首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treppo, Steven, Srboljub M. Mijailovich, and José G. Venegas. Contributions of pulmonary perfusion and ventilation toheterogeneity in A/measured by PET. J. Appl. Physiol. 82(4): 1163-1176, 1997. To estimate the contributions of the heterogeneity in regionalperfusion () and alveolar ventilation(A) to that of ventilation-perfusionratio (A/), we haverefined positron emission tomography (PET) techniques to image localdistributions of andA per unit of gas volume content(s and sA,respectively) and VA/ indogs. sA was assessed in two ways:1) the washout of 13NN tracer after equilibrationby rebreathing (sAi), and2) the ratio of an apneic image after a bolus intravenousinfusion of 13NN-saline solution to an image collectedduring a steady-state intravenous infusion of the same solution(sAp).sAp was systematically higher than sAi in allanimals, and there was a high spatial correlation betweens andsAp in both body positions(mean correlation was 0.69 prone and 0.81 supine) suggesting thatventilation to well-perfused units was higher than to those poorlyperfused. In the prone position, the spatial distributions ofs, sAp, and A/ were fairlyuniform with no significant gravitational gradients; however, in thesupine position, these variables were significantly more heterogeneous,mostly because of significant gravitational gradients (15, 5.5, and10%/cm, respectively) accounting for 73, 33, and 66% of thecorresponding coefficient of variation (CV)2 values. Weconclude that, in the prone position, gravitational forces in blood andlung tissues are largely balanced out by dorsoventral differences inlung structure. In the supine position, effects of gravity andstructure become additive, resulting in substantial gravitationalgradients in s andsAp, with the higherheterogeneity inA/ caused by agravitational gradient in s, only partially compensated by that in sA.

  相似文献   

2.
Creatine kinase(CK) provides ATP buffering in skeletal muscle and is expressed as1) cytosolic myofibrillar CK (M-CK)and 2) sarcomeric mitochondrial CK(ScCKmit) isoforms that differ in their subcellular localization. Wecompared the isometric contractile and fatigue properties of1) control CK-sufficient (Ctl),2) M-CK-deficient (M-CK[/]), and3) combined M-CK/ScCKmit-deficientnull mutant (CK[/]) diaphragm (Dia) todetermine the effect of the absence of M-CK activity on Dia performancein vitro. Baseline contractile properties were comparable across groupsexcept for specific force, which was ~16% lower inCK[/] Dia compared withM-CK[/] and Ctl Dia. During repetitiveactivation (40 Hz, duty cycle), force declined in all threegroups. This decline was significantly greater inCK[/] Dia compared with Ctl and M-CK[/] Dia. The pattern of forcedecline did not differ between M-CK[/] andCtl Dia. We conclude that Dia isometric muscle function is notabsolutely dependent on the presence of M-CK, whereas the completeabsence of CK acutely impairs isometric force generation duringrepetitive activation.

