首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该研究采用毛白杨(Populus tomentosa)为试验材料,分析了温室条件下沙培幼苗对短期高硼胁迫(1、5、10 mmol/L硼酸)下的叶片生长、光合参数和硼转运蛋白的响应特征。结果显示:(1)与对照(0.05 mmol/L硼酸)相比,1 mmol/L硼酸处理导致毛白杨幼苗叶片叶绿素荧光参数上调,活性氧含量上升,树苗基部叶片出现少量黑色坏死斑;5 mmol/L硼酸胁迫下,叶片净光合速率、气孔导度和蒸腾速率下调,胞间二氧化碳浓度上升,叶绿素荧光参数和过氧化氢含量进一步上调,超氧阴离子含量较1 mmol/L硼酸胁迫时下调但仍然高于对照,除顶部叶片之外的其他叶片上出现大量坏死斑;10 mmol/L硼酸胁迫下,气体交换参数、叶绿素荧光参数和活性氧含量与5 mmol/L硼酸胁迫时相似,所有叶片均在平行于次级叶脉的方向出现呈带状分布的坏死斑。(2)毛白杨幼苗根和茎硼含量在硼胁迫条件下与对照相比变化幅度较小,而叶片硼含量在5 mmol/L和10 mmol/L硼酸胁迫下比对照显著上升,此时硼转移系数和生物富集系数均维持较高的水平。(3)硼转运蛋白(BOR)基因家族成员中PtoBOR4和PtoBOR8在根中的表达水平随着外界硼浓度的增加呈先上升后下降的趋势;在茎中,PtoBOR3基因下调表达,PtoBOR5上调表达;在叶片中,PtoBOR4表达先上升后下降,而PtoBOR7和PtoBOR8上调表达。研究表明,毛白杨幼苗叶片叶绿素荧光参数、活性氧、气体交换参数及硼转运蛋白基因家族表达对高硼胁迫较为敏感,硼胁迫症状在较短的时间内在叶片上以坏死斑的形式出现,可能与其较强的控制根系硼浓度的能力和向地上部分迅速运输硼的能力有关。  相似文献   

2.
干热河谷车桑子光合生理特性对氮磷添加的响应   总被引:1,自引:0,他引:1  
王雪梅  刘泉  闫帮国  赵广  刘刚才 《生态学报》2019,39(22):8615-8629
氮磷养分是限制干热河谷植物生长的重要元素,不同土壤上植物受到的养分限制类型不同。光合作用作为植物生长发育的基础,不同土壤上氮磷养分添加对干热河谷植物光合生理特征的影响还没有报道。因此,以干热河谷优势植物——车桑子为研究对象,在元谋县不同海拔处采集土壤,设置加氮(+N)、加磷(+P)、氮磷同时添加(+NP)和不添加(CK)四个处理,研究车桑子光合响应曲线、叶绿素含量和叶绿素荧光特性对氮、磷添加的响应规律,并探讨光合响应特征与车桑子生长的关系:研究结果显示:1)不同海拔土壤上,车桑子光合生理特性对氮磷添加具有不同的响应。在低海拔燥红土上,氮添加处理(+N和+NP)提高了车桑子净光合速率、叶绿素含量和PSII活性;中海拔紫色土上,+NP促进了车桑子光合速率和叶绿素含量的提高;高海拔黄棕壤上,+N处理降低了车桑子净光合速率和PSII活性,而磷添加处理(+P和+NP)提高了车桑子净光合速率。2)车桑子光合特性对养分添加的响应取决于土壤的养分限制类型,限制性养分添加可以提高车桑子的净光合速率。3)燥红土上+P以及黄棕壤上+N对PSⅡ最大光化学效率(Fv/Fm)的降低更大程度上归于可变荧光Fv的减少而不是最小荧光F0的增加,可减少养分限制对光系统II造成的伤害。4)三种土壤类型上车桑子的叶绿素含量和组成差异极显著,相比于燥红土和紫色土,黄棕壤上车桑子的叶绿素含量显著更高,而叶绿素a/b显著更低。综上,本研究结果表明,车桑子光合能力受到氮和磷的共同调节,不同土壤上光合生理特性的响应可增强植物对限制性养分的适应性,影响植物生长发育。  相似文献   

