首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
To investigate the mode of action of the p16(INK4a) tumor suppressor protein, we have established U2-OS cells in which the expression of p16(INK4a) can be regulated by addition or removal of isopropyl-beta-D-thiogalactopyranoside. As expected, induction of p16(INK4a) results in a G1 cell cycle arrest by inhibiting phosphorylation of the retinoblastoma protein (pRb) by the cyclin-dependent kinases CDK4 and CDK6. However, induction of p16(INK4a) also causes marked inhibition of CDK2 activity. In the case of cyclin E-CDK2, this is brought about by reassortment of cyclin, CDK, and CDK-inhibitor complexes, particularly those involving p27(KIP1). Size fractionation of the cellular lysates reveals that a substantial proportion of CDK4 participates in active kinase complexes of around 200 kDa. Upon induction of p16(INK4a), this complex is partly dissociated, and the majority of CDK4 is found in lower-molecular-weight fractions consistent with the formation of a binary complex with p16(INK4a). Sequestration of CDK4 by p16(INK4a) allows cyclin D1 to associate increasingly with CDK2, without affecting its interactions with the CIP/KIP inhibitors. Thus, upon the induction of p16(INK4a), p27(KIP1) appears to switch its allegiance from CDK4 to CDK2, and the accompanying reassortment of components leads to the inhibition of cyclin E-CDK2 by p27(KIP1) and p21(CIP1). Significantly, p16(INK4a) itself does not appear to form higher-order complexes, and the overwhelming majority remains either free or forms binary associations with CDK4 and CDK6.  相似文献   

3.
We show that E6 proteins from benign human papillomavirus type 1 (HPV1) and oncogenic HPV16 have the ability to alter the regulation of the G(1)/S transition of the cell cycle in primary human fibroblasts. Overexpression of both viral proteins induces cellular proliferation, retinoblastoma (pRb) phosphorylation, and accumulation of products of genes that are negatively regulated by pRb, such as p16(INK4a), CDC2, E2F-1, and cyclin A. Hyperphosphorylated forms of pRb are present in E6-expressing cells even in the presence of ectopic levels of p16(INK4a). The E6 proteins strongly increased the cyclin A/cyclin-dependent kinase 2 (CDK2) activity, which is involved in pRb phosphorylation. In addition, mRNA and protein levels of the CDK2 inhibitor p21(WAF1/CIP1) were strongly down-regulated in cells expressing E6 proteins. The down-regulation of the p21(WAF1/CIP1) gene appears to be independent of p53 inactivation, since HPV1 E6 and an HPV16 E6 mutant unable to target p53 were fully competent in decreasing p21(WAF1/CIP1) levels. E6 from HPV1 and HPV16 also enabled cells to overcome the G(1) arrest imposed by oncogenic ras. Immunofluorescence staining of cells coexpressing ras and E6 from either HPV16 or HPV1 revealed that antiproliferative (p16(INK4a)) and proliferative (Ki67) markers were coexpressed in the same cells. Together, these data underline a novel activity of E6 that is not mediated by inactivation of p53.  相似文献   

4.
Proliferation of some cultured human tumor cell lines bearing high numbers of epidermal growth factor (EGF) receptors is paradoxically inhibited by EGF in nanomolar concentrations. In the present study, we have investigated the biochemical mechanism of growth inhibition in A431 human squamous carcinoma cells exposed to exogenous EGF. In parallel, we studied a selected subpopulation, A431-F, which is resistant to EGF-mediated growth inhibition. We observed a marked reduction in cyclin-dependent kinase-2 (CDK2) activity when A431 and A431-F cells were cultured with 20 nM EGF for 4 h. After further continuous exposure of A431 cells to EGF, the CDK2 activity remained at a low level and was accompanied by persistent G1 arrest. In contrast, the early reduced CDK2 activity and G1 accumulation in A431-F cells was only transient. We found that, at early time points (4-8 h), EGF induces p21Cip1/WAF1 mRNA and protein expression in both EGF-sensitive A431 cells and EGF-resistant A431-F cells. But only in A431 cells, was p21Cip1/WAF1 expression sustained at a significantly increased level for up to 5 d after addition of EGF. Induction of p21Cip1/WAF1 by EGF could be inhibited by a specific EGF receptor tyrosine kinase inhibitor, tyrphostin AG1478, suggesting that p21Cip1/WAF1 induction was a consequence of receptor tyrosine kinase activation by EGF. We also demonstrated that the increased p21Cip1/WAF1 was associated with both CDK2 and proliferating cell nuclear antigen (PCNA). Taken together, our results demonstrate that p21Cip1/WAF1 is an important mediator of EGF-induced G1 arrest and growth inhibition in A431 cells.  相似文献   

