase II (LINX II) to examine how land-use setting influences fates of NO3 in streams. We used 24 h releases of a stable isotope tracer (15NO3-N) in nine streams flowing through forest, agricultural, and urban land uses to quantify NO3 uptake processes. NO3 uptake lengths varied two orders of magnitude (24–4247 m), with uptake rates (6.5–158.1 mg NO3-N m−2 day−1) and uptake velocities (0.1–2.3 mm min−1) falling within the ranges measured in other LINX II regions. Denitrification removed 0–7% of added tracer from our streams. In forest streams, 60.4 to 77.0% of the isotope tracer was exported downstream as NO3 , with 8.0 to 14.8% stored in wood biofilms, epilithon, fine benthic organic matter, and bryophytes. Agricultural and urban streams with streamside forest buffers displayed hydrologic export and organic matter storage of tracer similar to those measured in forest streams. In agricultural and urban streams with a partial or no riparian buffer, less than 1 to 75% of the tracer was exported downstream; much of the remainder was taken up and stored in autotrophic organic matter components with short N turnover times. Our findings suggest restoration and maintenance of riparian forests can help re-establish the natural range of NO3 uptake processes in human-altered streams.  相似文献   

11.
Nitrate, ammonium, dissolved organic N, and dissolved oxygen were measured in stream water and shallow groundwater in the riparian zones of two tropical watersheds with different soils and geomorphology. At both sites, concentrations of dissolved inorganic N (DIN; NH4 +- and NO3 -N) were low in stream water (< 110 ug/L). Markedly different patterns in DIN were observed in groundwater collected at the two sites. At the first site (Icacos watershed), DIN in upslope groundwater was dominated by NO3 -N (550 ug/L) and oxygen concentrations were high (5.2 mg/L). As groundwater moved through the floodplain and to the stream, DIN shifted to dominance by NH4 +-N (200–700 ug/L) and groundwater was often anoxic. At the second site (Bisley watershed), average concentrations of total dissolved nitrogen were considerably lower (300 ug/L) than at Icacos (600 ug/L), and the dominant form of nitrogen was DON rather than inorganic N. Concentrations of NH4 + and NO3 were similar throughout the riparian zone at Bisley, but concentrations of DON declined from upslope wells to stream water. Differences in speciation and concentration of nitrogen in groundwater collected at the two sites appear to be controlled by differences in redox conditions and accessibility of dissolved N to plant roots, which are themselves the result of geomorphological differences between the two watersheds. At the Icacos site, a deep layer of coarse sand conducts subsurface water to the stream below the rooting zone of riparian vegetation and through zones of strong horizontal redox zonation. At the Bisley site, infiltration is impeded by dense clays and saturated flow passes through the variably oxidized rooting zone. At both sites, hydrologic export of nitrogen is controlled by intense biotic activity in the riparian zone. However, geomorphology appears to strongly modify the importance of specific biotic components.  相似文献   

12.
The denitrification performance of a lab-scale anoxic rotating biological contactor (RBC) using landfill leachate with high nitrate concentration was evaluated. Under a carbon to nitrogen ratio (C/N) of 2, the reactor achieved N-NO3 removal efficiencies above 95% for concentrations up to 100 mg N-NO3  l−1. The highest observed denitrification rate was 55 mg N-NO3  l−1 h−1 (15 g N-NO3  m−2 d−1) at a nitrate concentration of 560 mg N-NO3  l−1. Although the reactor has revealed a very good performance in terms of denitrification, effluent chemical oxygen demand (COD) concentrations were still high for direct discharge. The results obtained in a subsequent experiment at constant nitrate concentration (220 mg N-NO3  l−1) and lower C/N ratios (1.2 and 1.5) evidenced that the organic matter present in the leachate was non-biodegradable. A phosphorus concentration of 10 mg P-PO4 3− l−1 promoted autotrophic denitrification, revealing the importance of phosphorus concentration on biological denitrification processes.  相似文献   