3.
Complementary techniques of chlorophyll a fluorescence, steady state CO2 exchange, and O2 release during a multiple turnover flash were applied to compare responses to irradiance for leaves of wild type and psbS mutants. The latter included variants in which the psbS gene was deleted (npq4-1) or possessed a single point mutation (npq4-9). Nonphotochemical quenching (NPQ) was reduced by up to 80 and 50%, respectively, in these lines at high irradiance. Analysis of changes in steady-state fluorescence yields and quantum yield of linear electron transport in the context of the reversible radical pair model of Photosystem II (PS II) indicated that NPQ occurs by nonradiative deactivation of chlorophyll singlet states in normal leaves. In contrast, application of the same criteria together with the observed irreversibility of NPQ and decline in density of functional PS II reaction centers following excessive illumination indicated a change in reaction center properties for the psbS deletion phenotype (Npq4-1). Specifically, PS II reaction centers in Npq4-1 convert to a photochemically inactive, yet strongly quenching, form in intense light. The possibility of formation of a carotenoid or chlorophyll cation quencher in the reaction center is discussed. Results for the point mutant phenotype (Npq4-9) were intermediate to those of wild-type and Npq4-1. Furthermore, wild-type leaves exhibited a significant reversible increase in the PS II in vivo rate constant for photochemistry (kP0) in saturating compared to limiting light. Changes in kP0 could not be accounted for in terms of a classic phosphorylation-dependent (state transition) mechanism. Changes in kP0 may arise from alternate pigment—protein conformations that alter the way excitons equilibrate among PS II chromophores. The lack of similar irradiance-dependent changes in kP0 for the psbS mutants suggests a role for the PS II-S protein in the regulation of exciton distribution.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

4.
以4片真叶黄瑞香幼苗为材料,设置不同浓度(0、50、100、150、200mmol·L~(-1))NaCl胁迫处理,采用温室砂培实验系统考察了其幼苗叶绿素含量、叶绿素荧光参数及气体交换参数等光合生理指标的变化。结果表明:(1)在正常环境条件下(对照),黄瑞香叶片净光合速率(P_n)、气孔导度(G_s)的日变化曲线呈双峰型,蒸腾速率(T_r)日变化曲线呈单峰型;较高浓度(100mmol·L~(-1))NaCl胁迫改变了黄瑞香叶片光合特性日变化曲线,导致其P_n、T_r、G_s日变化曲线整体下降,而胞间CO_2浓度(Ci)日变化曲线整体上升。(2)低浓度(50mmol·L~(-1))NaCl胁迫对黄瑞香叶片叶绿素含量及其比值无显著影响,但较高浓度(100mmol·L~(-1))NaCl胁迫则使叶绿素含量显著下降,其比值下降则较平缓。(3)较高浓度(100mmol·L~(-1))NaCl胁迫使得黄瑞香叶片最大荧光(F_m)、PSⅡ最大光化学效率(F_v/F_m)、PSⅡ光下最大捕光效率(F_v′/F_m′)、光化学荧光猝灭系数(qP)、PSⅡ实际光化学效率(Φ_(PSⅡ))均显著下降,却使其初始荧光(F_0)和非光化学猝灭(NPQ)显著上升。研究发现,随着盐胁迫浓度的增加,引起黄瑞香光合速率下降的主要原因是非气孔因素;在轻度NaCl胁迫下黄瑞香有较强的忍耐性,而重度NaCl胁迫则显著降低了叶片的光合机构活性,加剧了光抑制程度,从而严重限制了其叶片的光合作用效率。  相似文献   