5.
Estrogen antagonists inhibit cell cycle progression in estrogen-responsive cells, but the molecular mechanisms are not fully defined. Antiestrogen-mediated G(0)/G(1) arrest is associated with decreased cyclin D1 gene expression, inactivation of cyclin D1-cyclin dependent kinase (Cdk) 4 complexes, and decreased phosphorylation of the retinoblastoma protein (pRb). We now show that treatment of MCF-7 breast cancer cells with the pure estrogen antagonist ICI 182780 results in inhibition of cyclin E-Cdk2 activity prior to a decrease in the G(1) to S phase transition. This decrease was dependent on p21(WAF1/Cip1) since treatment with antisense oligonucleotides to p21 attenuated the effect. Recruitment of p21 to cyclin E-Cdk2 complexes was in turn dependent on decreased cyclin D1 expression since it was apparent following treatment with antisense cyclin D1 oligonucleotides. To define where within the G(0) to S phase continuum antiestrogen-treated cells arrested, we assessed the relative abundance and phosphorylation state of pocket protein-E2F complexes. While both pRb and p107 levels were significantly decreased, p130 was increased 4-fold and was accompanied by the formation of p130.E2F4 complexes and the accumulation of hyperphophorylated E2F4, putative markers of cellular quiescence. Thus, ICI 182780 inhibits both cyclin D1-Cdk4 and cyclin E-Cdk2 activity, resulting in the arrest of MCF-7 cells in a state with characteristics of quiescence (G(0)), as opposed to G(1) arrest.  相似文献   

6.
7.
Replicative senescence of human diploid fibroblasts (HDFs) is largely implemented by the cyclin-dependent kinase (CDK) inhibitors p16(INK4a) and p21(CIP1). Their accumulation results in a loss of CDK2 activity, and cells arrest with the retinoblastoma protein (pRb) in its hypophosphorylated state. It has become standard practice to bypass the effects of p16(INK4a) by overexpressing CDK4 or a variant form that is unable to bind to INK4 proteins. Although CDK4 and CDK6 and their INK4-insensitive variants can extend the life span of HDFs, they also cause a substantial increase in the levels of endogenous p16(INK4a). Here we show that CDK4 and CDK6 can extend the life span of HDFs that have inactivating mutations in both alleles of INK4a or in which INK4a levels are repressed, indicating that overexpression of CDK4/6 is not equivalent to ablation of p16(INK4a). However, catalytically inactive versions of these kinases are unable to extend the replicative life span, suggesting that the impact of ectopic CDK4/6 depends on their ability to phosphorylate as yet unidentified substrates rather than to sequester CDK inhibitors. Since p16(INK4a) deficiency, CDK4 expression, and p53 or p21(CIP1) ablation have additive effects on replicative life span, our results underscore the idea that senescence is an integrated response to diverse signals.  相似文献   

8.
Alam S  Sen E  Brashear H  Meyers C 《Journal of virology》2006,80(10):4927-4939
Adeno-associated virus type 2 (AAV2) seropositivity is negatively correlated with the development of human papillomavirus (HPV)-associated cervical cancer. We have begun analysis of the molecular mechanisms underlying AAV2-mediated onco-suppression through cell cycle regulation in HPV-infected keratinocytes isolated from a low-grade cervical lesion. AAV2 superinfection of HPV type 31b (HPV31b)-positive cells at early times postinfection resulted in degradation of the cyclin-dependent kinase (CDK) inhibitor p21(WAF1) protein in a proteosome-dependent manner. Downstream consequences of lowering p21(WAF1) levels included a proportional loss of cyclin E/CDK2 complexes bound to p21(WAF1). The loss of stable p21(WAF1)/cyclin E/CDK2 complexes coincided with an increase in CDK2-associated kinase activity and cyclin E levels. Both events have the potential to enhance the G(1)/S transition point mediated by active cyclin E/CDK2 complexes. Concurrently, cyclin A and E2F levels were decreased, conditions reminiscent of delayed entrance into the S phase of the cell cycle. On the other hand, infection of primary human foreskin keratinocytes with AAV2 resulted in upregulation of p21(WAF1) protein levels, reminiscent of a block in G(1) phase progression. We propose that by down regulating p21(WAF1), AAV2 initiates cell cycle activities leading to enhanced G(1)/S phase-like conditions which may be favorable for AAV2-specific functions and may lead to downstream interference with HPV-associated cervical cancer progression.  相似文献   

