首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peterson RB  Havir EA 《Planta》2000,210(2):205-214
Higher-plant chloroplasts alter the distribution of absorbed radiant energy between photosynthesis and heat formation in response to changing illumination level or environmental stress. Fluorescence imaging was used to screen 62 yellow-green T-DNA insertion mutant lines of Arabidopsis thaliana (L.) Heynh. for reduced photoprotective nonphotochemical quenching (NPQ) capacity. Pulse-modulation fluorometry was employed to characterize one line (denoted Lsr1) that exhibited an approximately 50% reduction in NPQ compared to the wild type (WT). The loss in NPQ capacity was associated with the ΔpH-dependent phase of quenching (qE). Under the growth conditions employed, pigment composition and levels of the six photosystem-II light-harvesting chlorophyll a/b proteins were identical in mutant and WT. Changes in the in-vivo levels of the xanthophyll pigments violaxanthin, antheraxanthin, and zeaxanthin in excess light were the same for mutant and WT. However, use of the violaxanthin de-epoxidase inhibitor dithiothreitol indicated that a zeaxanthin-dependent component of NPQ was specifically reduced in the mutant. The mutant exhibited diminished suppression of minimum fluorescence yield (F o ) in intense light suggesting an altered threshold in the mechanism of response to light stress in the mutant. The NPQ-deficient phenotype was meiotically transmissible as a semidominant trait and mapped near marker T27K12 on chromosome 1. The results suggest that the mutant is defective in sensing the transthylakoid ΔpH that reports exposure to excessive illumination. Received: 26 May 1999 / Accepted: 17 June 1999  相似文献   

2.
A. Hager  K. Holocher 《Planta》1994,192(4):581-589
The formation of zeaxanthin (Zea) from violaxanthin (Vio) in chloroplasts of leaves and algae upon strong illumination is currently suggested to play a role in the photoprotection of plants. Properties and location of the enzyme Vio de-epoxidase, which is responsible for the transformation of Vio to Zea, were studied using thylakoid membrane vesicles isolated from leaves of Spinacia oleracea L. Without using detergents a repeated freeze-thaw treatment of thylakoid vesicles was sufficient to release the enzyme into the medium. With the same procedure the mobile electron carrier plastocyanin, known to occur in the thylakoid lumen, was also released. The enzyme was demonstrated by its activity in the supernatant of the pelleted thylakoid vesicles in the presence of the added substrates Vio and ascorbic acid, as well as by staining of the released proteins after polyacrylamide gel electrophoresis. The release of the deepoxidase from the vesicles was pH-dependent, declined below pH 6.5 and ceased in the pH range around 5, which corresponds to the pH optimum of the enzyme activity. By using thylakoid vesicles isolated from pre-illuminated and therefore Zea-containing leaves the release by freeze-thaw cycles of both the de-epoxidase and plastocyanin was diminished compared with the dark control. However, the reason for this effect was not the Zea content but an unknown effect of the illumination on the thylakoid membrane properties. The de-epoxidase collected at pH 7 was able to re-bind to thylakoid membranes at pH 5.5 and to transform intrinsic Vio to Zea in the presence of ascorbate. The isolated de-epoxidase, as well as the endogenous membrane-bound de-epoxidase, was inhibited by dithiothreitol. From these results it is concluded that Vio de-epoxidase, like plastocyanin, is mobile within the thylakoid lumen at neutral pH values which occur under in-vivo conditions in the dark. However, upon strong illumination, when the lumen pH drops (pH < 6.5) due to the formation of a proton gradient, the properties of the de-epoxidase are altered and the enzyme becomes tightly bound to the membrane (in contrast to plastocyanin) thus gaining access to its substrate Vio. These findings corroborate the assumption of a transmembrane opposite location of the two enzymes of the xanthophyll cycle, the ascorbate-dependent Vio deepoxidase at the lumenal side and the NADPH-dependent Zea epoxidase at the stromal side. Indications in favour of a location of Vio within the lipid bilayer of the thylakoid membrane and of a binding of the active deepoxidase to these areas are discussed.  相似文献   