5.
在黄土丘陵区,以3年生文冠果苗木为材料,测定其在不同土壤水分条件下的气体交换和荧光参数日变化,分析其光合作用与不同土壤水分的定量关系,以指导文冠果这一能源树种在半干旱地区的推广种植。结果表明:(1)文冠果叶片的净光合速率(Pn)、水分利用效率(WUE)、光下最大荧光(Fm)、PSⅡ最大光量子产量(Fv/Fm)、PSⅡ实际量子效率(ΦPSⅡ)、光化学猝灭系数(qP)均随土壤相对含水量(Wr)降低呈先升高后降低趋势,其最小荧光(Fo)先降后升,而其NPQ持续升高,当Wr为44.7%~81.2%时各参数都维持在较高水平。(2)文冠果叶片日净光合累计量(PD)和WUE在Wr为58.6%~81.2%时都处于较高水平,当Wr为66.6%时WUE达到最大值,过高或过低的土壤水分含量均不利于文冠果叶片光合作用的进行和水分的利用。(3)气体交换参数分析表明,文冠果中午光合作用的下降在Wr为38.1%~81.2%时是由气孔因素导致,而在Wr低于31.8%时转为非气孔限制;当Wr低于73.9%时,文冠果中午会出现光抑制,光合机构受到破坏。研究认为,在黄土丘陵区,适宜文冠果栽培的土壤相对含水量在58.6%~81.2%之间,低于38.1%时则无法正常生长。  相似文献   

6.
Photosynthetic and anatomic responses of peanut leaves to zinc stress   总被引:1,自引:0,他引:1  
In this study, photosynthetic performance, pigment content, chlorophyll a fluorescence, and leaf anatomy in peanut (Arachis hypogaea) subjected to zinc (Zn) stress were investigated. Zn stress resulted in reduction of photosynthetic and transpiration rates, pigment contents and root biomass. Zn-induced xerophyte structure in peanut leaves (i.e. thick lamina, upper epidermis, and palisade mesophyll, as well as abundant and small stomata) also contributed to decreased transpiration rate and stomatal conductance. This in turn, partially contributed to the limitation of photosynthesis.  相似文献   

7.
Fischer  Erika S.  Bremer  Elke 《Plant and Soil》1993,155(1):419-422
Phaseolus vulgaris was cultured either with or without magnesium in an aerated nutrient solution in growth chambers from 21 days after germination. Five days after transfer to Mg-deficient nutrient solution, terminal leaflets of first trifoliate leaves stopped expansion. From the fifth day after transfer, the net assimilation rate, the transpiration rate and the leaf water vapour conductance of first trifoliate leaves of the deficient plants declined. Following resupply of Mg on the seventh day after transfer to the Mg-deficient solution, the assimilation rate increased to 93% by the 12th day, the transpiration rate to 76% and the leaf water vapour conductance to 50% of the control plants.  相似文献   

8.
氮素水平对不同品种茶树光合及叶绿素荧光特性的影响   总被引:2,自引:0,他引:2  
为探明氮素水平对不同品种茶树的光合系统的影响机制,以‘福鼎大白茶’、‘保靖黄金茶1号’、‘白毫早’两年生茶苗为材料,设置不施氮N_0(0g)、低氮N_1(11g)、中氮N_2(22g)和高氮N_3(33g)4个氮素[(NH_4)_2SO_4]水平的盆栽实验,研究了铵态氮对3个品种茶树的生长势、叶片叶绿素含量、光合参数与叶绿素荧光参数的影响。结果表明:(1)施氮处理能够显著促进茶树的生长,提高茶树叶片叶绿素含量、净光合速率(Pn)、气孔导度(Gs)、蒸腾速率(Tr),降低胞间CO_2浓度(Ci),并以N_2处理最好,但水分利用率(WUE)在3个品种茶树间表现不同。(2)在N_2处理下,3个茶树品种的叶片光系统Ⅱ(PSⅡ)暗适应下的最大光化学效率(F_v/F_m)、光化学猝灭系数(qP)、PSⅡ的相对电子传递速率(rETR)亦增加最大,非光化学淬灭系数(NPQ)降低。(3)茶树叶片叶绿素含量与光合参数间存在着一定的联系,并且具有品种特异性。研究发现,适量施氮能够显著增加茶树叶绿素含量、气孔导度、光合活性,从而使得各品种茶树净光合速率增加;氮素水平对各茶树品种的光合及荧光特性影响存在差异,水分利用率亦具有品种特异性;生产中应综合叶绿素含量、光合作用参数、叶绿素荧光参数,可快速、直观地评价不同品种茶树对氮素营养的内在需求,为茶园施肥管理提供指导。  相似文献   