  相似文献   

3.
Yan, Sheng, Pawel Sliwinski, and Peter T. Macklem.Association of chest wall motion and tidal volume responses during CO2 rebreathing.J. Appl. Physiol. 81(4):1528-1534, 1996.The purpose of this study is to investigate theeffect of chest wall configuration at end expiration on tidal volume(VT) response duringCO2 rebreathing. In a group of 11 healthy male subjects, the changes in end-expiratory andend-inspiratory volume of the rib cage (Vrc,E andVrc,I, respectively) and abdomen (Vab,E and Vab,I, respectively) measured by linearizedmagnetometers were expressed as a function of end-tidalPCO2(PETCO2). The changes inend-expiratory and end-inspiratory volumes of the chest wall(Vcw,E and Vcw,I,respectively) were calculated as the sum of the respectiverib cage and abdominal volumes. The magnetometer coils were placed atthe level of the nipples and 1-2 cm above the umbilicus andcalibrated during quiet breathing against theVT measured from apneumotachograph. TheVrc,E/PETCO2 slope was quite variable among subjects. It was significantly positive (P < 0.05) in fivesubjects, significantly negative in four subjects(P < 0.05), and not different fromzero in the remaining two subjects. TheVab,E/PETCO2slope was significantly negative in all subjects(P < 0.05) with a much smallerintersubject variation, probably suggesting a relatively more uniformrecruitment of abdominal expiratory muscles and a variable recruitmentof rib cage muscles during CO2rebreathing in different subjects. As a group, the meanVrc,E/PETCO2,Vab,E/PETCO2, andVcw,E/PETCO2slopes were 0.010 ± 0.034, 0.030 ± 0.007, and0.020 ± 0.032 l / Torr, respectively;only theVab,E/PETCO2 slope was significantly different from zero. More interestingly, theindividualVT/PETCO2slope was negatively associated with theVrc,E/PETCO2(r = 0.68,P = 0.021) and Vcw,E/PETCO2slopes (r = 0.63,P = 0.037) but was not associated withtheVab,E/PETCO2slope (r = 0.40, P = 0.223). There was no correlation oftheVrc,E/PETCO2 andVcw,E/PETCO2slopes with age, body size, forced expiratory volume in 1 s, orexpiratory time. The groupVab,I/PETCO2 slope (0.004 ± 0.014 l / Torr) was not significantlydifferent from zero despite theVT nearly being tripled at theend of CO2 rebreathing. Inconclusion, the individual VTresponse to CO2, althoughindependent of Vab,E, is a function ofVrc,E to the extent that as theVrc,E/PETCO2slope increases (more positive) among subjects, theVT response toCO2 decreases. These results maybe explained on the basis of the respiratory muscle actions andinteractions on the rib cage.

  相似文献   

4.
Rudolph, Alan S., Anthony Sulpizio, Paul Hieble, VictorMacdonald, Mark Chavez, and Giora Feuerstein. Liposomeencapsulation attenuates hemoglobin-induced vasoconstriction in rabbitarterial segments. J. Appl. Physiol.82(6): 1826-1835, 1997.Free hemoglobin (Hb) induces a potentvasoconstrictor response that may limit its therapeutic application asa red blood cell replacement. We have investigated whetherencapsulation of stroma-free Hb (SFHb) or cross-linked Hb (-Hb)in liposomes modulates Hb vasoactivity in isolated blood vessels.Relaxation of rabbit thoracic vessels was measured before and afterexposure to acellular SFHb, -Hb, and liposome-encapsulated SFHbor -Hb. SFHb and -Hb caused significant inhibition ofcarbachol-induced relaxation at 0.5 mg/dl, whereas encapsulationinhibited vessel relaxation at 30- to 60-fold higher Hb concentrations.The contractile response of rabbit ear arterial segments to electricalstimulation in the presence of acellular -Hb resulted in a 150%increase (EC150) in contractileamplitude at 0.23 mg/dl, whereas theEC150 for encapsulated -Hbwas 13.7 mg/dl. Mechanistic studies of the vasoconstrictor activity ofHb demonstrated that acellular -Hb had no effect onnorepinephrine release in the rabbit ear artery. In addition, neitheracellular nor encapsulated -Hb preparations inhibited endothelialnitric oxide (NO) synthase activity isolated from bovine pulmonaryartery. However, inhibition of vessel relaxation by acellular orencapsulated -Hb was reversed by the NO donor S-nitrosylpenacillamine, implicatingHb-NO binding as a possible mechanism for the vasoconstrictor response.In vitro stopped-flow kinetic studies of Hb-NO binding showed similarrates of reaction for conversion of oxyhemoglobin to methemoglobin(metHb; <2 ms), followed by rapid conversion of metHb to NO-Hb (300 ms) for both acellular and encapsulated -Hb, demonstrating thatliposome encapsulation does not retard NO-Hb binding. The attenuatedvasoactivity of encapsulated Hb may, therefore, result from the limitedaccess of encapsulated Hb to NO imposed by the physical size of theliposome and reduced penetration of Hb across the vascular endothelium.

