首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Abstract .Temperature and the protein content of food affect rates of consumption and growth in herbivorous insects in different ways: reduced temperature typically reduces both consumption and growth rates, whereas reduced dietary protein typically increases consumption rate but either reduces or has no effect on growth rate. The interactions between temperature and dietary protein concentration in affecting consumption, growth and efficiency in fifth-instar caterpillars of Manduca sexta were studied, using both short-term (4 h) and long-term (duration of fifth stadium) experiments. The short-term experiments examined constant temperatures between 14 and 42°C, whereas the long-term experiments examined constant temperatures between 18 and 34°C; both experiments considered two levels of dietary protein. In both experiments, caterpillars had significantly higher consumption and frass production rates on low-protein compared with high-protein diets at each test temperature between 18 and 34°C, thereby compensating for the lower diet quality. In contrast, at more extreme temperatures (14 and 42°C) in the short-term studies, consumption and frass production rates were lower on low-protein compared with high-protein diets. As a result, there were substantial interactions between temperature and dietary protein for consumption and frass production rates in the short-term experiments, but not in the long-term experiments. These results suggest that interactions between temperature and dietary protein may emerge because of the failure of compensatory feeding responses at low and high temperatures. It is hypothesized that the failure of compensatory responses is more likely to occur under diurnally fluctuating temperatures than under a constant temperature with the same mean, and it is proposed that interactions between temperature and dietary protein for consumption are relevant to M. sexta and other caterpillars that experience wide diurnal fluctuations in temperature in the field.  相似文献   

2.
the simultaneous effects on an insect herbivore (third instar tobacco hornwormManduca sexta (L.): Sphingidae) of temperature (daytime temperatures of 20 °C, 25 °C and 30 °C), a mineral that may play a role in plant defense (potassium) and a common allelochemical (rutin) were examined in a factorial experiment. To manipulate potassium levels, a modified diet with limited plant material was used as the base and KCl and rutin added. Temperature affected efficiency of conversion of ingested food (ECI), efficiency of conversion of digested food (ECD), time to head-capsule slippage, stadium duration, relative consumption rate (RCR) and relative growth rate (RGR) but not food consumed, biomass gained and approximate digestibility (AD). Potassium concentration influenced all of the variables except AD, time to head-capsule slippage (HCS), duration of the stadium and percent of stadium time to HCS. Rutin impacted negatively on all of the variables except food consumed. Compared to larvae on the non-rutin diets, fewer larvae fed rutin survived through molt initiation to ecdysis and fewer successfully completed ecdysis. Temperature and rutin had interactive effects for AD, ECD, RCR, RGR, time to HCS, and percent of stadium required to reach HCS. Rutin and potassium had interactive effects for biomass gained, RCR, ECI, time to HCS, duration of stadium, and percent of stadium required to reach HCS. Comparison of larval responses on an average potassium concentration (3.1%) versus high concentration (6.1%) showed that at the low daytime temperature increasing potassium concentration depressed biomass gained, but at the warmer temperatures potassium concentration had little effect unless rutin was present. In addition, potassium concentration had little impact on ECI unless rutin was present. These results indicate that significant interactive effects occur among temperature, potassium and rutin, and thus suggest that such interactive effects on larval performance may be common under field conditions, which are characterized by varying temperature and different concentrations of minerals and allelochemicals in hostplants.  相似文献   