9.
Variation in tolerance in chilling-dependent photoinhibition has been associated with a wide range of traits in comparative physiological studies. A sweet corn (Zea mays L.) population of 214 F2:3 families previously mapped to near-saturation with 93 RFLP DNA markers were subjected to low temperature and high-light events prior to measurement of the maximum dark-adapted quantum efficiency of PS II (Fv/Fm), to identify loci associated with variation in chilling-dependent photoinhibition. In the first assay with ten families varying in seedling growth and germination, significant differences were observed among families in their response to and recovery from exposure to high light at low temperature. All the 214 F2:3 families from this population were then evaluated for tolerance of chilling-dependent photoinhibition in a controlled environment and then in three replicated trials in the field, each following naturally occurring chilling events during spring. The measured effects on Fv/Fm were analyzed with software that mapped segregating loci that regulate trait expression and linked to genetic markers (PLABQTL). QTL 3.096 (i.e. 96 cM on chromosome three) was consistently identified in both controlled environment and in the mean of the three field trails. Another QTL at 8.025, described the greatest percentage of total phenotypic variance (ca. 10%) for the mean reduction in Fv/Fm of all three periods of measurement in the field. A third QTL (4.136) showed a highly significant association in the third field trial. These three QTLs were closely associated with genes that have been mechanistically related to photoinhibition tolerance and repair. The results suggest that the ratio of Fv/Fm is an approach that may be used in establishing marker-assisted breeding for improved tolerance to chilling of maize in the light and in turn better early-season growth in cool temperate climates.  相似文献   

10.
The rate of photosynthesis and its relation to tissue nitrogen content was studied in leaves and siliques of winter oilseed rape (Brassica napus L.) growing under field conditions including three rates of nitrogen application (0, 100 or 200 kg N ha-1) and two levels of irrigation (rainfed or irrigated at a deficit of 20 mm). The predominant effect of increasing N application under conditions without water deficiency was enhanced expansion of photosynthetically active leaf and silique surfaces, while the rate of photosynthesis per unit leaf or silique surface area was similar in the different N treatments. Thus, oilseed rape did not increase N investment in leaf area expansion before a decline in photosynthetic rate per unit leaf area due to N deficiency could be avoided. Much less photosynthetically active radiation penetrated into high-N canopies than into low-N canopies. The specific leaf area increased markedly in low light conditions, causing leaves in shade to be less dense than leaves exposed to ample light. In both leaves and siliques the photosynthetic rate per unit surface area responded linearly to increasing N content up to about 2 g m-2, thus showing a constant rate of net CO2 assimilation per unit increment in N (constant photosynthetic N use efficiency). At higher tissue N contents, photosynthetic rate responded less to changes in N status. Expressed per unit N, light saturated photosynthetic rate was three times higher in leaves than in silique valves, indicating a more efficient photosynthetic N utilization in leaves than in siliques. Nevertheless, from about two weeks after completion of flowering and onwards total net CO2 fixation in silique valves exceeded that in leaves because siliques received much higher radiation intensities than leaves and because the leaf area declined rapidly during the reproductive phase of growth. Water deficiency in late vegetative and early reproductive growth stages reduced the photosynthetic rate in leaves and, in particular, siliques of medium- and high-N plants, but not of low-N plants.  相似文献   

