首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The induction of spongiform myeloencephalopathy by murine leukemia viruses is mediated primarily by infection of central nervous system (CNS) microglia. In this regard, we have previously shown that CasBrE-induced disease requires late, rather than early, virus replication events in microglial cells (W. P. Lynch et al., J. Virol. 70:8896-8907, 1996). Furthermore, neurodegeneration requires the presence of unique sequences within the viral env gene. Thus, the neurodegeneration-inducing events could result from microglial expression of retroviral envelope protein alone or from the interaction of envelope protein with other viral structural proteins in the virus assembly and maturation process. To distinguish between these possible mechanisms of disease induction, we engineered the engraftable neural stem cell line C17-2 into packaging/producer cells in order to deliver the neurovirulent CasBrE env gene to endogenous CNS cells. This strategy resulted in significant CasBrE env expression within CNS microglia without the appearance of replication competent virus. CasBrE envelope expression within microglia was accompanied by increased expression of activation markers F4/80 and Mac-1 (CD11b) but failed to induce spongiform neurodegenerative changes. These results suggest that envelope expression alone within microglia is not sufficient to induce neurodegeneration. Rather, microglia-mediated disease appears to require neurovirulent Env protein interaction with other viral proteins during assembly or maturation. More broadly, the results presented here prove the efficacy of a novel method by which neural stem cell biology may be harnessed for genetically manipulating the CNS, not only for studying neurodegeneration but also as a paradigm for the disseminated distribution of retroviral vector-transduced genes.  相似文献   

2.
C Gravel  D G Kay    P Jolicoeur 《Journal of virology》1993,67(11):6648-6658
The Cas-Br-E murine leukemia virus (MuLV) induces a progressive hindlimb paralysis accompanied by a spongiform myeloencephalopathy in susceptible mice. In order to better understand the pathological process leading to these neurodegenerative lesions, we have investigated the nature of the cell type(s) infected by the virus during the course of the disease in CFW/D and SWR/J mice. For this purpose, we used in situ hybridization with virus-specific probes in combination with cell-type-specific histochemical (lectin) and immunological markers as well as morphological assessment. In the early stage of infection, endothelial cells represented the main cell type expressing viral RNA in the central nervous system (CNS). With disease progression and the appearance of lesions, microglial cells became the major cell type infected, accounting for up to 65% of the total infected cell population in diseased areas. Morphologically, these cells appeared activated and were frequently found in clusters. Infection and activation of microglial cells were almost exclusively restricted to diseased regions of the CNS. Neurons in diseased regions were not discernibly infected with virus at either early or late times of disease progression. Similarly, the proportion of infected astrocytes was typically < 1%. Although some endothelial cells and oligodendrocytes were infected by the virus, their infection was not limited to diseased CNS regions. These results are consistent with a model of indirect motor neuron degeneration, subsequent to the infection of nonneuronal CNS cells and especially of microglial cells. Infected microglial cells may play a role in the disease process by releasing not only virions or viral env-gene-encoded gp70 proteins but also other factors which may be directly or indirectly toxic to neurons. Parallels between microglial cell infection by MuLV and by lentiviruses, and specifically by human immunodeficiency virus, are discussed.  相似文献   

3.
The murine leukemia virus (MLV) TR1.3 provides an excellent model to study the wide range of retrovirus-induced central nervous system (CNS) pathology and disease. TR1.3 rapidly induces thrombotic events in brain microvessels and causes cell-specific syncytium formation of brain capillary endothelial cells (BCEC). A single amino acid substitution, W102G, in the MLV envelope protein (Env) regulates the pathogenic effects. The role of Env in determining this disease phenotype compared to the induction of spongiform encephalomyelitis with a longer latency, as seen in several other MLV and in human retroviruses, was determined by studying in vitro-attenuated TR1.3. Virus cloned from this selection, termed TRM, induced progressive neurological disease characterized by ataxia and paralysis and the appearance of spongiform neurodegeneration throughout the brain stem and spinal cord. This disease was associated with virus replication in both BCEC and highly ramified glial cells. TRM did not induce syncytium formation, either in vivo or in vitro. Sequence and mutational analyses demonstrated that TRM contained a reversion of Env G102W but that neurological disease mapped to the single amino acid substitution Env S159P. The results demonstrate that single nucleotide changes within disparate regions of Env control dramatically different CNS disease patterns.  相似文献   