3.
1. Temperature strongly influences the rates of physiological processes in insects, including the herbivore Manduca sexta and its larval endoparasitoid Cotesia congregata. Parasitisation by C. congregata decreases the growth and consumption of food by larval M. sexta. However, the effects of temperature on parasitised caterpillars and the developing wasp larvae are largely unknown. 2. In this study, parasitised and unparasitised caterpillars were reared at three constant temperatures (20, 25 and 30 °C) throughout larval development. Caterpillar mass gain and consumption were monitored daily until wandering (unparasitised control group) or wasp emergence (parasitised group) was observed. Development time and survival to emergence were measured as metrics of parasitoid performance. 3. Parasitised M. sexta developed more slowly than unparasitised controls, but had similar cumulative consumption until the terminal instar. Parasitised caterpillars with relatively large parasitoid loads had higher rates of consumption and growth than those with smaller loads. Both temperature and parasitoid load strongly affected wasp success. Mean development time to wasp emergence increased with low temperatures and with large loads. The combination of warm temperature and large parasitoid loads greatly reduced wasp survival. 4. These results demonstrate the interactive effects of rearing temperature and parasitisation on host consumption and growth rates throughout larval development. In addition, wasp performance was affected by the interaction of temperature and parasitoid load size. High temperatures alter the dynamics of the interaction between the parasitoid and its caterpillar host, which could have far-reaching impacts as the global temperatures continue to rise.  相似文献   

4.
The larvae of Hermetia illucens are known to successfully bio‐convert a vast range of organic substrates into high protein and fat biomass, but little is known about the larval instars. During this research, larval head capsules and biomass growth were measured daily and the specific metabolic rate of larger instars were considered. The head capsule measurements revealed that H. illucens pass through 6 actively feeding larval stadia before entering the last nonfeeding but migrating 7th stadium. Larval growth follows a sigmoid curve with slowly accelerating growth in the earlier stadia and decelerating growth in the latest stadia. In contrast, development was fast until reaching stadium 6 and then slowed down. Accordingly, the specific metabolic rate was high in instars 3, 4 and 5 and reduced in instars 6 and 7.  相似文献   

5.
The distribution of energy during the last stadium of the house cricket at two temperatures was the main theme of this study. Food consumption, growth, and oxygen consumption were greater in the first half of the stadium at both 25 and 35°C. An RQ > 1 indicated the conversion of carbohydrates to lipids during the first half of the instar at both temperatures. The duration of the stadium increased from 6 days at 35°C to 14 days at 25°C. The same maximal weight, protein content and lipid content were attained at both 25 and 35°C. A weight loss (mostly in stored lipids) after the midstadium peak weight was greater at the lower temperature. The absorption efficiency and the production of metabolic wastes were not affected by temperature, but the metabolic efficiency was much higher at 35 than at 25°C during the first half as well as the latter half of the stadium. Although during the first half of the stadium more energy was ingested, absorbed, and made available for growth at 25 than at 35°C, only slightly more growth occurred at 25°C. During the last half of the stadium less energy was ingested at 25 than at 35°C, and much more growth occurred at 35°C because of the even greater heat loss at 25 than at 35°C. Therefore at a lower temperature cricket larvae eat slightly more and reach the same maximal weight as at a higher temperature, but they end up smaller because they waste more energy during the extended duration of the stadium at the lower temperature.  相似文献   

6.
Water loss at increasing temperature in dry air (< 5% r.h.) was measured for the eight stadia of Polydesmus angustus Latzel (Diplopoda, Polydesmida: Polydesmidae). Instantaneous rates of water loss, expressed as percentages of original body water, were calculated at 20, 25 and 30°C. At each temperature, the rate of water loss varied greatly among stadia, decreasing between 15‐ and 18‐fold from stadium I to stadium VII, and then significantly increasing from stadium VII to stadium VIII (adult). In all stadia, the rate of water loss increased with rising temperature, but the temperature effect was much more pronounced in juveniles than in larger stadia. The threshold temperature of heat stupor, which was measured from stadium IV onwards, increased significantly during development, from 35.6°C in stadium IV to 39.5°C in adults. Survival at 20°C and 76% r.h. varied as could be expected from the water loss rates in dry air, survival time increasing from stadium I to stadium VII and then decreasing from stadium VII to the adult stage. The maximum tolerable water loss, estimated for stadia V, VII and adults, did not change significantly among stadia (mean: 47% of the original water content), suggesting that survival times under desiccating conditions depended primarily on the rates of water loss. The relevance of the results in terms of summer survival under natural conditions is discussed, and it is concluded that juvenile mortality could be substantial in the field. This is important for understanding the adaptive value of cohort‐splitting in P. angustus.  相似文献   