3.
Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo   总被引:1,自引:0,他引:1  
As a response to high light, plants have evolved non-photochemical quenching (NPQ), mechanisms that lead to the dissipation of excess absorbed light energy as heat, thereby minimizing the formation of dangerous oxygen radicals. One component of NPQ is pH dependent and involves the formation of zeaxanthin from violaxanthin. The enzyme responsible for the conversion of violaxanthin to zeaxanthin is violaxanthin de-epoxidase, which is located in the thylakoid lumen, is activated by low pH, and has been shown to use ascorbate (vitamin C) as its reductant in vitro. To investigate the effect of low ascorbate levels on NPQ in vivo, we measured the induction of NPQ in a vitamin C-deficient mutant of Arabidopsis, vtc2-2. During exposure to high light (1,500 micromol photons m(-2) s(-1)), vtc2-2 plants initially grown in low light (150 micromol photons m(-2) s(-1)) showed lower NPQ than the wild type, but the same quantum efficiency of photosystem II. Crosses between vtc2-2 and Arabidopsis ecotype Columbia established that the ascorbate deficiency cosegregated with the NPQ phenotype. The conversion of violaxanthin to zeaxanthin induced by high light was slower in vtc2-2, and this conversion showed saturation below the wild-type level. Both the NPQ and the pigment phenotype of the mutant could be rescued by feeding ascorbate to leaves, establishing a direct link between ascorbate, zeaxanthin, and NPQ. These experiments suggest that ascorbate availability can limit violaxanthin de-epoxidase activity in vivo, leading to a lower NPQ. The results also demonstrate the interconnectedness of NPQ and antioxidants, both important protection mechanisms in plants.  相似文献   

4.
Leipner J  Stamp P  Fracheboud Y 《Planta》2000,210(6):964-969
Infiltrating detached maize (Zeamays L.) leaves with L-galactono-1,4-lactone (L-GAL) resulted in a 4-fold increase in the content of leaf ascorbate. Upon exposure to high irradiance (1000 μmol photons m−2 s−1) at 5 °C, L-GAL leaves de-epoxidized the xanthophyll-cycle pigments faster than the control leaves; the maximal ratio of de-epoxidized xanthophyll-cycle pigments to the whole xanthophyll-cycle pool was the same in both leaf types. The elevated ascorbate content, together with the faster violaxanthin de-epoxidation, did not affect the degree of photoinhibition and the kinetics of the recovery from photoinhibition, assayed by monitoring the maximum quantum efficiency of photosystem II primary photochemistry (Fv/Fm). Under the experimental conditions, the thermal energy dissipation seems to be zeaxanthin-independent since, in contrast to the de-epoxidation, the decrease in the efficiency of excitation-energy capture by open photosystem II reaction centers (Fv′/Fm′) during the high-irradiance treatment at low temperature showed the same kinetic in both leaf types. This was also observed for the recovery of the maximal fluorescence after stress. Furthermore, the elevated ascorbate content did not diminish the degradation of pigments or α-tocopherol when leaves were exposed for up to 24 h to high irradiance at low temperature. Moreover, a higher content of ascorbate appeared to increase the requirement for reduced glutathione. Received: 20 May 1999 / Accepted: 29 October 1999  相似文献   

5.
The presence of an acidic lumen and the xanthophylls, zeaxanthin and antheraxanthin, are minimal requirements for induction of non-radiative dissipation of energy in the pigment bed of Photosystem II. We recently reported that ascorbate, which is required for formation for these xanthophylls, also can mediate the needed lumen acidity through the Mehler-peroxidase reaction [Neubauer and Yamamoto (1992) Plant Physiol 99: 1354–1361]. It is demonstrated that in non-CO2-fixing intact chloroplasts and thylakoids of Lactuca sativa, L. c.v. Romaine, the ascorbate available to support de-epoxidase activity is influenced by membrane barriers and the ascorbate-consuming Mehler-peroxidase reaction. In intact chloroplasts, this results in biphasic kinetic behavior for light-induced de-epoxidation. The initial relatively high activity is due to ascorbate preloaded into the thylakoid before light-induction and the terminal low activity due to limiting ascorbate from the effects of chloroplast membranes barriers and a light-dependent process. A five-fold difference between the initial and final activities was observed for light-induced de-epoxidation in chloroplasts pre-incubated with 120 mM ascorbate for 40 min. The light-dependent activity is ascribed to the competitive use of ascorbic acid by ascorbate peroxidase in the Mehler-peroxidase reaction. Thus, stimulating ascorbic peroxidase with H2O2 transiently inhibited de-epoxidase activity and concomitantly increased photochemical quenching. Also, the effects inhibiting ascorbate peroxidase with KCN, and the KM values for ascorbate peroxidase and violaxanthin de-epoxidase of 0.36 and 3.1 mM, respectively, support this conclusion. These results indicate that regulation of xanthophyll-dependent non-radiative energy dissipation in the pigment bed of Photosystem II is modulated not only by lumen acidification but also by ascorbate availability.Abbreviations APO ascorbate peroxidase - MP Mehler ascorbate-peroxidase - NIG nigericin - NPQ non-photochemical quenching - Fo dark fluorescence - F fluorescence at any time - FM maximal fluorescence of the (dark) non-energized state - FM maximal fluorescence of the energized state - qP coefficient for photochemical fluorescence quenching - VDE violaxanthin de-epoxidase - k first-order rate constant for violaxanthin de-epoxidase activity  相似文献   