4.
P Jolicoeur  G Mass    D G Kay 《Journal of virology》1996,70(12):9031-9034
The Cas-Br-E murine leukemia virus (MuLV) induces paralysis in susceptible mice that is accompanied by a severe spongiform myeloencephalopathy. These neurodegenerative lesions are very similar to those observed in prion diseases. To determine whether the prion protein gene (Prn-p) product was a downstream effector of this neurovirulent MuLV, we inoculated Prn-p(-/-) knockout homozygote and control heterozygote or wild-type mice with this retrovirus. All groups developed typical paralysis and spongiform encephalopathy, and no differences in clinical or histological phenotypes were observed between these groups. These results indicate that the Cas-Br-E MuLV does not require the prion protein to induce lesions. Thus, MuLV and prion proteins may induce a very similar disease through distinct pathways, or the viral Env protein, which harbors the primary determinant of pathogenicity, may act in a common pathway but downstream of the prion protein.  相似文献   

5.
The HIV-1 envelope (Env) glycoproteins play an essential role in the virus replication cycle by mediating the fusion between viral and cellular membranes during the entry process. The Env glycoproteins are synthesized as a polyprotein precursor (gp160) that is cleaved by cellular proteases to the mature surface glycoprotein gp120 and the transmembrane glycoprotein gp41. During virus assembly, the gp120/gp41 complex is incorporated as heterotrimeric spikes into the lipid bilayer of nascent virions. These gp120/gp41 complexes then initiate the infection process by binding receptor and coreceptor on the surface of target cells. Much is currently known about the HIV-1 Env glycoprotein trafficking pathway and the structure of gp120 and the extracellular domain of gp41. However, the mechanism by which the Env glycoprotein complex is incorporated into virus particles remains incompletely understood. Genetic data support a major role for the cytoplasmic tail of gp41 and the matrix domain of Gag in Env glycoprotein incorporation. Still to be defined are the identities of host cell factors that may promote Env incorporation and the role of specific membrane microdomains in this process. Here, we review our current understanding of HIV-1 Env glycoprotein trafficking and incorporation into virions.  相似文献   

6.
CasBrE is a neurovirulent murine retrovirus which induces a spongiform myeloencephalopathy in susceptible mice. Genetic mapping studies have indicated that sequences responsible for neurovirulence reside within the env gene. To address the question of direct envelope protein neuroxicity in the central nervous system (CNS), we have generated chimeric mice expressing the CasBrE envelope protein in cells of neuroectodermal origin. Specifically, the multipotent neural progenitor cell line C17.2 was engineered to express the CasBrE env gene as either gp70/p15E (CasE) or gp70 alone (CasES). CasE expression in these cells resulted in complete (>10(5)) interference of superinfection with Friend murine leukemia virus clone FB29, whereas CasES expression resulted in a 1.8-log-unit decrease in FB29 titer. Introduction of these envelope-expressing C17.2 cells into the brains of highly susceptible IRW mice resulted in significant engraftment as integral cytoarchitecturally correct components of the CNS. Despite high-level envelope protein expression from the engrafted cells, no evidence of spongiform neurodegeneration was observed. To examine whether early virus replication events were necessary for pathogenesis, C17.2 cells expressing whole virus were transplanted into mice in which virus replication in the host was specifically restricted by Fv-1 to preintegration events. Again, significant C17.2 cell engraftment and infectious virus expression failed to precipitate spongiform lesions. In contrast, transplantation of virus-expressing C17.2 progenitor cells in the absence of the Fv-1 restriction resulted in extensive spongiform neurodegeneration by 2 weeks postengraftment. Cytological examination indicated that infection had spread beyond the engrafted cells, and in particular to host microglia. Spongiform neuropathology in these animals was directly correlated with CasBrE env expression in microglia rather than expression from neural progenitor cells. These results suggest that the envelope protein of CasBrE is not itself neurotoxic but that virus infectious events beyond binding and fusion in microglia are necessary for the induction of CNS disease.  相似文献   