  相似文献   

5.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

6.
Nagase, Takahide, Hirotoshi Matsui, Tomoko Aoki, YasuyoshiOuchi, and Yoshinosuke Fukuchi. Lung tissue behavior in the mouseduring constriction induced by methacholine and endothelin-1. J. Appl. Physiol. 81(6):2373-2378, 1996.Recently, mice have been extensively used toinvestigate the pathogenesis of pulmonary disease because appropriatemurine models, including transgenic mice, are being increasinglydeveloped. However, little information about the lung mechanics of miceis currently available. We questioned whether lung tissue behavior andthe coupling between dissipative and elastic processes, hysteresivity(), in mice would be different from those in the other species. Toaddress this question, we investigated whether tissue resistance (Rti)and  in mice would be affected by varying lung volume, constrictioninduced by methacholine (MCh) and endothelin-1 (ET-1), andhigh-lung-volume challenge during induced constriction. From measuredtracheal flow and tracheal and alveolar pressures in open-chest ICRmice during mechanical ventilation [tidal volume = 8 ml/kg,frequency (f) = 2.5 Hz], we calculated lung resistance(RL), Rti, airway resistance(Raw), lung elastance (EL),and  (=2fRti/EL). Underbaseline conditions, increasing levels of end-expiratory transpulmonarypressure decreased Raw and increased Rti. The administration ofaerosolized MCh and intravenous ET-1 increasedRL, Rti, Raw, andEL in a dose-dependent manner.Rti increased from 0.207 ± 0.010 to 0.570 ± 0.058 cmH2O · ml1 · safter 107 mol/kg ET-1(P < 0.01). After inducedconstriction, increasing end-expiratory transpulmonary pressuredecreased Raw. However,  was not affected by changing lung volume,constriction induced by MCh and ET-1, or high-lung-volume challengeduring induced constriction. These observations suggest that1)  is stable in mice regardlessof various conditions, 2) Rti is animportant fraction of RL andincreases after induced constriction, and3) mechanical interdependence mayaffect airway smooth muscle shortening in this species. In mammalianspecies, including mice, analysis of  may indicate that both Rti andEL essentially respond to asimilar degree.

  相似文献   

7.
To evaluatewhether interferon- (IFN-) is involved in the interaction betweenthe immune and endocrine systems in vivo, we studied six healthysubjects twice in a placebo-controlled trial: once after administrationof recombinant human IFN- and, on another occasion, afteradministration of saline. The rate of appearance of glucose wasdetermined by infusion of[6,6-2H2]glucoseand resting energy expenditure by indirect calorimetry. Human leukocyteantigen-DR gene expression on monocytes and serum neopterin increased after administration of IFN-(P < 0.05 vs. control). IFN-increased serum interleukin-6 levels significantly. Levels of tumornecrosis factor- remained below detection limits. IFN- increasedplasma concentrations of ACTH and cortisol(P < 0.05 vs. control), IFN- didnot alter concentrations of growth hormone,(nor)epinephrine, insulin, C peptide, glucagon, or insulin-like growthfactor I. IFN- did not alter plasma concentrations of glucose andfree fatty acids nor the rate of appearance of glucose. IFN-increased resting energy expenditure significantly. We conclude thatIFN- is a minor stimulator of the endocrine and metabolic pathways.Therefore, IFN- by itself is probably not a major mediator in theinteraction between the immune and the endocrine and metabolic systems.  相似文献   

8.
Chilibeck, P. D., D. H. Paterson, D. A. Cunningham, A. W. Taylor, and E. G. Noble. Muscle capillarization,O2 diffusion distance, andO2 kinetics in old andyoung individuals. J. Appl. Physiol.82(1): 63-69, 1997.The relationships between muscle capillarization, estimated O2diffusion distance from capillary to mitochondria, andO2 uptake(O2) kineticswere studied in 11 young (mean age, 25.9 yr) and 9 old (mean age, 66.0 yr) adults. O2kinetics were determined by calculating the time constants () forthe phase 2 O2 adjustment to andrecovery from the average of 12 repeats of a 6-min, moderate-intensityplantar flexion exercise. Muscle capillarization was determined fromcross sections of biopsy material taken from lateral gastrocnemius.Young and old groups had similarO2 kinetics(O2-on = 44 vs. 48 s;O2-off = 33 vs. 44 s, for young and old, respectively), muscle capillarization, andestimated O2 diffusion distances.Muscle capillarization, expressed as capillary density or averagenumber of capillary contacts per fiber/average fiber area, and theestimates of diffusion distance were significantly correlated toO2-off kinetics in theyoung (r = 0.68 to 0.83;P < 0.05). We conclude that1) capillarization andO2 kinetics during exerciseof a muscle group accustomed to everyday activity (e.g., walking) arewell maintained in old individuals, and2) in the young, recovery of O2 after exercise isfaster, with a greater capillary supply over a given muscle fiber areaor shorter O2 diffusion distances.

