首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Branch point selection in alternative splicing of tropomyosin pre-mRNAs.   总被引:21,自引:7,他引:14  
The rat tropomyosin 1 gene gives rise to two mRNAs encoding rat fibroblast TM-1 and skeletal muscle beta-tropomyosin via an alternative splicing mechanism. The gene is comprised of 11 exons. Exons 1 through 5 and exons 8 and 9 are common to all mRNAs expressed from this gene. Exons 6 and 11 are used in fibroblasts as well as smooth muscle whereas exons 7 and 10 are used exclusively in skeletal muscle. In the present studies we have focused on the mutually exclusive internal alternative splice choice involving exon 6 (fibroblast-type splice) and exon 7 (skeletal muscle-type splice). To study the mechanism and regulation of alternative splice site selection we have characterized the branch points used in processing of the tropomyosin pre-mRNAs in vitro using nuclear extracts obtained from HeLa cells. Splicing of exon 5 to exon 6 (fibroblast-type splice) involves the use of three branch points located 25, 29, and 36 nucleotides upstream of the 3' splice site of exon 6. Splicing of exon 6 (fibroblast-type splice) or exon 7 (skeletal muscle type-splice) to exon 8 involves the use of the same branch point located 24 nucleotides upstream of this shared 3' splice site. In contrast, the splicing of exon 5 to exon 7 (skeletal muscle-type splice) involves the use of three branch sites located 144, 147 and 153 nucleotides, upstream of the 3' splice site of exon 7. In addition, the pyrimidine content of the region between these unusual branch points and the 3' splice site of exon 7 was found to be greater than 80%. These studies raise the possibility that the use of branch points located a long distance from a 3' splice site may be an essential feature of some alternatively spliced exons. The possible significance of these unusual branch points as well as a role for the polypyrimidine stretch in intron 6 in splice site selection are discussed.  相似文献   

2.
The rat beta-tropomyosin gene encodes two tissue-specific isoforms that contain the internal, mutually exclusive exons 6 (nonmuscle/smooth muscle) and 7 (skeletal muscle). We previously demonstrated that the 3' splice site of exon 6 can be activated by introducing a 9-nt polyuridine tract at its 3' splice site, or by strengthening the 5' splice site to a U1 consensus binding site, or by joining exon 6 to the downstream common exon 8. Examination of sequences within exons 6 and 8 revealed the presence of two purine-rich motifs in exon 6 and three purine-rich motifs in exon 8 that could potentially represent exonic splicing enhancers (ESEs). In this report we carried out substitution mutagenesis of these elements and show that some of them play a critical role in the splice site usage of exon 6 in vitro and in vivo. Using UV crosslinking, we have identified SF2/ASF as one of the cellular factors that binds to these motifs. Furthermore, we show that substrates that have mutated ESEs are blocked prior to A-complex formation, supporting a role for SF2/ASF binding to the ESEs during the commitment step in splicing. Using pre-mRNA substrates containing exons 5 through 8, we show that the ESEs within exon 6 also play a role in cooperation between the 3' and 5' splice sites flanking this exon. The splicing of exon 6 to 8 (i.e., 5' splice site usage of exon 6) was enhanced with pre-mRNAs containing either the polyuridine tract in the 3' splice site or consensus sequence in the 5' splice site around exon 6. We show that the ESEs in exon 6 are required for this effect. However, the ESEs are not required when both the polyuridine and consensus splice site sequences around exon 6 were present in the same pre-mRNA. These results support and extend the exon-definition hypothesis and demonstrate that sequences at the 3' splice site can facilitate use of a downstream 5' splice site. In addition, the data support the hypothesis that ESEs can compensate for weak splice sites, such as those found in alternatively spliced exons, thereby providing a target for regulation.  相似文献   