13.
A mixed bacterial culture was acclimated to the removal of high nitrate-N concentrations (100–750 mg NO3 -N L−1) from salty wastewaters. The experiments were carried out under anoxic conditions in the presence of 0.5, 1.5 and 3% (w/v) NaCl at different temperatures. The acclimated mixed bacterial culture was attached to quartz sand and zeolite. Denitrification was monitored in a continuous-flow bioreactor at different hydraulic retention times (HRT). Nitrate removal with cells attached to quartz sand and zeolite was completed at HRT of 167 h and 25 h respectively. Then brine denitrification with bacterial cells attached to zeolite was monitored for 85 days. Under the increased nitrate loading rate, nitrate removal was above 90%. Furthermore, during denitrification, not more than 0.5 mg NO2 -N L−1 could be produced. It can be concluded that nitrate removal with the cells attached to zeolite is economically and operationally a promising solution to denitrification of brine wastewaters.  相似文献   

14.
Anaerobic bioreactors that can support simultaneous microbial processes of denitrification and methanogenesis are of interest to nutrient nitrogen removal. However, an important concern is the potential toxicity of nitrate (NO3 ) and nitrite (NO2 ) to methanogenesis. The methanogenic toxicity of the NOx compounds to anaerobic granular biofilms and municipal anaerobic digested sludge with two types of substrates, acetate and hydrogen, was studied. The inhibition was the severest when the NOx compounds were still present in the media (exposure period). During this period, 95% or greater inhibition of methanogenesis was evident at the lowest concentrations of added NO2 tested (7.6–10.2 mg NO2 -N l−1) or 8.3–121 mg NO3 -N l−1 of added NO3 , depending on substrate and inoculum source. The inhibition imparted by NO3 was not due directly to NO3 itself, but instead due to reduced intermediates (e.g., NO2 ) formed during the denitrification process. The toxicity of NOx was found to be reversible after the exposure period. The recovery of activity was nearly complete at low added NOx concentrations; whereas the recovery was only partial at high added NOx concentrations. The recovery is attributed to the metabolism of the NOx compounds. The assay substrate had a large impact on the rate of NO2 metabolism. Hydrogen reduced NO2 slowly such that NO2 accumulated more and as a result, the toxicity was greater compared to acetate as a substrate. The final methane yield was inversely proportional to the amount of NOx compounds added indicating that they were the preferred electron acceptors compared to methanogenesis.  相似文献   

15.
Nitrogen from atmospheric deposition serves as the dominant source of new nitrogen to forested ecosystems in the northeastern U.S. By combining isotopic data obtained using the denitrifier method, with chemical and hydrologic measurements we determined the relative importance of sources and control mechanisms on nitrate (NO3 ) export from five forested watersheds in the Connecticut River watershed. Microbially produced NO3 was the dominant source (82–100%) of NO3 to the sampled streams as indicated by the δ15N and δ18O of NO3 . Seasonal variations in the δ18O–NO3 in streamwater are controlled by shifting hydrologic and temperature affects on biotic processing, resulting in a relative increase in unprocessed NO3 export during winter months. Mass balance estimates find that the unprocessed atmospherically derived NO3 stream flux represents less than 3% of the atmospherically delivered wet NO3 flux to the region. This suggests that despite chronically elevated nitrogen deposition these forests are not nitrogen saturated and are retaining, removing, and reprocessing the vast majority of NO3 delivered to them throughout the year. These results confirm previous work within Northeastern U.S. forests and extend observations to watersheds not dominated by a snow-melt driven hydrology. In contrast to previous work, unprocessed atmospherically derived NO3 export is associated with the period of high recharge and low biotic activity as opposed to spring snowmelt and other large runoff events.  相似文献   