9.
We have examined the effects of the CDK1 inhibitor CGP74514A on cell cycle- and apoptosis-related events in human leukemia cells. An 18-hr exposure to 5 mM CGP74514A induced mitochondrial damage (i.e., loss of Dym) and apoptosis in multiple human leukemia cell lines (e.g., U937, HL-60, KG-1, CCRF-CEM, Raji, and THP; range 30-95%). In U937 cells, CGP74514A- induced apoptosis (5 mM) became apparent within 4 hr and approached 100% by 24 hr. The pan- caspase inhibitor Boc-fmk and the caspase-8 inhibitor IETD-fmk opposed CGP74514A-induced caspase-9 activation and PARP degradation, but not cytochrome c or Smac/DIABLO release. CGP74514A-mediated apoptosis was substantially blocked by ectopic expression of full-length Bcl- 2, a loop-deleted mutant Bcl-2, and Bcl-xL. CGP74514A treatment (5 mM; 18 hr) resulted in increased p21CIP1 expression, p27KIP1 degradation, diminished E2F1 expression, and dephosphorylation of p34cdc2. It also induced early (i.e., within 2 hr) inhibition of CDK1 activity and dephosphorylation of pRb, followed by pRb degradation, but did not block pRb phosphorylation at CDK2- and CDK4- specific sites. These findings indicate that the selective CDK1 inhibitor, CGP74514A, induces complex changes in cell cycle-related proteins in human leukemia cells accompanied by extensive mitochondrial damage, caspase activation, and apoptosis.

Key Words:

Leukemia, CDK1 Inhibitor, Apoptosis, CGP74514A  相似文献   

10.
4-Hydroxynonenal (HNE), a highly reactive product of lipid peroxidation, has an antiproliferative effect in several tumor cell lines and provokes alteration of cell cycle progression in HL-60 cells. HNE down-regulates c-myc expression in K562, HL-60, and MEL cells. This prompted us to study the cascade of phenomena that, starting from the CKIs expression and the phosphorylation of pRb, arrives at the E2F binding to consensus sequence in the P2 promoter of the c-myc gene. Treatment of HL-60 cells with HNE (1 microM) causes a p53-independent increase of p21(WAF1/CIP1) expression, pRb dephosphorylation, a decrease of low molecular weight E2F complexes and an increase of high molecular weight E2F complexes bound to P2 c-myc promoter. E2F4 expression is reduced by HNE treatment as well as the amount of pRb/E2F4 complexes, whereas the amount of pRb/E2F1 complexes is increased. In conclusion, HNE can affect the pRb/E2F pathway by modifying the expression of several genes involved in the control of cell proliferation.  相似文献   

11.
CDK4 and CDK6 bound to D-type cyclins are master integrators of G1 phase cell cycle regulations by initiating the inactivating phosphorylation of the central oncosuppressor pRb. Because of their frequent deregulation in cancer, cyclin D-CDK4/6 complexes are emerging as especially promising therapeutic targets. The specific CDK4/6 inhibitor PD0332991 is currently tested in a growing number of phase II/III clinical trials against a variety of pRb-proficient chemotherapy-resistant cancers. We have previously shown that PD0332991 inhibits not only CDK4/6 activity but also the activation by phosphorylation of the bulk of cyclin D-CDK4 complexes stabilized by p21 binding. Here we show that PD0332991 has either a positive or a negative impact on the activation of cyclin D-CDK4/6 complexes, depending on their binding to p21. Indeed, whereas PD0332991 inhibits the phosphorylation and activity of p21-bound CDK4/6, it specifically stabilized activated cyclin D3-CDK4/6 complexes devoid of p21 and p27. After elimination of PD0332991, these activated cyclin D3-CDK4/6 complexes persisted for at least 24 h, resulting in paradoxical cell cycle entry in the absence of a mitogenic stimulation. This unsuspected positive effect of PD0332991 on cyclin D3-CDK4/6 activation should be carefully assessed in the clinical evaluation of PD0332991, which until now only involves discontinuous administration protocols.  相似文献   