7.
The Cas-Br-E and ts-Mo BA-1 murine leukemia viruses (MuLV) induce a spongiform neurodegenerative disease with different clinical manifestations, namely, either hind limb paralysis (Cas-Br-E) or tremors, spasticity, and hind limb weakness (ts-Mo Ba-1). We constructed the chimeric NEBA-1 MuLV by replacing the long terminal repeat of Cas-Br-E MuLV with that of ts-Mo BA-1 MuLV. In SWR/J or CFW/D mice, NEBA-1 MuLV induced an ataxic neurological disease characterized by clinical signs different from those induced by both parents. Although NEBA-1 MuLV did not induce lesions in novel brain areas, the spongiform lesions were more severe in deep cerebellar nuclei and in the spinal cord than those found in paralyzed mice inoculated with Cas-Br-E MuLV. By in situ hybridization, we found that the distribution of the spongiform lesions closely correlated with the distribution of the infected central nervous system cells. In the spinal cord, a close correlation was found between the number of infected cells and the severity of the spongiform degeneration. Sequencing of the substituted ts-BA-1 MuLV fragment and comparison with homologous sequences of Cas-Br-E and Moloney MuLV showed differences mainly in the U3 tandem direct repeats. Our results show that a few modifications within the U3 long terminal repeat allow the virus to cause more severe lesions in some central nervous system regions and that the severity of the spongiform degeneration correlates with the level of viral replication.  相似文献   

8.
X Yu  X Yuan  Z Matsuda  T H Lee    M Essex 《Journal of virology》1992,66(8):4966-4971
Accumulating evidence suggests that the matrix (MA) protein of retroviruses plays a key role in virus assembly by directing the intracellular transport and membrane association of the Gag polyprotein. In this report, we show that the MA protein of human immunodeficiency virus type 1 is also critical for the incorporation of viral Env proteins into mature virions. Several deletions introduced in the MA domain (p17) of human immunodeficiency virus type 1 Gag polyprotein did not greatly affect the synthesis and processing of the Gag polyprotein or the formation of virions. Analysis of the viral proteins revealed normal levels of Gag and Pol proteins in these mutant virions, but the Env proteins, gp120 and gp41, were hardly detectable in the mutant virions. Our data suggest that an interaction between the viral Env protein and the MA domain of the Gag polyprotein is required for the selective incorporation of Env proteins during virus assembly. Such an interaction appears to be very sensitive to conformational changes in the MA domain, as five small deletions in two separate regions of p17 equally inhibited viral Env protein incorporation. Mutant viruses were not infectious in T cells. When mutant and wild-type DNAs were cotransfected into T cells, the replication of wild-type virus was also hindered. These results suggest that the incorporation of viral Env protein is a critical step for replication of retroviruses and can be a target for the design of antiviral strategies.  相似文献   

9.
Friend spleen focus-forming virus (F-SFFV) is a replication-defective acutely leukemogenic mouse retrovirus and encodes an envelope protein (Env)-like membrane glycoprotein (gp55) in its defective env gene, which is responsible for the early stage of the viral leukemogenesis. Gp55 is a modified Env protein and contains a polytropic mink cell focus-inducing (MCF) murine leukemia virus (MuLV) Env gp70-derived sequence in its amino-terminal region. To evaluate the possibility that the presumed binding of gp55 to an MCF MuLV receptor protein has some role in leukemogenesis, we examined the biological activities of a mutant gp55 (XE gp55), which has a xenotropic MuLV Env gp70 amino-terminal region. XE gp55 displayed almost the same biological activities as the wild-type gp55, excluding the above possibility.  相似文献   

10.
The human immunodeficiency virus (HIV) envelope (Env) protein is incorporated into HIV virions or virus-like particles (VLPs) at very low levels compared to the glycoproteins of most other enveloped viruses. To test factors that influence HIV Env particle incorporation, we generated a series of chimeric gene constructs in which the coding sequences for the signal peptide (SP), transmembrane (TM), and cytoplasmic tail (CT) domains of HIV-1 Env were replaced with those of other viral or cellular proteins individually or in combination. All constructs tested were derived from HIV type 1 (HIV-1) Con-S DeltaCFI gp145, which itself was found to be incorporated into VLPs much more efficiently than full-length Con-S Env. Substitution of the SP from the honeybee protein mellitin resulted in threefold-higher chimeric HIV-1 Env expression levels on insect cell surfaces and an increase of Env incorporation into VLPs. Substitution of the HIV TM-CT with sequences derived from the mouse mammary tumor virus (MMTV) envelope glycoprotein, influenza virus hemagglutinin, or baculovirus (BV) gp64, but not from Lassa fever virus glycoprotein, was found to enhance Env incorporation into VLPs. The highest level of Env incorporation into VLPs was observed in chimeric constructs containing the MMTV and BV gp64 TM-CT domains in which the Gag/Env molar ratios were estimated to be 4:1 and 5:1, respectively, compared to a 56:1 ratio for full-length Con-S gp160. Electron microscopy revealed that VLPs with chimeric HIV Env were similar to HIV-1 virions in morphology and size and contained a prominent layer of Env spikes on their surfaces. HIV Env specific monoclonal antibody binding results showed that chimeric Env-containing VLPs retained conserved epitopes and underwent conformational changes upon CD4 binding.  相似文献   