6.
Kadota A  Sato Y  Wada M 《Planta》2000,210(6):932-937
 The light-induced intracellular relocation of chloroplasts was examined in red-light-grown protonemal cells of the moss Physcomitrella patens. When irradiated with polarized red or blue light, chloroplast distribution in the cell depended upon the direction of the electrical vector (E-vector) in both light qualities. When the E-vector was parallel to the cross-wall (i.e. perpendicular to the protonemal axis), chloroplasts accumulated along the cross-wall; however, no accumulation along the cross-wall was observed when the E-vector was perpendicular to it (i.e. parallel to the protonemal axis). When a part of the cell was irradiated with a microbeam of red or blue light, chloroplasts accumulated at or avoided the illumination point depending on the fluence rate used. Red light of 0.1–18 W m−2 and blue light of 0.01–85.5 W m−2 induced an accumulation response (low-fluence-rate response; LFR), while an avoidance response (high-fluence-rate response; HFR) was induced by red light of 60 W m−2 or higher and by blue light of 285 W m−2. The red-light-induced LFR and HFR were nullified by a simultaneous background irradiation of far-red light, whereas the blue-light-induced LFR and HFR were not affected at all by this treatment. These results show, for the first time, that dichroic phytochrome, as well as the dichroic blue-light receptor, is involved in the chloroplast relocation movement in these bryophyte cells. Further, the phytochrome-mediated responses but not the blue-light responses were revealed to be lost when red-light-grown cells were cultured under white light for 2 d. Received: 7 September 1999 / Accepted: 15 October 1999  相似文献   

7.
Banet G  Pick U  Zamir A 《Planta》2000,210(6):947-955
 Like higher plants, unicellular green algae of the genus Dunaliella respond to light stress by enhanced de-epoxidation of violaxanthin and accumulation of Cbr, a protein homologous to early light-inducible proteins (Elips) in plants. Earlier studies indicated that Cbr was associated with the light-harvesting complex of photosystem II (LHCII) and suggested it acted as a zeaxanthin-binding protein and fulfilled a photo-protective function (Levy et al. 1993, J. Biol. Chem. 268: 20892–20896). To characterize the protein-pigment subcomplexes containing Cbr in greater detail than attained so far, thylakoid membranes from Dunaliella salina grown in high light or normal light were solubilized with dodecyl maltoside and fractionated by isoelectric-focusing. Analysis of the resolved LHCII subcomplexes indicated preferred associations among the four LHCIIb polypeptides and between them and Cbr: subcomplexes including Cbr contained one or two of the more acidic of the four LHCIIb polypeptides as well as large amounts of lutein and zeaxanthin relative to chlorophyll a/b. After sucrose gradient centrifugation, Cbr free of LHCIIb polypeptides was detected together with released pigments; this Cbr possibly originated in subcomplexes dissociated in the course of the analysis. These results agree with the conclusion that Cbr is part of the network of LHCIIb protein-pigment complexes and suggest that the role played by Cbr involves the organization and/or stabilization of assemblies highly enriched in zeaxanthin and lutein. Such assemblies may function to protect PSII from photodamage due to overexcitation. Received: 6 August 1999 / Accepted: 23 November 1999  相似文献   

8.
The effects of dithiothreitol on absorbance changes at 505 and 515 nm in isolated lettuce chloroplasts were investigated. Dithiothreitol inhibited the ascorbate-dependent 505-nm change that is due to the de-epoxidation of violaxanthin to zeaxanthin. Dithiothreitol was effective for both light-induced de-epoxidation at pH 7 and dark de-epoxidation at pH 5. Titration of de-epoxidase activity with dithiothreitol resulted in complete inhibition at about 5 μmoles dithiothreitol per mg chlorophyll. Removal of dithiothreitol restored de-epoxidase activity. These results are consistent with the view that dithiothreitol inhibits violaxanthin de-epoxidation and the corresponding 505-nm change by reducing a disulfide that is required for de-epoxidase activity.