11.
野生酸枣光合及叶绿素荧光参数对土壤干旱胁迫的响应   总被引:2,自引:0,他引:2  
为探究鲁中地区自然条件下野生酸枣光合生理参数对土壤逐渐干旱的响应机制,明确其与土壤水分的定量关系。该研究以2年生野生酸枣盆栽苗为实验材料,采用人工给水和自然耗水相结合法模拟自然条件下土壤干旱过程,分析野生酸枣叶片光合作用和荧光参数对土壤水分含量(RWC)的响应过程及其机制。结果表明:(1)野生酸枣叶片气体交换参数净光合速率(P_n)、蒸腾速率(T_r)、水分利用效率(WUE)均随着土壤含水量的增加表现出先升高后降低的趋势。当RWC38.5%时,P_n下降,而胞间二氧化碳浓度(Ci)上升,气孔限制值(L_s)下降,叶片光合速率下降主要是非气孔限制因素所致;当RWC在38.5%~65.1%范围内,野生酸枣P_n下降,伴随C_i、气孔导度(G_s)均降低,野生酸枣叶片光合速率下降处于气孔限制阶段。(2)通过P_n和WUE对土壤水分的阈值模拟,发现维持野生酸枣叶片具有较高光合生产力的土壤水分范围为46.0%~0.5%,维持其较高水分利用效率的水分范围为56.3%~73.9%。(3)在土壤逐渐干旱过程中(RWC范围为29.9%~86.5%),野生酸枣最大荧光(F_m)、PSⅡ最大光化学效率(F_v/F_m)、PSⅡ实际光化学效率(ΦPSⅡ)逐渐降低,初始荧光(Fo)显著升高,光化学猝灭(qP)先升高再降低,非光化学猝灭(NPQ)在过高(RWC83.7%)或过低(RWC38.5%)的土壤水分下呈现较高值,表现出热耗散增加。研究认为,野生酸枣叶片气体交换参数及叶绿素荧光参数对土壤水分均具有明显的阈值响应,阈值点的土壤相对含水量大约为38.5%,低于阈值时叶片光合速率由气孔限制转向非气孔限制,PSⅡ受到损伤,电子传递受阻,光合机构受到破坏。  相似文献   

12.
The response of photosynthesis to absorbed light by intact leaves of wild-type ( Hordeum vulgare L. cv. Gunilla) and chlorophyll b -less barley ( H. vulgare L. cv. Dornaria, chlorina-f22800) was measured in a light integrating sphere. Up to the section where the light response curve bends most sharply the responses of the b -less and wild-type barley were similar but not identical. Average quantum yield and convexity for the mutant light response curves were 0.89 and 0.90, respectively, times those of the wild-type barley. The maximum quantum yield for PSII photochemistry was also 10% lower as indicated by fluorescence induction kinetics (Fv/Fm). Just above the region where the light curve bends most sharply, photosynthesis decreased with time in the mutant but not in the wild-type barley. This decrease was associated with a decrease in Fv/Fm indicating photoinhibition of PSII. This photoinhibition occurred in the same region of the light response curve where zeaxanthin formation occurs. Zeaxanthin formation occurred in both the chlorophyll b -less and wild-type leaves. However, the epoxidation state was lower in the mutant than in the wild-type barley. The results indicate that chlorophyll b -less mutants will have reduced photosynthetic production as a result of an increased sensitivity to photoinhibition and possibly a lowered quantum yield and convexity in the absence of photoinhibition.  相似文献   