7.
Summary The daily foraging patterns of seven colonies of the eastern tent caterpillar, Malacosoma americanum, were monitored photoelectronically during the last three larval stadia to provide the first detailed record of the foraging behavior of a gregarious caterpillar under field conditions. Colonies were active an average of 49.3% of each day. Three bouts of foraging, centered about 0600 h, 1500 h and 2000 h (EST), occurred daily during the fourth and fifth stadia. Although ambient temperatures were less favorable for foraging and food processing than at other times of the day, the caterpillars were most active at dusk and dawn, and spent comparatively little time away from the tent during the daylight hours. In the last (sixth) stadium, the caterpillars foraged only under the cover of darkness. A lack of relationship between the rate at which the caterpillars processed food and the spacing of their feeding bouts, indicates that this species follows a schedule of feeding and growth shaped by factors other than those directly related to feeding efficiency and ambient temperature. Colony foraging patterns may reduce caterpillar mortality by minimizing contact between larvae and day-active predators and parasitiods.  相似文献   

8.
One effect of global warming may be an increase in night-time temperatures with daytime temperatures remaining largely unchanged. We examined this potential effect of global warming on the performance of tobacco hornworm larvae, Manduca sexta (Sphingidae), by manipulating night-time temperature and dietary rutin levels simultaneously under a 12 light:12 dark photoregime. All four thermal regimes (26:14, 26:18, 26:22, and 26:26° C) had a daytime temperature of 26° C, with the night-time temperature increased from 14 to 26° C by increments of 4° C. Dietary rutin levels (0, 10 and 20 moles g–1 fresh weight of diet) reflected those occurring naturally in the leaves of tomato, a preferred host plant of M. sexta. With low night-time temperatures (14 and 18° C), rutin had a negative linear effect on developmental rate, relative growth rate and relative consumption rate of the caterpillars. However, at a night-time temperature of 22° C, rutin had a negative non-linear effect. At a night-time temperature of 26° C, rutin had a negative linear impact but less so than at the other nightime temperatures. Likewise, the negative effect of rutin on molting duration was mitigated as night-time temperature increased. Final larval weight decreased linearly with increased dietary rutin concentrations. Total amount of food ingested was not affected by either rutin or thermal regime. As expected, the caterpillars developed faster under an alternating 26:14° C regime than a constant 20° C regime (the average temperature for the alternating regime), but the effect of rutin depended on the thermal regime. Switching daytime and night-time temperatures had no statistically significant effect on caterpillar performance. Overall, the effect of rutin on rates of larval performance was greater at some levels of warmer nights but damped at another level. These results indicate that the potential effect of warmer nights on insect performance is not a simple function of temperature because there can be interactions between night-time temperature and dietary allelochemicals.  相似文献   

9.
The study addresses the effects of higher and lower temperatures experienced during the early stages of ontogeny on the parameters of the subsequent growth and development of the butterfly Inachis io. The caterpillars reared at a temperature of 22°С during instars I–III and then transferred to lower temperatures (16, 18, and 20°C) had higher instantaneous growth rates, larger body mass, and shorter duration of instars IV and V than the caterpillars that developed permanently at these lower temperatures. Vice versa, the caterpillars reared at 16°С during instars I–III and transferred to higher temperatures (18, 20, and 22°C) developed and grew slower than the caterpillars reared at these higher temperatures from the beginning. Possible physiological mechanisms underlying the observed phenomena and their ecological consequences are discussed. Our results are compared with the previously published data on fish—another group of ectothermic organisms, on which similar experiments have been carried out.  相似文献   