3.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

4.
A two-site model for the binding of U1 small nuclear ribonucleoprotein particle (U1 snRNP) was tested in order to understand how exon partners are selected in complex pre-mRNAs containing alternative exons. In this model, it is proposed that two U1 snRNPs define a functional unit of splicing by base pairing to the 3' boundary of the downstream exon as well as the 5' boundary of the intron to be spliced. Three-exon substrates contained the alternatively spliced exon 4 (E4) region of the preprotachykinin gene. Combined 5' splice site mutations at neighboring exons demonstrate that weakened binding of U1 snRNP at the downstream site and improved U1 snRNP binding at the upstream site result in the failure to rescue splicing of the intron between the mutations. These results indicate the stringency of the requirement for binding a second U1 snRNP to the downstream 5' splice site for these substrates as opposed to an alternative model in which a certain threshold level of U1 snRNP can be provided at either site. Further support for the two-site model is provided by single-site mutations in the 5' splice site of the third exon, E5, that weaken base complementarity to U1 RNA. These mutations block E5 branchpoint formation and, surprisingly, generate novel branchpoints that are specified chiefly by their proximity to a cryptic 5' splice site located at the 3' terminus of the pre-mRNA. The experiments shown here demonstrate a true stimulation of 3' splice site activity by the downstream binding of U1 snRNP and suggest a possible mechanism by which combinatorial patterns of exon selection are achieved for alternatively spliced pre-mRNAs.  相似文献   

5.
6.
C W Smith  B Nadal-Ginard 《Cell》1989,56(5):749-758
Alternative splicing of alpha-tropomyosin pre-mRNA involves mutually exclusive utilization of exons 2 and 3, exon 3 being preferentially selected in most cells. This mutually exclusive behavior is enforced by absolute incompatibility between the adjacent splice sites of the two exons, due to close proximity of the exon 3 branch point to exon 2. The branch point, with an associated polypyrimidine tract, is in an unusual location, 177 nt upstream of the acceptor, only 42 nt from the exon 2 splice donor site. Splicing of exon 2 to 3 is consequently blocked prior to formation of an active spliceosome complex. This block to splicing can be relieved by insertion of spacer elements that increase the donor site-branch point separation to 51-59 nt. The unconventional relative location of the constitutive cis splicing elements therefore provides a simple mechanistic basis for strict mutually exclusive splicing. These results not only demonstrate that the branch point is not specified by proximity to the splice acceptor site, but rather suggest that it is the acceptor site which is specified relative to the branch point.  相似文献   

7.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

8.
9.
10.
Certain thalassemic human beta-globin pre-mRNAs carry mutations that generate aberrant splice sites and/or activate cryptic splice sites, providing a convenient and clinically relevant system to study splice site selection. Antisense 2'-O-methyl oligoribonucleotides were used to block a number of sequences in these pre-mRNAs and were tested for their ability to inhibit splicing in vitro or to affect the ratio between aberrantly and correctly spliced products. By this approach, it was found that (i) up to 19 nucleotides upstream from the branch point adenosine are involved in proper recognition and functioning of the branch point sequence; (ii) whereas at least 25 nucleotides of exon sequences at both 3' and 5' ends are required for splicing, this requirement does not extend past the 5' splice site sequence of the intron; and (iii) improving the 5' splice site of the internal exon to match the consensus sequence strongly decreases the accessibility of the upstream 3' splice site to antisense 2'-O-methyl oligoribonucleotides. This result most likely reflects changes in the strength of interactions near the 3' splice site in response to improvement of the 5' splice site and further supports the existence of communication between these sites across the exon.  相似文献   

11.
Polypyrimidine tract binding protein (PTB) represses some alternatively spliced exons by direct occlusion of splice sites. In repressing the splicing of the c-src N1 exon, we find that PTB acts by a different mechanism. PTB does not interfere with U1 snRNP binding to the N1 5' splice site. Instead, PTB prevents formation of the prespliceosomal early (E) complex across the intervening intron by preventing the assembly of the splicing factor U2AF on the 3' splice site of exon 4. When the unregulated 5' splice site of the upstream exon 3 is present, U2AF binding is restored and splicing between exons 3 and 4 proceeds in spite of the N1 exon bound PTB. Thus, rather than directly blocking the N1 splice sites, PTB prevents the 5' splice site-dependent assembly of U2AF into the E complex. This mechanism likely occurs in many other alternative exons.  相似文献   