13.
A method for measuring whole plant photosynthesis in Arabidopsis thaliana   总被引:5,自引:0,他引:5  
Measurement of photosynthesis of intact leaves of Arabidopsis thaliana has been prohibitive due to the small leaf size and prostrate growth habit. Because of the widespread use of Arabidopsis for plant science research it is important to have a procedure for accurate, nondestructive measurement of its photosynthesis. We developed and tested a method for analysis of photosynthesis in whole plants of Arabidopsis. Net carbon assimilation and stomatal conductance were measured with an open gas exchange system and photosynthetic oxygen evolution was determined from chlorophyll fluorescence parameters. Individual plants were grown in 50 cubic centimeter tubes that were attached with an air tight seal to an enclosed gas exchange chamber for measurement of carbon dioxide and water exchange by the whole plant. Chlorophyll fluorescence from intact leaves was simultaneously measured with a pulse modulated fluorometer. Photosynthetic CO2 assimilation and stomatal conductance rates were calculated with established gas exchange procedures and O2 evolution was determined from chlorophyll fluorescence measurement of Photosystem II yield. Carbon assimilation and oxygen evolution in response to light intensity and ambient CO2 concentration was measured and is presented here to demonstrate the potential use of this method for investigation of photosynthesis of Arabidopsis plants in controlled environment conditions.  相似文献   

14.
Leaf and canopy photosynthesis of cotton (Gossypium hirsutum L.) declines as the crop approaches cutout, just as the assimilate needs for reproductive growth are peaking. Our objective with this study was to determine whether this decline is due to remobilization of leaf components to support the reproductive growth or due to some cue from the changing environmental conditions during the growing season. Field studies were conducted in 1995–1996 at Stoneville, Mississippi, using six cotton genotypes and two planting dates (early and late), which produced two distinctly different cotton populations reaching cutout at different times. Among the six genotypes were a photoperiod sensitive line (non-flowering) and its counter part which had photoperiod insensitive genes backcrossed four times to the photoperiod sensitive line (flowering). This pair was used to assess the degree that the photosynthetic decline could be attributed to reproductive sink development. Leaf CO2-exchange rate (CER) and chlorophyll (Chl) fluorescence measurements were taken in mid-August, a period corresponding to cutout for the early planted plots, and those leaves were collected. Leaf Chl level, soluble protein level, various soluble carbohydrate levels and Rubisco activities were assayed on those leaves. Averaged across years, leaf CER and soluble protein levels were reduced approximately 14% and 18%, respectively, for the early planted compared to the late planted cotton. Neither leaf Chl levels or Chl fluorescence Fv/Fm values for Photosystem II yield were altered by the planting date. In 1996, leaves from the non-flowering line had 12% greater Chl and 20% greater soluble protein levels than the flowering line. However, in 1996, the CER of the early planted non-flowering line was reduced 10% compared to the late planted. Although remobilization of leaf N to reproductive growth appears to be the principle component causing the cutout photosynthetic decline, the data also indicate that environmental factors can play a small role in causing the decline. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Winter wheat (Triticum aestivum L. cv. Jingdong 8) was exposed to short-term high ozone treatment after anthesis and then was either well irrigated with soil water content (SWC) of 80–85 % (O3+W) or drought treated (SWC 35–40 %, O3+D). Short-term ozone exposure significantly decreased irradiance-saturated net photosynthetic rate (P N) of winter wheat. Under good SWC, P N of the O3-treated plant was similar to that of control on 2 d after O3-exposure (6 DAA), but decreased significantly after 13 DAA, indicating that O3 exposure accelerated leaf senescence. Meanwhile, green flag leaf area was reduced faster than that of control. As a result, grain yield of O3+W was significantly decreased. P N of O3+D was further notably decreased and green flag leaf area was reduced more than that in O3+W. Consequently, substantial yield loss of O3+D was observed compared to that of O3+W. Although P N was significantly positively correlated with stomatal conductance, it also had notable positive correlation with the maximum photochemical efficiency in the dark adapted leaves (Fv/Fm), electron transport rate (ETR), photochemical quenching (qP), as well as content of chlorophyll, suggesting that the depression of P N was mainly caused by non-stomatal limitation. Hence optimal soil water condition should be considered in order to reduce the yield loss caused by O3 pollution.  相似文献   