  相似文献   

9.
Li, M. H., J. Hildebrandt, and M. P. Hlastala.Quantitative analysis of transpleural flux in the isolated lung.J. Appl. Physiol. 82(2): 545-551, 1997.In this study, the loss of inert gas through the pleura of anisolated ventilated and perfused rabbit lung was assessed theoreticallyand experimentally. A mathematical model was used to represent an idealhomogeneous lung placed within a box with gas flow(box) surrounding the lung. Thealveoli are assumed to be ventilated with room air(A) andperfused at constant flow () containinginert gases (x) with various perfusate-air partition coefficients(p,x).The ratio of transpleural flux of gas(plx)to its total delivery to the lung via pulmonary artery( ),representing fractional losses across the pleura, can be shown todepend on four dimensionless ratios:1)p,x,2) the ratio of alveolar ventilation to perfusion(A/), 3) the ratioof the pleural diffusing capacity(Dplx) to the conductance ofthe alveolar ventilation (Dplx /Ag,where g is the capacitancecoefficient of gas), and 4) theratio of extrapleural (box) ventilation to alveolar ventilation(box/A).Experiments were performed in isolated perfused and ventilated rabbitlungs. The perfusate was a buffer solution containing six dissolvedinert gases covering the entire 105-fold range ofp,x usedin the multiple inert gas elimination technique. Steady-state inert gasconcentrations were measured in the pulmonary arterial perfusate,pulmonary venous effluent, exhaled gas, and box effluent gas. Theexperimental data could be described satisfactorily by thesingle-compartment model. It is concluded that a simple theoreticalmodel is a useful tool for predicting transpleural flux from isolatedlung preparations, with known ventilation and perfusion, for inertgases within a wide range of .

  相似文献   

10.
Carvalho, Paula, Shane R. Johnson, Nirmal B. Charan.Non-cAMP-mediated bronchial arterial vasodilation in response toinhaled -agonists. J. Appl.Physiol. 84(1): 215-221, 1998.We studied thedose-dependent effects of inhaled isoetharine HCl, a -adrenergicbronchodilator (2.5, 5.0, 10.0, and 20.0 mg), on bronchial blood flow(br) in anesthetized sheep. Isoetharine resulted ina dose-dependent increase in br. With atotal dose of 17.5 mg, br increased from baselinevalues of 22 ± 3.4 (SE) to 60 ± 16 ml/min(P < 0.001), an effect independentof changes in cardiac output and systemic arterial pressure. To furtherstudy whether synthesis of endogenous nitric oxide (NO) affects-agonist-induced increases in br, weadministered isoetharine (20 mg) by inhalation before and after theNO-synthase inhibitorN-nitro-L-argininemethyl ester (L-NAME).Intravenous L-NAME (30 mg/kg) rapidly decreased br by ~80% of baseline,whereas L-NAME via inhalation(10 mg/kg) resulted in a delayed and smaller (~22%) decrease.Pretreatment with L-NAME viaboth routes of administration attenuated bronchial arterialvasodilation after subsequent challenge with isoetharine. We concludethat isoetharine via inhalation increases br in adose-dependent manner and that -agonist-induced relaxation ofvascular smooth muscle in the bronchial vasculature is partiallymediated via synthesis of NO.