10.
Group living can incur both benefits and costs, mediated by different mechanisms. In many gregarious caterpillars, collective use of a network of silk trails is thought to improve foraging. Grouping, i.e., close contact with conspecifics, has been postulated to have both positive (thermoregulation and predator defense) and negative (competition and pathogen transmission) effects. The present experiment distinguishes between silk produced by group members and grouping per se in their effects on growth and development of both early and late larval stadia of the forest tent caterpillar [Malacosoma disstria Hübner (Lepidoptera: Lasiocampidae)] in a laboratory context. For both developmental stadia tested, pre‐established silk trails decreased latency to food finding and hence increased food consumption and growth rate. For younger larvae, pre‐established silk also decreased investment in silk production. Grouping young caterpillars accelerated development at the expense of growth, possibly as a mechanism to avoid intraspecific competition in later larval stadia. In older caterpillars, grouping decreased meal duration, suggesting that competition can indeed occur towards the end of larval development, even in the presence of surplus food. This led to a decrease in growth without any effect on instar duration. The benefits of exogenous silk thus decreased during larval development, whereas the costs associated with crowding increased. Ontogenetic shifts in grouping are common in many taxa: the present study is among the first to provide empirical evidence for an adaptive explanation of observed ontogenetic changes in aggregative behavior.  相似文献   

11.
Summary A factorial experiment examined the effects of varying concentrations of the allelochemical rutin in caterpillars and the length of time the caterpillars had fed on the behavioral interactions of predatory stinkbugs (Podisus maculiventris) and their prey (Manduca sexta). Diet had no significant effect on defensive behavior of the caterpillars. The length of time that the caterpillars had fed (1 vs. 24 h) only influenced the frequency of caterpillars knocking the attacking stinkbugs away, with caterpillars knocking the stinkbugs away more often after 24 h of feeding. A second experiment tested the effects of diet (prey fed various concentrations of rutin), temperature (18° C and 28° C) and gender on consumption and growth parameters of fifth instar stinkbugs. At the cooler temperature, the bugs ate more, gained more weight but took twice as long to complete the stadium and consequently had reduced relative consumption and relative growth rates. Diet had no significant effect on biomass gained or stadium duration, but rutin-fed caterpillars did depress the stinkbugs' relative consumption rates. The effect of food quality on relative growth rate (RGR) was temperature dependent; rutin had no significant effect at the cooler temperature, but a high dose of rutin reduced RGR at the warmer temperature. Rutin had a greater negative impact on the females than the males. The effect of rutin on these predators was different than the effect on their prey (this study compared to Stamp (1990, 1992)): the negative effects of rutin seem to impact on the stinkbug's growth rather than on molting.  相似文献   

12.
Nancy E. Stamp 《Oecologia》1990,82(1):107-113
Summary A factorial experiment tested the effects of varying nutrient concentration (normal versus diluted), presence or absence of the phenolic allelochemical rutin and daytime temperature (20, 25 and 30° C) on growth, molting and food utilization efficiencies of tobacco hornworms (Manduca sexta). Two of the utilization efficiencies (approximate digestibility and efficiency of conversion of ingested food) were unaffected by temperature; the third one, efficiency of conversion of digested food, was affected by temperature but there was no consistent effect. Lower temperatures significantly increased the proportion of the stadium spent molting, with larvae at a daytime temperature of 20° C spending 9% more of the stadium in molting than larvae at 30° C. Growth time was not influenced by nutrient concentration. When temperature was low and rutin absent, molt time and the proportion of the stadium spent molting were affected by nutrient concentration. Addition of the phenolic rutin did not have an appreciable effect on growth time or digestive processes. However, it increased molting time by 7 to 14% and thus increased the duration of the stadium and reduced relative growth rate. These results indicate that the effect of food quality on growth rate is a function of the thermal conditions of insect herbivores. At cooler temperatures, a disproportionate increase in time spent molting, rather than altered food utilization efficiencies, contributed to lower growth rates. The consequences for larval growth of fluctuating temperatures due to diurnal cycles and the presence of predators forcing larvae into thermally suboptimal microhabitats are discussed.  相似文献   