16.
Fully expanded leaves of tomato (Lycopersicon esculentum) growing with either complete or nitrogen-deficient nutrient solution were analysed for leaf water status, gas exchange and chlorophyll fluorescence during the vegetative and reproductive phases. N-deficiency did not affect leaf water relations but did decrease light saturated photosynthetic rate as well as stomatal conductance in the vegetative stage. A lower variable to maximum fluorescence ratio (Fv/Fm) was found in N-limited plants which also showed an increase in leaf starch content and in starch to sucrose ratio. The inhibition of photosynthesis and the alteration of photosynthates partitioning were responsible for the growth reduction in N-stressed plants. During the reproductive phase the limitation of photosynthesis may be due to a large accumulation of starch which determines both a decrease in the carbon demand from the sinks and a decrease in CO2 conductance in the mesophyll. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Two hybrids of maize (Zea mays L.) differing in resistance to drought, were grown in chernozem soil in a greenhouse and were fertilized with two different forms of nitrogen: Ca(NO3)2 and (NH4)2SO4 in concentrations corresponding to 100 kg of N ha-1. After emergence of the 4th leaf, plants were exposed to drought. During the drought period, the parameters of plant water status (water potential, osmotic potential, turgor pressure and relative water content) and chlorophyll a+b concentration were monitored every two days. N and K concentration and accumulation over the drought period were also monitored.Next to differences in adaptability of the two hybrids to drought, the results demonstrate different adaptability of NH4 and NO3-treated plants within each hybrid. NH4-plants of each hybrid maintain higher turgor pressure during the drought by better osmotic adaptation. Especially significant differences appear between chlorophyll (a+b) values of NH4 and NO3-treated plants and as affected by drought. Chlorophyll concentrations of NH4-plants are higher than those of NO3-plants both in control and droughted plants. NH4 plants show a characteristic initial chlorophyll increase at the beginning of the drought period while in NO3 plants chlorophyll constantly decreases throughout the whole drought period. The influence of the nitrogen form on chlorophyll concentration changes during drought does not appear to be affected by regulation of the K concentration.  相似文献   

18.
Cell proliferation, elongation, determination and differentiation mainly take place in the basal 5 mm of a barley leaf, the so-called basiplast. A considerable portion of cDNAs randomly selected from a basiplast cDNA library represented photosynthetic genes such as CP29, RUBISCO-SSU and type I-LHCP II. Therefore, we became interested in the role of the basiplast in establishing photosynthesis. (1) Northern blot analysis revealed expression of photosynthetic genes in the basiplast, although at a low level. Analysis of basiplasts at different developmental stages of the leaves revealed maximal expression of photosynthetic genes during early leaf development. The activity of these genes shows that plastid differentiation involves the development of the photosynthetic apparatus even at this early state of leaf cell expansion. (2) This conclusion was supported by the fact that chlorophylls and carotenoids are synthesized in the basiplast. The qualitative pattern of pigment composition was largely similar to that of fully differentiated green leaves. (3) The transition from proplastids to chloroplasts progressed in the basal 5 mm of the leaf, so that the number of grana lamellae per thylakoid stack increased with distance from the meristem from zero to about five. (4) Photosynthetic function was studied by chlorophyll a-fluorescence measurements. In dark-adapted 8-day-old primary leaves, the fluorescence ratio (FP-Fo)/FP was little decreased in basiplasts as compared to leaf blades. During steady state photosynthesis, the ratio (FM-Fo)/FM was high in leaf blade (0.5), but low in the sheath (0.25) and in the basiplast (0.18), indicating the existence of functional, albeit low light-adapted chloroplasts in the basiplast. (5) Further on, chlorophyll a fluorescence analysis in relation to seedling age revealed efficient photosynthetic performance in the basiplast of 3- to 6-day-old seedlings which later-on differentiates into leaf blade as compared to the basiplast of 7- to 12-day-old seedlings which develops into leaf sheath and finally ceases to grow. The leaf age dependent changes in basiplast photosynthesis were reflected by changes in pigment contents and LHCP II expression both of which also revealed a maximum in the basiplast of 4-day-old seedlings.Abbreviations bas 1 basiplast-associated gene 1 encoding a peroxide reductase - cab chlorophyll a/b binding protein - CP 29 29 kDa chlorophyll binding protein - DIG digoxigenin - EMIP epidermal major intrinsic protein - LHCP II light harvesting complex of Photosystem II - LSU large subunit of Rubisco - NPQ non photochemical chlorophyll a fluorescence quenching - PSI/PS II Photosystem I/II - PQ photochemical chlorophyll a fluorescence quenching - Rubisco Ribulose-1,5-bisphosphate carboxylase - SSU small subunit of Rubisco  相似文献   