  相似文献   

11.
Zschauer, A. O. A., M. W. Sielczak, D. A. S. Smith, and A. Wanner. Norepinephrine-induced contraction of isolated rabbit bronchial artery: role of 1-and 2-adrenoceptor activation. J. Appl. Physiol. 82(6):1918-1925, 1997.The contractile effect of norepinephrine (NE) onisolated rabbit bronchial artery rings (150-300 µm in diameter)and the role of 1- and2-adrenoceptors (AR) on smoothmuscle and endothelium were studied. In intact arteries, NE increasedtension in a dose-dependent manner, and the sensitivity for NE wasfurther increased in the absence of endothelium. In intact but not inendothelium-denuded arteries, the response to NE was increased in thepresence of both indomethacin (Indo; cyclooxygenase inhibitor) andNG-nitro-L-argininemethyl ester [L-NAME;nitric oxide (NO) synthase inhibitor], indicating that twoendothelium-derived factors, NO and a prostanoid, modulate theNE-induced contraction. The1-AR antagonist prazosinshifted the NE dose-response curve to the right, and phenylephrine(1-AR agonist) induced adose-dependent contraction that was potentiated byL-NAME or removal of theendothelium. The sensitivity to NE was increased slightly by the2-AR antagonists yohimbine andidazoxan, and this effect was abolished by Indo or removal of theendothelium. Similarly, contractions induced by UK-14304(2-AR agonist) were potentiatedby Indo or removal of the endothelium. These results suggest thatNE-induced contraction is mediated through activation of1- and2-ARs on both smooth muscle andendothelium. Activation of the1- and2-ARs on the smooth musclecauses contraction, whereas activation of the endothelial 1- and2-ARs induces relaxationthrough release of NO (1-ARs) and a prostanoid (2-ARs).

  相似文献   

12.
Proctor, David N., Kenneth C. Beck, Peter H. Shen, Tamara J. Eickhoff, John R. Halliwill, and Michael J. Joyner. Influence ofage and gender on cardiacoutput-O2 relationshipsduring submaximal cycle ergometry. J. Appl.Physiol. 84(2): 599-605, 1998.It is presentlyunclear how gender, aging, and physical activity status interact todetermine the magnitude of the rise in cardiac output(c) during dynamic exercise. To clarify this issue,the present study examined thec-O2 uptake(O2) relationship duringgraded leg cycle ergometry in 30 chronically endurance-trained subjects from four groups (n = 6-8/group): younger men (20-30 yr), older men (56-72yr), younger women (24-31 yr), and older women(51-72 yr). c (acetylene rebreathing), strokevolume (c/heart rate), and whole bodyO2 were measured at restand during submaximal exercise intensities (40, 70, and ~90% of peakO2). Baseline restinglevels of c were 0.6-1.2 l/min less in theolder groups. However, the slopes of thec-O2relationship across submaximal levels of cycling were similar among allfour groups (5.4-5.9 l/l). The absolute cassociated with a given O2(1.0-2.0 l/min) was also similar among groups. Resting andexercise stroke volumes (ml/beat) were lower in women than in men butdid not differ among age groups. However, older men and women showed areduced ability, relative to their younger counterparts, to maintainstroke volume at exercise intensities above 70% of peakO2. This latter effect wasmost prominent in the oldest women. These findings suggest that neitherage nor gender has a significant impact on thec-O2 relationships during submaximal cycle ergometry among chronically endurance-trained individuals.

  相似文献   

13.
Hyde, Richard W., Edgar J. Geigel, Albert J. Olszowka, JohnA. Krasney, Robert E. Forster II, Mark J. Utell, and Mark W. Frampton.Determination of production of nitric oxide by the lower airwaysof humanstheory. J. Appl. Physiol.82(4): 1290-1296, 1997.Exercise and inflammatory lung disorderssuch as asthma and acute lung injury increase exhaled nitric oxide(NO). This finding is interpreted as a rise in production of NO by thelungs (NO)but fails to take into account the diffusing capacity for NO(DNO) that carries NO into thepulmonary capillary blood. We have derived equations to measureNO from thefollowing rates, which determine NO tension in the lungs(PL) at any moment from 1) production(NO);2) diffusion, whereDNO(PL) = rate of removal by lung capillary blood; and3) ventilation, whereA(PL)/(PB  47) = the rate of NO removal by alveolar ventilation(A) and PB is barometric pressure. During open-circuit breathingwhen PL is not in equilibrium,d/dtPL[VL/(PB  47)] (where VL is volumeof NO in the lower airways) = NO  DNO(PL)  A(PL)/(PB  47). When PL reaches asteady state so that d/dt = 0 andA iseliminated by rebreathing or breath holding, then PL = NO/DNO.PL can be interpreted as NOproduction per unit of DNO. Thisequation predicts that diseases that diminishDNO but do not alterNO willincrease expired NO levels. These equations permit precise measurementsof NO thatcan be applied to determining factors controlling NO production by thelungs.