16.
Paramasivam  S.  Alva  A. K.  Prakash  O.  Cui  S. L. 《Plant and Soil》1999,208(2):307-319
A portion of nitrate (NO 3 ), a final breakdown product of nitrogen (N) fertilizers, applied to soils and/or that produced upon decomposition of organic residues in soils may leach into groundwater. Nitrate levels in water excess of 10 mg L−1 (NO3–N) are undesirable as per drinking water quality standards. Nitrate concentrations in surficial groundwater can vary substantially within an area of citrus grove which receives uniform N rate and irrigation management practice. Therefore, differences in localized conditions which can contribute to variations in gaseous loss of NO 3 in the vadose zone and in the surficial aquifer can affect differential concentrations of NO3–N in the groundwater at different points of sampling. The denitrification capacity and potential in a shallow vadose zone soil and in surficial groundwater were studied in two large blocks of a citrus grove of ‘Valencia’ orange trees (Citrus sinensis (L.) Obs.) on Rough lemon rootstock ( Citrus jambhiri (L.)) under a uniform N rate and irrigation program. The NO3–N concentration in the surficial groundwater sampled from four monitoring wells (MW) within each block varied from 5.5- to 6.6-fold. Soil samples were collected from 0 to 30, 30 to 90, or 90 to 150 cm depths, and from the soil/groundwater interface (SGWI). Groundwater samples from the monitoring wells (MW) were collected prior to purging (stagnant water) and after purging five well volumes. Without the addition of either C or N, the denitrification capacity ranged from 0.5 to 1.53, and from 0.0 to 2.25 mg N2O–N kg−1 soil at the surface soil and at the soil/groundwater interface, respectively. The denitrification potential increased by 100-fold with the addition of 200 mg kg−1 each of N and C. The denitrification potential in the groundwater also followed a pattern similar to that for the soil samples. Denitrification potential in the soil or in the groundwater was greatest near the monitor well with shallow depth of vadose zone (MW3). Cumulative N2O–N emission (denitrification capacity) from the SGWI soil samples and from stagnant water samples strongly correlated to microbial most probable number (MPN) counts (r2 = 0.84 – 0.89), and dissolved organic C (DOC) (r2 = 0.96 – 0.97). Denitrification capacity of the SGWI samples moderately correlated to water-filled pore space (WFPS) (r2 = 0.52). However, extractable NO3-N content of the SGWI soil samples poorly (negative) correlated to denitrification capacity (r2 = 0.35). However, addition C, N or both to the soil or water samples resulted in significant increase in cumulative N2O emission. This study demonstrated that variation in denitrification capacity, as a result of differences in denitrifier population, and the amount of readily available carbon source significantly (at 95% probability level) influenced the variation in NO3–N concentrations in the surficial groundwater samples collected from different monitoring wells within an area with uniform N management. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
We investigated controls on stream sediment denitrification in nine headwater streams in the Kalamazoo River Watershed, Michigan, USA. Factors influencing denitrification were determined by using experimental assays based on the chloramphenicol-amended acetylene inhibition technique. Using a coring technique, we found that sediment denitrification was highest in the top 5 cm of the benthos and was positively related to sediment organic content. To determine the effect of overlying water quality on sediment denitrification, first-order stream sediments were assayed with water from second- and third-order downstream reaches, and often showed higher denitrification rates relative to assays using site-specific water from the first-order stream reach. Denitrification was positively related to nitrate (NO3 ) concentration, suggesting that sediments may have been nutrient-limited. Using stream-incubated inorganic substrata of varying size classes, we found that finer-grained sand showed higher rates of denitrification compared to large pebbles, likely due to increased surface area per volume of substratum. Denitrification was measurable on both inorganic substrata and fine particulate organic matter loosely associated with inorganic particles, and denitrification rates were related to organic content. Using nutrient-amended denitrification assays, we found that sediment denitrification was limited by NO3 or dissolved organic carbon (DOC, as dextrose) variably throughout the year. The frequency and type of limitation differed with land use in the watershed: forested streams were NO3 -limited or co-limited by both NO3 and DOC 92% of the time, urban streams were more often NO3 -limited than DOC-limited, whereas agricultural stream sediments were DOC-limited or co-limited but not frequently limited by NO3 alone.  相似文献   

