首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The Aspergillus nidulans stcP gene was previously identified as a transcribed region associated with a cluster of genes proposed to be involved in sterigmatocystin biosynthesis (D. W. Brown, J.-H. Yu, H. S. Kelkar, M. Fernandes, T. C. Nesbitt, N. P. Keller, T. H. Adams, and T. J. Leonard, Proc. Natl. Acad. Sci. USA 93:1418-1422, 1996). stcP was predicted to encode a methyltransferase responsible for conversion of demethylsterig-matocystin to sterigmatocystin. Here we demonstrate that disruption of stcP in A. nidulans results in strains that accumulate demethylsterigmatocystin.  相似文献   

2.
14C-labeled averufin, versiconal hemiacetal acetate, and versicolorin A were efficiently converted to sterigmatocystin by Aspergillus versicolor, thus providing experimental evidence that these anthraquinones are biosynthetic precursors of sterigmatocystin, a xanthone.  相似文献   

3.
Sterigmatocystin (ST) and aflatoxin B1 (AFB1) are two polyketide-derived Aspergillus mycotoxins synthesized by functionally identical sets of enzymes. ST, the compound produced by Aspergillus nidulans, is a late intermediate in the AFB1 pathway of A. parasiticus and A. flavus. Previous biochemical studies predicted that five oxygenase steps are required for the formation of ST. A 60-kb ST gene cluster in A. nidulans contains five genes, stcB, stcF, stcL, stcS, and stcW, encoding putative monooxygenase activities. Prior research showed that stcL and stcS mutants accumulated versicolorins B and A, respectively. We now show that strains disrupted at stcF, encoding a P-450 monooxygenase similar to A. parasiticus avnA, accumulate averantin. Disruption of either StcB (a putative P-450 monooxygenase) or StcW (a putative flavin-requiring monooxygenase) led to the accumulation of averufin as determined by radiolabeled feeding and extraction studies.  相似文献   

4.
14C-labeled averufin, versiconal hemiacetal acetate, and versicolorin A were efficiently converted to sterigmatocystin by Aspergillus versicolor, thus providing experimental evidence that these anthraquinones are biosynthetic precursors of sterigmatocystin, a xanthone.  相似文献   

5.
6.
7.
8.
Aspergillus nidulans produces the carcinogenic mycotoxin sterigmatocystin (ST), the next-to-last precursor in the aflatoxin (AF) biosynthetic pathway found in the closely related fungi Aspergillus flavus and Aspergillus parasiticus. We identified and characterized an A. nidulans gene, verA, that is required for converting the AF precursor versicolorin A to ST. verA is closely related to several polyketide biosynthetic genes involved in polyketide production in Streptomyces spp. and exhibits extended sequence similarity to A. parasiticus ver-1, a gene proposed to encode an enzyme involved in converting versicolorin A to ST. By performing a sequence analysis of the region 3' to verA, we identified two additional open reading frames, designated ORF1 and ORF2. ORF2 is closely related to a number of cytochrome P-450 monooxygenases, while ORF1 shares identity with the gamma subunit of translation elongation factor 1. Given that several steps in the ST-AF pathway may require monooxygenase activity and that AF biosynthetic genes are clustered in A. flavus and A. parasiticus, we suggest that verA may be part of a cluster of genes required for ST biosynthesis. We disrupted the verA coding region by inserting the A. nidulans argB gene into the center of the coding region and transformed an A. nidulans argB2 mutant to arginine prototrophy. Seven transformants that produced DNA patterns indicative of a verA disruption event were grown under ST-inducing conditions, and all of the transformants produced versicolorin A but negligible amounts of ST (200-fold to almost 1,000-fold less than the wild type), confirming the hypothesis that verA encodes an enzyme necessary for converting versicolorin A to ST.  相似文献   