  相似文献   

14.
Fitzgerald, Margaret D., Hirofumi Tanaka, Zung V. Tran, andDouglas R. Seals. Age-related declines in maximal aerobic capacityin regularly exercising vs. sedentary women: a meta-analysis. J. Appl. Physiol. 83(1): 160-165, 1997.Our purpose was to determine the relationship between habitualaerobic exercise status and the rate of decline in maximal aerobiccapacity across the adult age range in women. A meta-analytic approachwas used in which mean maximal oxygen consumption(O2 max) values fromfemale subject groups (ages 18-89 yr) were obtained from thepublished literature. A total of 239 subject groups from 109 studiesinvolving 4,884 subjects met the inclusion criteria and werearbitrarily separated into sedentary (groups = 107; subjects = 2,256),active (groups = 69; subjects = 1,717), and endurance-trained (groups = 63; subjects = 911) populations.O2 max averaged 29.7 ± 7.8, 38.7 ± 9.2, and 52.0 ± 10.5 ml · kg1 · min1,respectively, and was inversely related to age within each population (r = 0.82 to 0.87, allP < 0.0001). The rate of decline inO2 max withincreasing subject group age was lowest in sedentary women (3.5ml · kg1 · min1· decade1), greater inactive women (4.4ml · kg1 · min1· decade1), andgreatest in endurance-trained women (6.2ml · kg1 · min1 · decade1)(all P < 0.001 vs. each other). Whenexpressed as percent decrease from mean levels at age ~25 yr, therates of decline inO2 max were similarin the three populations (10.0 to 10.9%/decade). Therewas no obvious relationship between aerobic exercise status and therate of decline in maximal heart rate with age. The results of thiscross-sectional study support the hypothesis that, in contrast to theprevailing view, the rate of decline in maximal aerobic capacity withage is greater, not smaller, in endurance-trained vs. sedentary women.The greater rate of decline inO2 max in endurance-trained populations may be related to their higher values asyoung adults (baseline effect) and/or to greater age-related reductions in exercise volume; however, it does not appear to berelated to a greater rate of decline in maximal heart rate with age.

  相似文献   

15.
Serikov, Vladimir B., E. Heidi Jerome, Neal W. Fleming,Peter G. Moore, Frederick A. Stawitcke, and Norman C. Staub.Airway thermal volume in humans and its relation to body size.J. Appl. Physiol. 83(2): 668-676, 1997.The objective of this study was to investigate the influence ofvolume ventilation(E) andcardiac output () on the temperature of the expiredgas at the distal end of the endotracheal tube in anesthetized humans.In 63 mechanically ventilated adults, we used a step decrease in thehumidity of inspired gas to cool the lungs. After change from humid todry gas ventilation, the temperature of the expired gas decreased. Weevaluated the relationship between the inverse monoexponential timeconstant of the temperature fall (1/) and eitherE or . WhenE wasincreased from 5.67 ± 1.28 to 7.14 ± 1.60 (SD) l/min(P = 0.02), 1/ did not changesignificantly [from 1.25 ± 0.38 to 1.21 ± 0.51 min1,P = 0.81]. In the 11 patients in whom changed during the study period(from 5.07 ± 1.81 to 7.38 ± 2.45 l/min,P = 0.02), 1/ increasedcorrespondingly from 0.89 ± 0.22 to 1.52 ± 0.44 min1(P = 0.003). We calculated the airwaythermal volume (ATV) as the ratio of the measured values to 1/ and related it to the body height (BH):ATV (liters) = 0.086 BH (cm)  9.55 (r = 0.90).