11.
The envelope protein (Env) from the CasBrE murine leukemia virus (MLV) can cause acute spongiform neurodegeneration analogous to that induced by prions. Upon central nervous system (CNS) infection, Env is expressed as multiple isoforms owing to differential asparagine (N)-linked glycosylation. Because N-glycosylation can affect protein folding, stability, and quality control, we explored whether unique CasBrE Env glycosylation features could influence neurovirulence. CasBrE Env possesses 6/8 consensus MLV glycosylation sites (gs) but is missing gs3 and gs5 and contains a putative site (gs*). Twenty-nine mutants were generated by modifying these three sites, individually or in combination, to mimic the amino acid sequence in the nonneurovirulent Friend 57 MLV. Three basic viral phenotypes were observed: replication defective (dead; titer < 1 focus-forming unit [FFU]/ml), replication compromised (RC) (titer = 102 to 105 FFU/ml); and wild-type-like (WTL) (titer > 105 FFU/ml). Env protein was undetectable in dead mutants, while RC and WTL mutants showed variations in Env expression, processing, virus incorporation, virus entry, and virus spread. The newly introduced gs3 and gs5 sites were glycosylated, whereas gs* was not. Six WTL mutants tested in mice showed no clear attenuation in disease onset or severity versus controls. Furthermore, three RC viruses tested by neural stem cell (NSC)-mediated brainstem dissemination also induced acute spongiosis. Thus, while unique N-glycosylation affected structural features of Env involved in protein stability, proteolytic processing, and virus assembly and entry, these changes had minimal impact on CasBrE Env neurotoxicity. These findings suggest that the Env protein domains responsible for spongiogenesis represent highly stable elements upon which the more variable viral functional domains have evolved.  相似文献   

12.
The mature envelope glycoprotein (Env) spike on the surface of human immunodeficiency virus type 1 (HIV-1) virions is derived by proteolytic cleavage of a trimeric gp160 glycoprotein precursor. Remarkably, proteolytic processing of the HIV-1 Env precursor results in changes in Env antigenicity that resemble those associated with glutaraldehyde fixation. Apparently, proteolytic processing of the HIV-1 Env precursor decreases conformational flexibility of the Env trimeric complex, differentially affecting the integrity/accessibility of epitopes for neutralizing and nonneutralizing antibodies.  相似文献   

13.
Previous studies have shown that truncation of the cytoplasmic-domain sequences of the simian immunodeficiency virus (SIV) envelope glycoprotein (Env) just prior to a potential intracellular-trafficking signal of the sequence YIHF can strongly increase Env protein expression on the cell surface, Env incorporation into virions and, at least in some contexts, virion infectivity. Here, all 12 potential intracellular-trafficking motifs (YXXΦ or LL/LI/IL) in the gp41 cytoplasmic domain (gp41CD) of SIVmac239 were analyzed by systematic mutagenesis. One single and 7 sequential combination mutants in this cytoplasmic domain were characterized. Cell-surface levels of Env were not significantly affected by any of the mutations. Most combination mutations resulted in moderate 3- to 8-fold increases in Env incorporation into virions. However, mutation of all 12 potential sites actually decreased Env incorporation into virions. Variant forms with 11 or 12 mutated sites exhibited 3-fold lower levels of inherent infectivity, while none of the other single or combination mutations that were studied significantly affected the inherent infectivity of SIVmac239. These minor effects of mutations in trafficking motifs form a stark contrast to the strong increases in cell-surface expression and Env incorporation which have previously been reported for large truncations of gp41CD. Surprisingly, mutation of potential trafficking motifs in gp41CD of SIVmac316, which differs by only one residue from gp41CD of SIVmac239, effectively recapitulated the increases in Env incorporation into virions observed with gp41CD truncations. Our results indicate that increases in Env surface expression and virion incorporation associated with truncation of SIVmac239 gp41CD are not fully explained by loss of consensus trafficking motifs.  相似文献   