9.
Deletion of the spermidine synthase gene in the fungus Aspergillus nidulans results in a strain, deltaspdA, which requires spermidine for growth and accumulates putrescine as the sole polyamine. Vegetative growth but not sporulation or sterigmatocystin production is observed when deltaspdA is grown on media supplemented with 0.05-0.10 mM exogenous spermidine. Supplementation of deltaspdA with >/= 0.10 mM spermidine restores sterigmatocystin production and >/= 0.50 mM spermidine produces a phenotype with denser asexual spore production and decreased radial hyphal growth compared with the wild type. DeltaspdA spores germinate in unsupplemented media but germ tube growth ceases after 8 h upon which time the spores swell to approximately three times their normal diameter. Hyphal growth is resumed upon addition of 1.0 mM spermidine. Suppression of a G protein signalling pathway could not force asexual sporulation and sterigmatocystin production in deltaspdA strains grown in media lacking spermidine but could force both processes in deltaspdA strains supplemented with 0.05 mM spermidine. These results show that increasing levels of spermidine are required for the transitions from (i) germ tube to hyphal growth and (ii) hyphal growth to tissue differentiation and secondary metabolism. Suppression of G protein signalling can over-ride the spermidine requirement for the latter but not the former transition.  相似文献   

10.
11.
12.
The cell wall is essential for fungal survival in natural environments. Many fungal wall carbohydrates are absent from humans, so they are a promising source of antifungal drug targets. Galactofuranose (Galf) is a sugar that decorates certain carbohydrates and lipids. It comprises about 5% of the Aspergillus fumigatus cell wall, and may play a role in systemic aspergillosis. We are studying Aspergillus wall formation in the tractable model system, A. nidulans. Previously we showed single-gene deletions of three sequential A. nidulans Galf biosynthesis proteins each caused similar hyphal morphogenesis defects and 500-fold reduced colony growth and sporulation. Here, we generated ugeA, ugmA and ugtA strains controlled by the alcA(p) or niiA(p) regulatable promoters. For repression and expression, alcA(p)-regulated strains were grown on complete medium with glucose or threonine, whereas niiA(p)-regulated strains were grown on minimal medium with ammonium or nitrate. Expression was assessed by qPCR and colony phenotype. The alcA(p) and niiA(p) strains produced similar effects: colonies resembling wild type for gene expression, and resembling deletion strains for gene repression. Galf immunolocalization using the L10 monoclonal antibody showed that ugmA deletion and repression phenotypes correlated with loss of hyphal wall Galf. None of the gene manipulations affected itraconazole sensitivity, as expected. Deletion of any of ugmA, ugeA, ugtA, their repression by alcA(p) or niiA(p), OR, ugmA overexpression by alcA(p), increased sensitivity to Caspofungin. Strains with alcA(p)-mediated overexpression of ugeA and ugtA had lower caspofungin sensitivity. Galf appears to play an important role in A. nidulans growth and vigor.  相似文献   

13.
The gliotoxin, a member of the epipolythiodioxopiperazine (ETP), has received considerable attention from the scientific community for its wide range of biological activity. Despite the identification of gliotoxin cluster, however, the sequence of steps in the gliotoxin biosynthesis has remained elusive. As an alternative to the gene knock-out and biochemical approaches used so far, here we report using a heterologous expression approach to determine the sequence of the early steps of gliotoxin biosynthesis in Aspergillus nidulans. We identified the GliC, a monooxygenases that involved in the second step of gliotoxin biosynthesis pathway through the catalyzing the hydroxylation at the α-position of l-Phe.  相似文献   

14.
Seo JA  Guan Y  Yu JH 《Genetics》2003,165(3):1083-1093
Asexual sporulation (conidiation) in the filamentous fungus Aspergillus nidulans requires the early developmental activator fluG. Loss of fluG results in the blockage of both conidiation and production of the mycotoxin sterigmatocystin (ST). To investigate molecular mechanisms of fluG-dependent developmental activation, 40 suppressors of fluG (SFGs) that conidiate without fluG have been isolated and characterized. Genetic analyses showed that an individual suppression is caused by a single second-site mutation, and that all sfg mutations but one are recessive. Pairwise meiotic crosses grouped mutations to four loci, 31 of them to sfgA, 6 of them to sfgB, and 1 each to sfgC and sfgD, respectively. The only dominant mutation, sfgA38, also mapped to the sfgA locus, suggesting a dominant negative mutation. Thirteen sfgA and 1 sfgC mutants elaborated conidiophores in liquid submerged culture, indicating that loss of either of these gene functions not only bypasses fluG function but also results in hyperactive conidiation. While sfg mutants show varying levels of restored conidiation, all recovered the ability to produce ST at near wild-type levels. The fact that at least four loci are defined by recessive sfg mutations indicates that multiple genes negatively regulate conidiation downstream of fluG and that the activity of fluG is required to remove such repressive effects.  相似文献   