  相似文献   

16.
The effects ofboth recombinant rat tumor necrosis factor- (TNF-) and ananti-TNF- antibody were studied in isolated buffer-perfused ratlungs subjected to either 45 min of nonventilated[ischemia-reperfusion (I/R)] or air-ventilated(/R) ischemia followed by 90 min of reperfusion and ventilation. In the I/R group, the vascularpermeability, as measured by the filtration coefficient(Kfc),increased three- and fivefold above baseline after 30 and 90 min ofreperfusion, respectively (P < 0.001). Over the same time intervals, theKfc for the/R group increased five- and tenfold above baseline values, respectively (P < 0.001).TNF- measured in the perfusates of both ischemic modelssignificantly increased after 30 min of reperfusion. Recombinant ratTNF- (50,000 U), placed into perfusate after baseline measurements,produced no measurable change in microvascular permeability in controllungs perfused over the same time period (135 min), but I/R injury wassignificantly enhanced in the presence of TNF-. An anti-TNF-antibody (10 mg/rat) injected intraperitoneally into rats 2 h beforethe lung was isolated prevented the microvascular damage in lungsexposed to both I/R and /R (P < 0.001). These results indicatethat TNF- is an essential component at the cascade of events thatcause lung endothelial injury in short-term I/R and/R models of lung ischemia.

  相似文献   

17.
To simulate theimmediate hemodynamic effect of negative intrathoracic pressure duringobstructive apneas in congestive heart failure (CHF), without inducingconfounding factors such as hypoxia and arousals from sleep, eightawake patients performed, at random, 15-s Mueller maneuvers (MM) attarget intrathoracic pressures of 20 (MM 20) and40 cmH2O (MM 40),confirmed by esophageal pressure, and 15-s breath holds, as apneic timecontrols. Compared with quiet breathing, at baseline, before theseinterventions, the immediate effects [first 5 cardiac cycles(SD), P values refer to MM 40compared with breath holds] of apnea, MM 20, and MM 40 were, for left ventricular (LV) systolic transmural pressure (Ptm), 1.0 ± 1.9, 7.2 ± 3.5, and 11.3 ± 6.8 mmHg(P < 0.01); for systolic bloodpressure (SBP), 2.9 ± 2.6, 5.5 ± 3.4, and 12.1 ± 6.8 mmHg (P < 0.01); and forstroke volume (SV) index, 0.4 ± 2.8, 4.1 ± 2.8, and6.9 ± 2.3 ml/m2(P < 0.001), respectively.Corresponding values over the last five cardiac cycles were for LVPtm6.4 ± 4.4, 5.4 ± 6.6, and 4.5 ± 9.1 mmHg (P < 0.01); for SBP6.9 ± 4.2, 8.2 ± 7.7, and 24.2 ± 6.9 mmHg (P < 0.01); and for SVindex 0.4 ± 2.1, 5.2 ± 2.8, and 9.2 ± 4.8 ml/m2(P < 0.001), respectively.Thus, in CHF patients, the initial hemodynamic response to thegeneration of negative intrathoracic pressure includes an immediateincrease in LV afterload and an abrupt fall in SV. The magnitude ofresponse is proportional to the intensity of the MM stimulus. By theend of a 15-s MM 40, LVPtm falls below baseline values, yet SVand SBP do not recover. Thus, when 40cmH2O intrathoracic pressure issustained, additional mechanisms, such as a drop in LV preload due toventricular interaction, are engaged, further reducing SV. The neteffect of MM 40 was a 33% reduction in SV index (from 27 to 18 ml/min2), and a 21% reductionin SBP (from 121 to 96 mmHg). Obstructive apneas can have adverseeffects on systemic and, possibly, coronary perfusion in CHF throughdynamic mechanisms that are both stimulus and timedependent.