12.
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.  相似文献   

13.
14.
Very small vertebrate exons are problematic for RNA splicing because of the proximity of their 3' and 5' splice sites. In this study, we investigated the recognition of a constitutive 7-nucleotide mini-exon from the troponin I gene that resides quite close to the adjacent upstream exon. The mini-exon failed to be included in spliced RNA when placed in a heterologous gene unless accompanied by the upstream exon. The requirement for the upstream exon disappeared when the mini-exon was internally expanded, suggesting that the splice sites bordering the mini-exon are compatible with those of other constitutive vertebrate exons and that the small size of the exon impaired inclusion. Mutation of the 5' splice site of the natural upstream exon did not result in either exon skipping or activation of a cryptic 5' splice site, the normal vertebrate phenotypes for such mutants. Instead, a spliced RNA accumulated that still contained the upstream intron. In vitro, the mini-exon failed to assemble into spliceosome complexes unless either internally expanded or accompanied by the upstream exon. Thus, impaired usage of the mini-exon in vivo was accompanied by impaired recognition in vitro, and recognition of the mini-exon was facilitated by the presence of the upstream exon in vivo and in vitro. Cumulatively, the atypical in vivo and in vitro properties of the troponin exons suggest a mechanism for the recognition of this mini-exon in which initial recognition of an exon-intron-exon unit is followed by subsequent recognition of the intron.  相似文献   

15.
We previously found that the splicing of exon 5 to exon 6 in the rat beta-TM gene required that exon 6 first be joined to the downstream common exon 8 (Helfman et al., Genes and Dev. 2, 1627-1638, 1988). Pre-mRNAs containing exon 5, intron 5 and exon 6 are not normally spliced in vitro. We have carried out a mutational analysis to determine which sequences in the pre-mRNA contribute to the inability of this precursor to be spliced in vitro. We found that mutations in two regions of the pre-mRNA led to activation of the 3'-splice site of exon 6, without first joining exon 6 to exon 8. First, introduction of a nine nucleotide poly U tract upstream of the 3'-splice site of exon 6 results in the splicing of exon 5 to exon 6 with as little as 35 nucleotides of exon 6. Second, introduction of a consensus 5'-splice site in exon 6 led to splicing of exon 5 to exon 6. Thus, three distinct elements can act independently to activate the use of the 3'-splice site of exon 6: (1) the sequences contained within exon 8 when joined to exon 6, (2) a poly U tract in intron 5, and (3) a consensus 5'-splice site in exon 6. Using biochemical assays, we have determined that these sequence elements interact with distinct cellular factors for 3'-splice site utilization. Although HeLa cell nuclear extracts were able to splice all three types of pre-mRNAs mentioned above, a cytoplasmic S100 fraction supplemented with SR proteins was unable to efficiently splice exon 5 to exon 6 using precursors in which exon 6 was joined to exon 8. We also studied how these elements contribute to alternative splice site selection using precursors containing the mutually exclusive, alternatively spliced cassette comprised of exons 5 through 8. Introduction of the poly U tract upstream of exon 6, and changing the 5'-splice site of exon 6 to a consensus sequence, either alone or in combination, facilitated the use of exon 6 in vitro, such that exon 6 was spliced more efficiently to exon 8. These data show that intron sequences upstream of an exon can contribute to the use of the downstream 5'-splice, and that sequences surrounding exon 6 can contribute to tissue-specific alternative splice site selection.  相似文献   

16.
Pseudo-exons are intronic sequences that are flanked by apparent consensus splice sites but that are not observed in spliced mRNAs. Pseudo-exons are often difficult to activate by mutation and have typically been viewed as a conceptual challenge to our understanding of how the spliceosome discriminates between authentic and cryptic splice sites. We have analyzed an apparent pseudo-exon located downstream of mutually exclusive exons 2 and 3 of the rat alpha-tropomyosin (TM) gene. The TM pseudo-exon is conserved among mammals and has a conserved profile of predicted splicing enhancers and silencers that is more typical of a genuine exon than a pseudo-exon. Splicing of the pseudo-exon is fully activated for splicing to exon 3 by a number of simple mutations. Splicing of the pseudo-exon to exon 3 is predicted to lead to nonsense-mediated decay (NMD). In contrast, when "prespliced" to exon 2 it follows a "zero length exon" splicing pathway in which a newly generated 5' splice site at the junction with exon 2 is spliced to exon 4. We propose that a subset of apparent pseudo-exons, as exemplified here, are actually authentic alternative exons whose inclusion leads to NMD.  相似文献   