19.
Photosynthesis of individual field-grown cotton leaves during ontogeny   总被引:3,自引:0,他引:3  
Photosynthetic characteristics of field-grown cotton (Gossypium hirsutum L.) leaves were determined at several insertion levels within the canopy during the growing season. Single-leaf measurements of net photosynthesis (Pn), stomatal conductance to CO2 (gs·CO2), substomatal CO2, leaf area expansion, leaf nitrogen, and light intensity (PPFD) were recorded for undisturbed leaves within the crop canopy at 3–4 day intervals during the development of all leaves at main-stem nodes 8, 10, and 12. Patterns of Pn during leaf ontogeny exhibited three distinct phases; a rapid increase to maximum at 16–20 days after leaf unfolding, a relatively short plateau, and a period of linear decline to negligible Pn at 60–65 days. Analysis of the parameters which contributed to the rise and fall pattern of Pn with leaf age indicated the primary involvement of leaf area expansion, leaf nitrogen, PPFD, and gs·CO2 in this process. The response of Pn and gs·CO2 to incident PPFD conditions during canopy development was highly age dependent. For leaves less than 16 days old, the patterns of Pn and gs·CO2 were largely controlled by non-PPFD factors, while for older leaves Pn and gs·CO2 were more closely coupled to PPFD-mediated processes. Maximum values of Pn were not significantly different for any of the leaves monitored in this study, however, those leaves at main-stem node 8 did possess a significantly diminished photosynthetic capacity with age compared to upper canopy leaves. This accelerated decline in Pn could not be explained by age-related variations in gs·CO2 since all leaves showed similar changes in gs·CO2 with leaf age.Abbreviations gs·CO2 stomatal conductance to CO2 - Pn net photosynthesis - PPFD photosynthetic photon flux density  相似文献   

20.
Gas exchange, chlorophyll fluorescence and water potentials, together with ascorbate and glutathione concentrations, were studied during moderate and severe drought stress and in response to re-watering in Allocasuarina luehmannii seedlings. Moderate drought stress (MS) decreased stomatal conductance (gs) and net CO2 assimilation rates (A) to ∼40% and ∼60% of control values, respectively, and caused decreases in internal CO2 concentration (Ci) and maximum light use efficiency of light-acclimated photosystem II (PSII) centres (Fv'/Fm'). Severe drought stress (SS) decreased gs and A to ∼5% and ∼15% of the control values, respectively, and caused increases in Ci and PSII excitation pressure (1 − qP), as well as decreases in water potentials, effective quantum yield of PSII (ΦPSII), maximum efficiency of PSII (Fv/Fm) and Fv'/Fm'. Ascorbate and glutathione concentrations remained unaffected by drought treatments, but ascorbate became more oxidised under severe stress. MS seedlings recovered within 1 day (Ci, Fv'/Fm') to 1 week (A, gs) of re-watering. In comparison, SS seedlings had longer-lasting after-stress effects, with recovery of many variables (gs, water potentials, Fv/Fm, ΦPSII, Fv'/Fm') taking between 1 and 3 weeks from re-watering. We found no indication that interaction with antioxidants played a significant role in recovery. In conclusion, A. luehmannii seedlings appear to function normally under moderate drought, but do not seem to have particular metabolic tolerance mechanisms to endure severe drought, which may have implications for its persistence under climate change at the drier margins of its distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号