13.
《Insect Biochemistry》1990,20(5):451-459
Juvenile hormone esterase, purified by affinity chromatography from the larval hemolymph of Manduca sexta in the fifth stadium, was injected into larvae of the same species in the earlier stadia resulting in a blackening of the cuticle following ecdysis to the next larval stadium. This anti-juvenile hormone response was dose-dependent for an injection in the second, third or fourth stadium. Cuticular blackening was prevented by treating larvae with the juvenoid epofenonane. Larval response to injected juvenile hormone esterase also varied with the time of injection within a single stadium, having a maximum effect for injections at the time of head capsule slippage. Juvenile hormone esterase activity measured from the hemolymph after injection of larvae in the second stadium decreased over an 11 h time-course. Because the anti-juvenile hormone effects resulting from a single injection of juvenile hormone esterase were dependent on the time of injection, it appears that when juvenile hormone biosynthesis is active in the insect, the duration of enzyme activity limits the anti-juvenile effects that can be induced.  相似文献   

14.
Fifth-instar larvae of Manduca sexta were reared from hatching on artificial diet at 15, 20, 25, 30 and 35°C. Total development time decreased with increasing temperature. Very few larvae (12%) survived at 15°C, so this temperature was not considered further. There was some mortality at 30°C (11%), and at 35°C (50%).The absolute rate of growth in the fifth instar was faster at 25 than at 20°C, but was similar at 25, 30 and 35°C. This was true both for caterpillars that were chronically exposed to experimental temperatures (i.e. since hatching) and for those acutely exposed (i.e. reared up to fifth instar at 25°C).There was a progressive decrease with higher rearing temperatures in both the initial and final sizes of chronically exposed fifth-instar larvae. Acutely exposed caterpillars matched for initial size showed smaller temperature related differences in final size. Because of these size differences there were differences in relative growth rate which did not reflect true differences in absolute growth rate.Total food consumed by chronically exposed caterpillars was greatest at the lowest temperature (20°C), and decreased progressively with increasing temperature. The absolute rate of food consumption increased from 20 to 25°C, but did not vary significantly between 25 and 35°C. Differences in the sizes of the insects at the different temperatures meant that there were differences among relative measures of consumption that did not reflect absolute food consumption.For chronically exposed caterpillars, none of the three usual indices of food conversion efficiency (AD, ECI and ECD) varied significantly with temperature between 20 and 35°C. This implies that the effects of temperature on metabolic costs are closely matched to food consumption.Oxygen consumption increased with temperature between 20 and 25°C but was temperature compensated between 25 and 35°C.These findings are discussed in terms of their implications for the optimal temperature for growth in Manduca.  相似文献   

15.
Synchronisation of the phenology of insect herbivores and their larval food plant is essential for the herbivores’ fitness. The monophagous brown hairstreak (Thecla betulae) lays its eggs during summer, hibernates as an egg, and hatches in April or May in the Netherlands. Its main larval food plant blackthorn (Prunus spinosa) flowers in early spring, just before the leaves appear. As soon as the Blackthorn opens its buds, and this varies with spring temperatures, food becomes available for the brown hairstreak. However, the suitability of the leaves as food for the young caterpillars is expected to decrease rapidly. Therefore, the timing of egg hatch is an important factor for larval growth. This study evaluates food availability for brown hairstreak at different temperatures. Egg hatch and budburst were monitored from 2004 to 2008 at different sites in the Netherlands. Results showed ample food availability at all monitored temperatures and sites but the degree of synchrony varied strongly with spring temperatures. To further study the effect of temperature on synchronisation, an experiment using normal temperatures of a reference year (T) and temperatures of T + 5°C was carried out in climate chambers. At T + 5°C, both budburst and egg hatch took place about 20 days earlier and thus, on average, elevated temperature did not affect synchrony. However, the total period of budburst was 11 days longer, whereas the period of egg hatching was 3 days shorter. The implications for larval growth by the brown hairstreak under a warmer climate are considered.  相似文献   