12.
Abstract. Objectives: This article is to study the role of G1/S regulators in differentiation of pluripotent embryonic cells. Materials and methods: We established a P19 embryonal carcinoma cell‐based experimental system, which profits from two similar differentiation protocols producing endodermal or neuroectodermal lineages. The levels, mutual interactions, activities, and localization of G1/S regulators were analysed with respect to growth and differentiation parameters of the cells. Results and Conclusions: We demonstrate that proliferation parameters of differentiating cells correlate with the activity and structure of cyclin A/E–CDK2 but not of cyclin D–CDK4/6–p27 complexes. In an exponentially growing P19 cell population, the cyclin D1–CDK4 complex is detected, which is replaced by cyclin D2/3–CDK4/6–p27 complex following density arrest. During endodermal differentiation kinase‐inactive cyclin D2/D3–CDK4–p27 complexes are formed. Neural differentiation specifically induces cyclin D1 at the expense of cyclin D3 and results in predominant formation of cyclin D1/D2–CDK4–p27 complexes. Differentiation is accompanied by cytoplasmic accumulation of cyclin Ds and CDK4/6, which in neural cells are associated with neural outgrowths. Most phenomena found here can be reproduced in mouse embryonic stem cells. In summary, our data demonstrate (i) that individual cyclin D isoforms are utilized in cells lineage specifically, (ii) that fundamental difference in the function of CDK4 and CDK6 exists, and (iii) that cyclin D–CDK4/6 complexes function in the cytoplasm of differentiated cells. Our study unravels another level of complexity in G1/S transition‐regulating machinery in early embryonic cells.  相似文献   

13.
Two distinct mitogenic modes coexist in the physiologically relevant model ofprimary cultures of dog thyroid epithelial cells. The differentiation-associated mitogenicstimulation by TSH and cAMP specifically requires the assembly and activation of cyclin D3-cyclin-dependent kinase (CDK)4 associated to p27kip1, while the dedifferentiatingproliferation induced by growth factors is associated with induction of cyclin D1. Here, wesuggest that the related CDK “inhibitors” p21cip1 and p27 are differentially utilized as positiveCDK4 regulators in these mitogenic stimulations. p21 was induced by EGF+serum, butrepressed by TSH, which, as previously shown, up-regulates p27. In response to EGF+serum,p21 supported the nuclear localization, phosphorylation and pRb-kinase activity of CDK4.Unexpectedly, partly different site-specificities of pRb-kinase activity, leading to similardifferences in the phosphorylation pattern of pRb in intact cells, were associated with cyclinD3-CDK4 bound to p27 in TSH-stimulated cells, or with CDK4 bound to p21 in growthfactor-stimulated cells. These differences were ascribed to the predominant association of thelatter complex to cyclin D1. Indeed, in different cell types and species, cyclin D1 varied fromcyclin D3 by more efficiently driving the phosphorylation of pRb at sites (Ser807/811 andThr826) required for its electrophoretic mobility shift. Therefore, different D-type cyclinscould differently impact some pRb functions, which should be considered not only in theunderstanding of the relationships between cell cycle and differentiation expression in thedistinct mitogenic modes of thyroid cells, but also in various development or differentiationmodels associated with dramatic switches in the expression of individual D-type cyclins.  相似文献   

14.
We have examined the effects of the CDK1 inhibitor CGP74514A on cell cycle- and apoptosis-related events in human leukemia cells. An 18-hr exposure to 5 microM CGP74514A induced mitochondrial damage (i.e., loss of Delta psi(m)) and apoptosis in multiple human leukemia cell lines (e.g., U937, HL-60, KG-1, CCRF-CEM, Raji, and THP; range 30-95%). In U937 cells, CGP74514A- induced apoptosis (5 microM) became apparent within 4 hr and approached 100% by 24 hr. The pan- caspase inhibitor Boc-fmk and the caspase-8 inhibitor lETD-fmk opposed CGP74514A-induced caspase-9 activation and PARP degradation, but not cytochrome c or Smac/DIABLO release. CGP74514A-mediated apoptosis was substantially blocked by ectopic expression of full-length Bel- 2, a loop-deleted mutant Bcl-2, and Bcl-x(L). CGP74514A treatment (5 microM; 18 hr) resulted in increased p21(CIP1) expression, p27(KIP1) degradation, diminished E2F1 expression, and dephosphorylation of p34(CDC2). It also induced early (i.e., within 2 hr) inhibition of CDK1 activity and dephosphorylation of pRb, followed by pRb degradation, but did not block pRb phosphorylation at CDK2- and CDK4- specific sites. These findings indicate that the selective CDK1 inhibitor, CGP74514A, induces complex changes in cell cycle-related proteins in human leukemia cells accompanied by extensive mitochondrial damage, caspase activation, and apoptosis.  相似文献   