17.
We have devised an in vitro splicing assay in which the mutually exclusive exons 2 and 3 of alpha-tropomyosin act as competing 3' splice sites for joining to exon 1. Splicing in normal HeLa cell nuclear extracts results in almost exclusive joining of exons 1 and 3. Splicing in decreased nuclear extract concentrations and decreased ionic strength results in increased 1-2 splicing. We have used this assay to determine the role of three constitutive pre-mRNA splicing factors on alternative 3' splice site selection. Polypyrimidine tract binding protein (PTB) was found to inhibit the splicing of introns containing a strong binding site for this factor. However, the inhibitory effect of PTB could be partially reversed if pre-mRNAs were preincubated with U2 auxiliary factor (U2AF) prior to splicing in PTB-supplemented extracts. For alpha-tropomyosin, regulation of splicing by PTB and U2AF primarily affected the joining of exons 1-3 with no dramatic increases in 1-2 splicing being detected. Preincubation of pre-mRNAs with SR proteins led to small increases in 1-2 splicing. However, if pre-mRNAs were preincubated with SR proteins followed by splicing in PTB-supplemented extracts, there was a nearly complete reversal of the normal 1-2 to 1-3 splicing ratios. Thus, multiple pairwise, and sometimes antagonizing, interactions between constitutive pre-mRNA splicing factors and the pre-mRNA can regulate 3' splice site selection.  相似文献   

18.
19.
mRNA选择性剪接的分子机制   总被引:5,自引:0,他引:5  
章国卫  宋怀东  陈竺 《遗传学报》2004,31(1):102-107
真核细胞mRNA前体经过剪接成为成熟的mRNA,而mRNA前体的选择性剪接极大地增加了蛋白质的多样性和基因表达的复杂程度,剪接位点的识别可以以跨越内含子的机制(内含子限定)或跨越外显子的机制(外显子限定)进行。选择性剪接有多种剪接形式:选择不同的剪接位点,选择不同的剪接末端,外显子的不同组合及内含子的剪接与否等。选择性剪接过程受到许多顺式元件和反式因子的调控,并与基本剪接过程紧密联系,剪接体中的一些剪接因子也参与了对选择性剪接的调控。选择性剪接也是1个伴随转录发生的过程,不同的启动子可调控产生不同的剪接产物。mRNA的选择性剪接机制多种多样,已发现RNA编辑和反式剪接也可参与选择性剪接过程。  相似文献   

20.
The 240-bp alpha exon of the tight junction (TJ) protein ZO-1 pre-mRNA is alternatively spliced. Expression of both ZO-1alpha+/ZO-1alpha- isoforms results in hermetic TJs, and these become leaky when ZO-1alpha- expression prevails. The alpha exon inclusion/skipping mechanism was studied by in vivo RT-PCR splicing assays in neural and epithelial cells, utilizing a canine minigene construct containing the alpha exon, and the flanking introns and exons. Inclusion of the alpha exon always occurs in wild-type MDCK cells and it is detectable in transfected HeLa cells. However, the alpha exon is skipped in transfected neural cells. Accordingly, both 5' and 3' splice sites surrounding the alpha exon appear to be suboptimal and no cis-acting splicing control elements were found in this exon. Deletion analysis revealed an 83-bp splicing enhancer in the downstream exon and a 35-bp splicing silencer at the beginning of the upstream exon. In epithelial cells all constructs rendered alpha exon inclusion. We conclude that, in neural cells, skipping of the alpha exon depends on two antagonistic exonic elements located in the flanking constitutive exons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号