16.
Eighth instar female house crickets at 35°C developed faster, gained slightly more wet weight, and consumed less food, water, and oxygen than at 25°C. The duration of the 8th stadium at 25°C was 13 days (undisturbed), but was 14 days when disturbed by daily weighing. The duration of the 8th stadium at 30°C was 8 days and at 35°C was 6 days. During the first half of the 8th stadium at 25, 30, and 35°C, there was a high rate of food and water consumption resulting in statistically equal maximum dry weight achievement (124 mg). Respiratory quotients greater than one during this time indicated the conversion of ingested carbohydrate to fat. During the latter half of the 8th stadium, food and water consumption declined and the crickets lost weight. The period of weight loss was proportionally much longer at 25°C than at 30 or 35°C. Respiratory quotients lower than 1.0 during the latter half of the 8th stadium at 30 and 35°C indicated the metabolism of stored lipids. The respiratory quotient at 25°C never fell below 1.0, possibly because some food remained in the gut. The absorption efficiency was not influenced by temperature (25–35°C). Though the caloric content of the faeces was lower at 25°C than at 30 or 35°C, which correlated to the much longer time for food passage at 25°C than at 35°C, the difference in total calories egested was insufficient to alter the absorption efficiency. A longer period of reduced feeding and greater dry weight loss during the latter half of the 8th stadium at 25°C resulted in a lower metabolic efficiency at 25°C than at 30 or 35°C. Eighth instar crickets in response to a step-function transfer from 30°C–25 or 35°C showed an immediate (<1 hr) and complete metabolic adjustment which was not affected by the temperature history during the 7th stadium. House crickets did not exhibit temperature acclimation in the range 20–40°C, the metabolic rate being determined by ambient temperature. The Q10 for oxygen consumption in the range 20–40°C was about 2.  相似文献   

17.
We examined how light availability influenced the defensive chemistry of tomato (Lycopersicon esculentum: Solanaceae). Tomato plants were grown either in full sunlight or under shade cloth rated at 73%. Leaves from plants grown in full sunlight were tougher, had higher concentrations of allelochemicals (chlorogenic acid, rutin and tomatine), and had less protein than leaves from plants grown in shade. We determined how these differences in host plant quality due to light availability affected the behavior and growth of a Solanaceae specialist, Manduca sexta. Both in the greenhouse and in the field, caterpillars on shade-grown plants grew heavier in a shorter amount of time than those on plants that had previously been grown in full sunlight. In contrast, the effects of previous light availability to plants on caterpillar behavior appeared to be minor.To further investigate how light availability to plants influenced herbivore growth, we examined the effects of leaf-powder diets made from tomato leaves of different ages (new, intermediate, or mature) grown in full sunlight or shade on caterpillar performance. Caterpillars fed diets made from plants grown in shade consumed less but grew faster than larvae fed diets made from tomato plants grown in full sunlight. Caterpillars fed diets made from new leaves grew larger in less time than caterpillars fed diets made from intermediate aged leaves. Caterpillars did not survive on the mature leaf powder diets. There were plant-light treatment by larval thermal regime interactions. For example, at 26:15 °C , plant-light treatment had no effect on stadium duration, but at 21:10 °C, stadium duration was prolonged with the full sunlight-new leaf diet compared with the shaded-new leaf diet. In a second diet experiment, we examined the interactive effects of protein and some tomato allelochemicals (rutin, chlorogenic acid and tomatine) on the performance of caterpillars. There were food quality by thermal regime interactions. For instance, at 26:15 °C , neither protein nor allelochemical concentration influenced stadium duration, whereas at 21:10 °C, stadium duration was prolonged with the low protein-high allelochemical diet, which simulated full sunlight leaves. In sum, light availability to plants affected defensive chemistry and protein concentration. The difference in food quality was great enough to influence the growth of a specialist insect herbivore, but the effects were temperature-dependent.  相似文献   