18.
Suppression of nitrate formation within an exotic conifer plantation   总被引:1,自引:0,他引:1  
Summary Nitrate-N losses to stream waters and soil inorganic N pools, nitrifying potentials and NO3-N production rates were measured in 2 adjacent watersheds, one used as pasture and the other planted in exotic conifer forest (Pinus radiata D. Don). Estimated NO3-N loss to stream waters draining the pine and pasture watersheds were 0.6kg ha−1 y−1 and 7.6 kg ha−1 y−1 respectively. Ammonium-N pool sizes were not significantly different between soils in the two watersheds but NO3−N pools and nitrifying potentials were always lower in the pine watershed soil samples. Laboratory incubation experiments indicated that suppression of NO3−N formation in pine watershed soils required the presence of live tree roots and was not due to the direct action of allelopathic chemicals on nitrifiers.  相似文献   

19.
Brenner RE  Boone RD  Jones JB  Lajtha K  Ruess RW 《Oecologia》2006,148(4):602-611
Floristic succession in the boreal forest can have a dramatic influence on ecosystem nutrient cycling. We predicted that a decrease in plant and microbial demand for nitrogen (N) during the transition from mid- to late-succession forests would induce an increase in the leaching of dissolved inorganic nitrogen (DIN), relative to dissolved organic nitrogen (DON). To test this, we examined the chemistry of the soil solution collected from within and below the main rooting zones of mid- and late-succession forests, located along the Tanana River in interior Alaska. We also used a combination of hydrological and chemical analyses to investigate a key assumption of our methodology: that patterns of soil water movement did not change during this transition. Between stands, there was no difference in the proportion of DIN below the rooting zone. 84–98% of DIN at both depths consisted of nitrate, which was significantly higher in the deeper mineral soil than at the soil surface (0.46±0.12 mg NO 3 –N l−1 vs 0.17±0.12 mg NO 3 –N l−1, respectively), and 79–92% of the total dissolved N consisted of DON. Contrary to our original assumption that nutrients were primarily leached downward, out of the rooting zone, we found much evidence to suggest that the glacially-fed Tanana River (>200 m from these stands) was contributing to the influx of water and nutrients into the soil active layer of both stands. Soil water potentials were positively correlated with river discharge; and ionic and isotopic (δ18O of H2O) values of the soil solution closely matched those of river water. Thus, our ability to elucidate biological control over ecosystem N retention was confounded by riverine nutrient inputs. Climatic warming is likely to extend the season of glacial melt and increase riverine nutrient inputs to forests along glacially-fed rivers.  相似文献   

20.
The aim of this research was to test whether NH4 + and NO3 affect the growth, P demand, cell composition and N2 fixation of Cylindrospermopsis raciborskii under P limitation. Experiments were carried out in P-limited (200 μg l−1 PO4-P) chemostat cultures of C. raciborskii using an inflowing medium containing either 4,000 μg l−1 NH4-N, 4,000 μg l−1 NO3-N or no combined N. The results showed the cellular N:P and C:P ratios of C. raciborskii decreased towards the Redfield ratio with increasing dilution rate (D) due to the alleviation of P limitation. The cellular C:N and carotenoids:chlorophyll-a ratios also decreased with D, predominantly as a result of an increase in the chlorophyll-a and N content. The NH4 + and NO3 supply reduced the P maintenance cell quota of C. raciborskii. Consequently, the biomass yield of the N2-grown culture was significantly lower. The maximum specific growth rate of N2-grown culture was also the lowest observed. It is suggested that these differences in growth parameters were caused by the P and energy requirement for heterocyte formation, nitrogenase synthesis and N2 fixation. N2 fixation was partially inhibited by NO3 and completely inhibited by NH4 +. It was probably repressed through the high N content of cells at high dissolved N concentrations. These results indicate that C. raciborskii is able to grow faster and maintain a higher biomass under P limitation where a sufficient supply of NH4 + or NO3 is maintained. Information gained about the species-specific nutrient and pigment stoichiometry of C. raciborskii could help to access the degree of nutrient limitation in water bodies. Handling editor: Luigi Naselli-Flores  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号