14.
Rabies virus (RV) vaccine strain-based vectors show significant promise as potential live-attenuated vaccines against human immunodeficiency virus type 1 (HIV-1). Here we describe a new RV construct that will also likely have applications as a live-attenuated or killed-particle immunogen. We have created a RV containing a chimeric HIV-1 Env protein, which contains introduced cysteine residues that give rise to an intermolecular disulfide bridge between gp120 and the ectodomain of gp41. This covalently linked gp140 (gp140 SOS) is fused in frame to the cytoplasmic domain of RV G glycoprotein and is efficiently incorporated into the RV virion. On the HIV-1 virion, the gp120 and gp41 moieties are noncovalently associated, which leads to extensive shedding of gp120 from virions and virus-infected cells. The ability to use HIV-1 particles as purified, inactivated immunogens has been confounded by the loss of gp120 during preparation. Additionally, monomeric gp120 and uncleaved gp160 molecules have been shown to be poor antigenic representations of virion-associated gp160. Because the gp120 and gp41 portions are covalently attached in the gp140 SOS molecule, the protein is maintained on the surface of the RV virion throughout purification. Surface immunostaining and fluorescence-activated cell sorting analysis with anti-envelope antibodies show that the gp140 SOS protein is stably expressed on the surface of infected cells and maintains CD4 binding capabilities. Furthermore, Western blot and immunoprecipitation experiments with infected-cell lysates and purified virions show that a panel of neutralizing anti-envelope antibodies efficiently recognize the gp140 SOS protein. The antigenic properties of this recombinant RV particle containing covalently attached Env, as well as the ability to present Env in a membrane-bound form, suggest that this approach could be a useful component of a HIV-1 vaccine strategy.  相似文献   

15.
16.
X Yu  X Yuan  M F McLane  T H Lee    M Essex 《Journal of virology》1993,67(1):213-221
In-frame stop codons were introduced into the coding region of human immunodeficiency virus type 1 (HIV-1) transmembrane protein (gp41). Truncation of 147 amino acids from the carboxyl terminus of gp41 (TM709) significantly decreased the stability and cell surface expression of the viral Env proteins, while truncation of 104 amino acids (TM752) did not. Truncation of 43 or more amino acids from the carboxyl terminus of gp41 generated mutant viruses which were noninfectious in several human CD4+ T lymphoid cell lines and fresh peripheral blood mononuclear cells. Analysis of the noninfectious mutant virions revealed significantly reduced incorporation of the Env proteins compared with the wild-type virions. Comparable amounts of Env proteins were detected on the surfaces of wild-type- and TM752-transfected cells, suggesting that the structures of gp41 required for efficient incorporation of Env proteins were disrupted in mutant TM752. Truncation of the last 12 amino acids (TM844) from the carboxyl terminus of gp41 did not significantly affect the assembly and release of virions or the incorporation of Env proteins into mature virions. However, the TM844 virus had dramatically decreased infectivity compared with the wild-type virus. This suggests that the cytoplasmic domain of gp41 also plays a role in other steps of virus replication.  相似文献   

17.
HIV (human immunodeficiency virus)-1 Env is displayed on the surface of infected cells and subsequently incorporated into virions, which is necessary for the initiation of a viral infection by recognition of the CD4 and the chemokine receptors (such as CCR5 or CXCR4) on the surface of new target cells. As a type 1 integral membrane glycoprotein, Env is cotranslationally translocated into the endoplasmic reticulum. In this report, we characterized the synthesis of Env, which did not occur at a constant rate but by translational/translocational pausing that has not previously been shown with a viral encoded glycoprotein. Overall translation was not impeded by the presence of the reducing agent dithiothreitol in vivo, although this did influence the cleavage of the precursor gp160 into its mature form, gp120. Env interacts transiently with resident components of the endoplasmic reticulum such as calnexin, which had maximal association at a 10-min post-translation. Addition of the glucosidase inhibitor, castanospermine, failed to significantly influence the association of Env with calnexin, consistent with the notion that calnexin recognizes components other than alpha-terminal glucose. Moreover, castanospermine treatment failed to affect the infectivity of virions. Taken together, this report demonstrates the existence of translational/translocational pausing for a viral glycoprotein and suggests that trimming of glucose from HIV-1 Env is not essential for the initiation of virus infection.  相似文献   