15.
16.
17.
FGF signaling inhibits chondrocyte proliferation and requires the function of the p107 and p130 members of the Rb protein family to execute growth arrest. p107 dephosphorylation plays a critical role in the chondrocyte response to FGF, as overexpression of cyclin D1/CDK4 complexes (the major p107 kinase) in rat chondrosarcoma (RCS) cells overcomes FGF-induced p107 dephosphorylation and growth arrest. In cells overexpressing cyclin D1/CDK4, FGF-induced downregulation of cyclin E/CDK2 activity was absent. To examine the role of cyclin E/CDK2 complexes in mediating FGF-induced growth arrest, this kinase was overexpressed in RCS cells. FGF-induced dephosphorylation of either p107 or p130 was not prevented by overexpressing cyclin E/CDK2 complexes. Unexpectedly, however, FGF-treated cells exhibited sustained proliferation even in the presence of hypophosphorylated p107 and p130. Both pocket proteins were able to form repressive complexes with E2F4 and E2F5 but these repressors were not translocated into the nucleus and therefore were unable to occupy their respective target DNA sites. Overexpressed cyclin E/CDK2 molecules were stably associated with p107 and p130 in FGF-treated cells in the context of E2F repressive complexes. Taken together, our data suggest a novel mechanism by which cyclin E/CDK2 complexes can promote cell cycle progression in the presence of dephosphorylated Rb proteins and provide a novel insight into the key Retinoblastoma/E2F/cyclin E pathway. Our data also highlight the importance of E2F4/p130 complexes for FGF-mediated growth arrest in chondrocytes.  相似文献   

18.
FGF signaling inhibits chondrocyte proliferation and requires the function of the p107 and p130 members of the Rb protein family to execute growth arrest. p107 dephosphorylation plays a critical role in the chondrocyte response to FGF, as overexpression of cyclin D1/CDK4 complexes (the major p107 kinase) in rat chondrosarcoma (RCS) cells overcomes FGF-induced p107 dephosphorylation and growth arrest. In cells overexpressing cyclin D1/CDK4, FGF-induced downregulation of cyclin E/CDK2 activity was absent. To examine the role of cyclin E/CDK2 complexes in mediating FGF-induced growth arrest, this kinase was overexpressed in RCS cells. FGF-induced dephosphorylation of either p107 or p130 was not prevented by overexpressing cyclin E/CDK2 complexes. Unexpectedly, however, FGF-treated cells exhibited sustained proliferation even in the presence of hypophosphorylated p107 and p130. Both pocket proteins were able to form repressive complexes with E2F4 and E2F5 but these repressors were not translocated into the nucleus and therefore were unable to occupy their respective target DNA sites. Overexpressed cyclin E/CDK2 molecules were stably associated with p107 and p130 in FGF-treated cells in the context of E2F repressive complexes. Taken together, our data suggest a novel mechanism by which cyclin E/CDK2 complexes can promote cell cycle progression in the presence of dephosphorylated Rb proteins and provide a novel insight into the key Retinoblastoma/E2F/cyclin E pathway. Our data also highlight the importance of E2F4/p130 complexes for FGF-mediated growth arrest in chondrocytes.  相似文献   

19.
20.
D-type cyclins (D1, D2, and D3) are components of the cell cycle machinery. Their association with cyclin-dependent kinase 4 (CDK4) and CDK6 causes activation of these protein kinases and leads to phosphorylation and inactivation of the retinoblastoma protein, pRb. Using embryos expressing single D-type cyclin ('cyclin D1-only', 'cyclin D2-only' and 'cyclin D3-only'), we tested whether each of D-type cyclin plays the same role in CDK activation and phosphorylation of pRb during mouse embryonic development. We found that the level of CDK4 activity was similar in wild-type embryos and those expressing only cyclin D3 or cyclin D2. However, we did not detect CDK4 activity in embryos expressing only cyclin D1, despite the fact that this cyclin was able to form complexes with CDK4 and p27(kip1) in wild-type as well as in mutant embryos. Analysis of the expression pattern of mRNA encoding cyclin D1 revealed that the expression of this RNA is regulated temporally during embryogenesis. These data and results from other laboratories indicate that cyclin D1-dependent CDK4 activity is dispensable for normal development of the mouse embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号