15.
Expression of the Aspergillus nidulans penicillin biosynthesis genes acvA and ipnA, encoding delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase and isopenicillin N synthetase, respectively, was analyzed. The intergenic region carrying the divergently oriented promoters was fused in frame in both orientations to Escherichia coli lacZ and E. coli uidA reporter genes. Each construct permits simultaneous expression studies of both genes. Transformants of A. nidulans carrying a single copy of either plasmid integrated at the chromosomal argB locus were selected for further investigations. Expression of both genes was directed by the 872-bp intergenic region. ipnA- and acvA-derived gene fusions were expressed from this region at different levels. ipnA had significantly higher expression than did acvA. Glucose specifically reduced the production of penicillin and significantly repressed the expression of ipnA but not of acvA gene fusions. The specific activities of isopenicillin N synthetase, the gene product of ipnA, and acyl coenzyme A:6-aminopenicillanic acid acyltransferase were also reduced in glucose-grown cultures.  相似文献   

16.
Zhang YQ  Brock M  Keller NP 《Genetics》2004,168(2):785-794
Propionyl-CoA is an intermediate metabolite produced through a variety of pathways including thioesterification of propionate and catabolism of odd chain fatty acids and select amino acids. Previously, we found that disruption of the methylcitrate synthase gene, mcsA, which blocks propionyl-CoA utilization, as well as growth on propionate impaired production of several polyketides-molecules typically derived from acetyl-CoA and malonyl-CoA-including sterigmatocystin (ST), a potent carcinogen, and the conidiospore pigment. Here we describe three lines of evidence that demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis. First, inactivation of a putative propionyl-CoA synthase, PcsA, which converts propionate to propionyl-CoA, restored polyketide production and reduced cellular propionyl-CoA content in a DeltamcsA background. Second, inactivation of the acetyl-CoA synthase, FacA, which is also involved in propionate utilization, restored polyketide production in the DeltamcsA background. Third, fungal growth on several compounds (e.g., heptadecanoic acid, isoleucine, and methionine) whose catabolism includes the formation of propionyl-CoA, were found to inhibit ST and conidiospore pigment production. These results demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis.  相似文献   

17.
Until recently, only three species (Aspergillus flavus, A. parasiticus and A. nomius) have been widely recognized as producers of aflatoxin. In this study we examine aflatoxin production by two other species, A. tamarii and A. ochraceoroseus, the latter of which also produces sterigmatocystin. Toxin-producing strains of A. tamarii and A. ochraceoroseus were examined morphologically, and toxin production was assayed on different media at different pH levels using thin layer chromatography and a densitometer. Genomic DNA of these two species was probed with known aflatoxin and sterigmatocystin biosynthesis genes from A. flavus, A. parasiticus and A. nidulans. Under the high stringency conditions, A. tamarii DNA hybridized to all four of the A. flavus and A. parasiticus gene probes, indicating strong similarities in the biosynthetic pathway genes of these three species. The A. ochraceoroseus DNA hybridized weakly to the A. flavus and A. parasiticus verB gene probe, and to two of the three A. nidulans probes. These data indicate that, at the DNA level, the aflatoxin and sterigmatocystin biosynthetic pathway genes for A. ochraceoroseus are somewhat different from known pathway genes. Received: 21 May 1999 / Received revision: 17 November 1999 / Accepted: 3 December 1999  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号