18.
In the murine leukemia viruses (MuLVs), the Env complex is initially cleaved by a cellular protease into gp70SU and pre15ETM. After the virus particle is released from the cell, the C-terminal 16 residues are removed from the cytoplasmic domain of pre15E by the viral protease, yielding the mature p15ETM and p2E. We have investigated the function of this cleavage by generating a Moloney MuLV mutant, termed p2E-, in which the Env coding region terminates at the cleavage site. This mutant synthesizes only the truncated, mature form of TM rather than its extended precursor. When cells expressing this truncated Env protein are cocultivated with NIH 3T3 cells, they induce rapid cell-cell fusion. Thus, the truncated form, which is normally found in virions but not in virus-producing cells, is capable of causing membrane fusion. We conclude that the 16-residue p2E tail inhibits this activity of Env until the virus has left the cell. p2E- virions were found to be infectious, though with a lower specific infectivity than that of the wild type, showing that p2E does not play an essential role in the process of infection. Fusion was also observed with a chimeric p2E- virus in which gp70SU and nearly all of p15ETM are derived from amphotropic, rather than Moloney, MuLV. In a second mutant, an amino acid at the cleavage site was changed. The pre15E protein in this mutant is not cleaved. While the mutant Env complex is incorporated into virions, these particles have a very low specific infectivity. This result suggests that the cleavage event is essential for infectivity, in agreement with the idea that removal of p2E activates the membrane fusion capability of the Env complex.  相似文献   

19.
FrCasE is a highly neurovirulent murine leukemia virus which causes a noninflammatory spongiform neurodegenerative disease after neonatal inoculation. The central nervous system (CNS) infection is wide-spread, involving several different cell types, whereas the lesions are localized to motor areas of the brain and spinal cord. Inoculation of FrCasE at 10 days of age (P10) results in viremia, but infection of the CNS is restricted and neurological disease is not observed (M. Czub, S. Czub, F. McAtee, and J. Portis, J. Virol. 65:2539-2544, 1991). In this study, we used this developmental resistance to restrict the extent and the distribution of FrCasE in the brain to examine whether the spongiform degeneration is a consequence of infection of cells in proximity to the lesions. Two approaches were used to infect the brain on or after P10. First, mice were inoculated with FrCasE at P10 to induce viremia and then at P17 were subjected to focal CNS injury within brain regions known to be susceptible to virus-induced spongiform degeneration. The injury resulted in local inflammation, glial activation, migration of inflammatory cells into the wound site, and high-level parenchymal infection about the wound site. However, no evidence of spongiform neurodegeneration was observed over a period of 3 months. The second approach involved the implantation of FrCasE-infected microglia into the CNS at > or = P10. This resulted in microglial engraftment and focal CNS infection unilaterally at the implantation sites and bilaterally along white matter tracts of the corpus callosum and pons and in cells of the subventricular layers of the lateral cerebral ventricles. Strikingly, focal spongiform degeneration colocalized with the sites of infection. In contrast to the wounding experiments, the implantation model was not associated with an inflammatory response or significant glial activation. Results of these studies suggest that (i) the developmental resistance of the CNS to infection lies at the blood-brain barrier and can be bypassed by direct introduction into the brain of virus-infected cells, (ii) the neuropathology induced by this virus is a consequence of local effects of the infection and does not appear to require endothelial or neuronal infection, and (iii) elements of the inflammatory response and/or glial activation may modulate the expression of neuropathology induced by neurovirulent retroviruses.  相似文献   

20.
The matrix (MA) protein of human immunodeficiency virus type 1 (HIV-1) forms an inner coat directly underneath the lipid envelope of the virion. The outer surface of the lipid envelope surrounding the capsid is coated by the viral Env glycoproteins. We report here that the HIV-1 capsid-Env glycoprotein association is very sensitive to minor alterations in the MA protein. The results indicate that most of the MA domain of the Gag precursor, except for its carboxy terminus, is essential for this association. Viral particles produced by proviruses with small missense or deletion mutations in the region coding for the amino-terminal 100 amino acids of the MA protein lacked both the surface glycoprotein gp120 and the transmembrane glycoprotein gp41, indicating a defect at the level of Env glycoprotein incorporation. Alterations at the carboxy terminus of the MA domain had no significant effect on the levels of particle-associated Env glycoprotein or on virus replication. The presence of HIV-1 MA protein sequences was sufficient for the stable association of HIV-1 Env glycoprotein with hybrid particles that contain the capsid (CA) and nucleocapsid (NC) proteins of visna virus. The association of HIV-1 Env glycoprotein with the hybrid particles was dependent upon the presence of the HIV-1 MA protein domain, as HIV-1 Env glycoprotein was not efficiently recruited into virus particles when coexpressed with authentic visna virus Gag proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号