18.
Temperature and nutrition are two prominent environmental variables influencing juvenile growth rate in ectotherms. These two factors interact in complex ways. Here, we present a comprehensive analysis of the interactive effects of temperature and nutrition on various components of fitness (growth rate, survival), food intake, and level of energy storage in an insect herbivore, caterpillars of Spodoptera exigua Hübner (Lepidoptera: Noctuidae). In a factorial experimental design, final‐instar caterpillars (i.e., fifth instars) were individually reared at one of three constant temperatures (18, 26, and 34 °C), in which they received one of six diets differing in their ratio of protein and digestible carbohydrate [P:C mixture, expressed as the percentage of diet by dry mass: protein 42%:carbohydrate 0% (42:0), 35:7, 28:14, 21:21, 14:28, and 7:35]. Within the range of test temperatures, larval growth rate increased with rising temperature and was strongly affected by P:C mixture, reaching a maximum on moderate P:C diets at each temperature and falling at very high and low P:C mixtures. There was a significant temperature*diet interaction, such that the difference in growth rates between temperatures was greatest on moderate P:C diets and least on the most extreme diets (42:0 and 7:35). Food intake rate patterns followed a similar trend to growth rate. Rapidly growing animals at high ambient temperature suffered high mortality across all dietary P:C mixtures, but to a greater extent on the extremely unbalanced diets. This suggests that there are developmental and physiological costs associated with fast growth at high temperature, as indicated by high rate of pupation failure and reduced lipid storage efficiency. Our study shows how temperature and nutrition interplay to mediate phenotypic variations in growth rates and energy utilization in an insect ectotherm.  相似文献   

19.
The possibility of avoidance of and dietary self-selection relative to the flavonol rutin was examined for third instarManduca sexta for two thermal regimes and for larvae previously reared on plain or rutin diet. Temperature affected all of the performance indices examined, except efficiency of conversion of digested food. Significant interactive effects between temperature and diet occurred for relative consumption rate, relative growth rate and the food utilization efficiencies. For example, at the warm daytime temperature, relative growth rate prior to head capsule slippage was lower for caterpillars previously reared on rutin diet compared to those reared on plain diet. In contrast, at the cool daytime temperature, the relative growth rates were similar for caterpillars reared on plain diet and on 6 μmoles rutin diet. Consequently, in some treatments (5 of 12), caterpillars with a history of rutin in their diet had lower relative growth rates than those experiencing rutin for the first time. Despite rutin's impact on food utilization indices and negative effect on relative growth rate, the caterpillars did not avoid rutin nor was there evidence of regulation of the intake of rutin. The lack of metabolic feedback is discussed.  相似文献   

20.
The duration of Drosophila melanogaster larval and pupal periods was measured in laboratory thermal lines and in populations collected along a latitudinal transect in eastern Australia. In replicated laboratory lines kept for 9 years at 16.5° C or 25° C the duration of larval development had continued to diverge compared with 4 and 5 years previously, with more rapid larval development, and hence reduced total duration of pre-adult development, in the low temperature lines at both experimental temperatures. After 4 years of separate evolution, lines derived from the 25° C lines and subsequently cultured at 29° C showed no evidence of significant divergence in the duration of any part of the pre-adult period. The geographic populations showed a decrease in the duration of larval development, and hence of the total pre-adult period, with increasing latitude. In both laboratory and field populations, evolution at lower temperature was associated with more rapid larval development to a larger adult body size, the opposite genetic correlation between these traits to that found within a single temperature. The indications are that lower temperatures may be permissive of more efficient growth in D. melanogaster. It will be important to discover if evolution in response to temperature induces similar correlations in other ectotherms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号