  相似文献   

18.
Dysoxia canbe defined as ATP flux decreasing in proportion toO2 availability with preserved ATPdemand. Hepatic venous -hydroxybutyrate-to-acetoacetate ratio(-OHB/AcAc) estimates liver mitochondrial NADH/NAD and may detectthe onset of dysoxia. During partial dysoxia (as opposed to anoxia),however, flow may be adequate in some liver regions, diluting effluentfrom dysoxic regions, thereby rendering venous -OHB/AcAc unreliable.To address this concern, we estimated tissue ATP whilegradually reducing liver blood flow of swine to zero in a nuclearmagnetic resonance spectrometer. ATP flux decreasing withO2 availability was taken asO2 uptake(O2) decreasing inproportion to O2 delivery(O2);and preserved ATP demand was taken as increasingPi/ATP.O2, tissuePi/ATP, and venous -OHB/AcAcwere plotted againstO2to identify critical inflection points. Tissue dysoxia required meanO2for the group to be critical for bothO2 and forPi/ATP. CriticalO2values for O2 andPi/ATP of 4.07 ± 1.07 and 2.39 ± 1.18 (SE) ml · 100 g1 · min1,respectively, were not statistically significantly different but notclearly the same, suggesting the possibility that dysoxia might havecommenced after O2 begandecreasing, i.e., that there could have been"O2 conformity." CriticalO2for venous -OHB/AcAc was 2.44 ± 0.46 ml · 100 g1 · min1(P = NS), nearly the same as that forPi/ATP, supporting venous -OHB/AcAc as a detector of dysoxia. All issues considered, tissue mitochondrial redox state seems to be an appropriate detector ofdysoxia in liver.

  相似文献   

19.
This study aimedto determine the role of protein kinase C (PKC) in signal transductionmechanisms underlying ventilatory regulation in the nucleus tractussolitarii (NTS). Microinjection of phorbol 12-myristate 13-acetate intothe commissural NTS of nine chronically instrumented, unrestrained ratselicited significant cardiorespiratory enhancements that lasted for atleast 4 h, whereas administration of vehicle(n = 15) or the inactive phorbol ester 4-phorbol 12,13-didecanoate (n = 7)did not elicit minute ventilation (E)changes. Peak hypoxic Eresponses (10% O2-balanceN2) were measured in 19 additional animals after NTS microinjection of bisindolylmaleimide(BIM) I, a selective PKC inhibitor (n = 12), BIM V (inactive analog; n = 7),or vehicle (Con; n = 19). In Con,E increased from 139 ± 9 to 285 ± 26 ml/min in room air and hypoxia, respectively, and similarresponses occurred after BIM V. BIM I did not affect room airE but markedly attenuated hypoxia-induced E increases (128 ± 12 to 167 ± 18 ml/min; P < 0.02 vs. Con and BIM V). When BIM I was microinjected into the cerebellum(n = 4), cortex(n = 4), or spinal cord(n = 4),E responses were similar to Con.Western blots of subcellular fractions of dorsocaudal brain stemlysates revealed translocation of PKC, , , , , and  isoenzymes during acute hypoxia, and enhanced overall PKC activity wasconfirmed in the particulate fraction of dorsocaudal brain stem lysatesharvested after acute hypoxia. These studies suggest that, in the adultrat, PKC activation in the NTS mediates essential components of theacute hypoxic ventilatory response.

  相似文献   

20.
Hardarson, Thorir, Jon O. Skarphedinsson, and TorarinnSveinsson. Importance of the lactate anion in control ofbreathing. J. Appl. Physiol. 84(2):411-416, 1998.The purpose of this study was to examine theeffects of raising the arterialLa andK+ levels on minute ventilation(E) in rats. EitherLa or KCl solutions wereinfused in anesthetized spontaneously breathing Wistar rats to raisethe respective ion arterial concentration ([La] and[K+]) gradually tolevels similar to those observed during strenuous exercise.E, blood pressure, and heart rate wererecorded continuously, and arterial[La],[K+], pH, and bloodgases were repeatedly measured from blood samples. To prevent changesin pH during the Lainfusions, a solution of sodium lactate and lactic acid was used. Raising [La] to13.2 ± 0.6 (SE) mM induced a 47.0 ± 4.0% increase inE without any concomitant changes ineither pH or PCO2. Raising[K+] to 7.8 ± 0.11 mM resulted in a 20.3 ± 5.28% increase inE without changes in pH. Thus ourresults show that Laitself, apart from lactic acidosis, may be important in increasing E during strenuous exercise, and weconfirm earlier results regarding the role of arterial[K+] in the control ofE during exercise.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号