Dithiothreitol was effective in resolving absorbance changes due to violaxanthin de-epoxidation and other changes that were superimposed under some conditions. At 515 nm and in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), phenazine methosulfate, and ascorbate, dithiothreitol inhibited the large, slow and irreversible change which was due to de-epoxidation but not the fast and reversible so-called 515-nm change. At 505 nm and under similar conditions, dithiothreitol revealed the presence of a slow reversible change in addition to the one from de-epoxidation. Results with dithiothreitol showed that the absorbance change at 505 nm in the presence of DCMU, 2,6-dichlorophenolindophenol and ascorbate was due entirely to de-epoxidation. Similarly, absorbance changes at 515 nm also appeared to be mainly from de-epoxidation but with the presence of a small transient change due to some other components. It is suggested that dithiothreitol may be useful in resolving complex light-induced absorbance changes in other photosynthetic systems as well as in enabling new studies on reversible absorbance changes in the 500-nm region.  相似文献   


9.
The protein complexes of pea (Pisum sativum L.) etioplasts,etio-chloroplasts and chloroplasts were examined using 2D BlueNative/SDS–PAGE. The most prominent protein complexesin etioplasts were the ATPase and the Clp and FtsH proteasecomplexes which probably have a crucial role in the biogenesisof etioplasts and chloroplasts. Also the cytochrome b6f (Cytb6f) complex was assembled in the etioplast membrane, as wellas Rubisco, at least partially, in the stroma. These complexesare composed of proteins encoded by both the plastid and nucleargenomes, indicating that a functional cross-talk exists betweenpea etioplasts and the nucleus. In contrast, the proteins andprotein complexes that bind chlorophyll, with the PetD subunitand the entire Cyt b6f complex as an exception, did not accumulatein etioplasts. Nevertheless, some PSII core components suchas PsbE and the luminal oxygen-evolvong complex (OEC) proteinsPsbO and PsbP accumulated efficiently in etioplasts. After 6h de-etiolation, a complete PSII core complex appeared with40% of the maximal photochemical efficiency, but a fully functionalPSII was recorded only after 24 h illumination. Similarly, thecore complex of PSI was assembled after 6 h illumination, whereasthe PSI–light-harvesting complex I was stably assembledonly in chloroplasts illuminated for 24 h. Moreover, a batteryof proteins responsible for defense against oxidative stressaccumulated particularly in etioplasts, including the stromaland thylakoidal forms of ascorbate peroxidase, glutathione reductaseand PsbS.  相似文献   

10.
Abscisic acid (ABA)-deficient mutants of Arabidopsis do not synthesize the epoxy-xanthophylls antheraxanthin, violaxanthin, or neoxanthin. However, thylakoid membranes from these mutants contain 3-fold more zeaxanthin than wild-type plants. This increase in zeaxanthin occurs as a stoichiometric replacement of the missing violaxanthin and neoxanthin within the pigment-protein complexes of both photosystem I and photosystem II (PSII). The retention of zeaxanthin in the dark by ABA-deficient mutants sensitizes the leaves to the development of nonphotochemical quenching (NPQ) during the first 2 to 4 min following a dark-light transition. However, the increase in pool size does not result in any increase in steady-state NPQ. When we exposed wild-type and ABA-deficient mutants leaves to twice growth irradiance, the mutants developed lower maximal NPQ but suffered similar photoinhibition to wildtype, measured both as a decline in the ratio of variable to maximal fluorescence and as a loss of functional PSII centers from oxygen flash yield measurements. These results suggest that only a few of the zeaxanthin molecules present within the light-harvesting antenna of PSII may be involved in NPQ and neither the accumulation of a large pool of zeaxanthin within the antenna of PSII nor an increase in conversion of violaxanthin to zeaxanthin will necessarily enhance photoprotective energy dissipation.  相似文献   

11.
Lohr M  Wilhelm C 《Planta》2001,212(3):382-391
Recently, we reported the presence of the violaxanthin-antheraxanthin-zeaxanthin cycle in diatoms, and showed that violaxanthin is the putative precursor of both diadinoxanthin and fucoxanthin in the diatom Phaeodactylum tricornutum Bohlin (M. Lohr and C. Wilhelm, 1999, Proc. Natl. Acad. Sci. USA 96: 8784–8789). In the present study, two possible intermediates in the synthesis of violaxanthin from β-carotene were identified in P. tricornutum, namely β-cryptoxanthin and β-cryptoxanthin epoxide. In low light, the latter pigment prevails, but in high light β-cryptoxanthin accumulates, probably as the result of an increased activity of the xantophyll-cycle de-epoxidase. The apparent kinetics of several xanthophyll conversion steps were determined for P. tricornutum and Cyclotella meneghiniana Kützing. The experimentally determined conversion rates were used to evaluate the hypothetical pathway of xanthophyll synthesis in diatoms. For this purpose a mathematical model was developed which allows the calculation of theoretical rates of pigment conversion for microalgae under steady-state growth conditions. A comparison between measured and calculated conversion rates agreed well with the proposal of a sequential synthesis of fucoxanthin via violaxanthin and diadinoxanthin. The postulation of zeaxanthin as an obligatory intermediate in the synthesis of violaxanthin, however, resulted in large discrepancies between the measured and calculated rates of its epoxidation. Instead of zeaxanthin, β-cryptoxanthin epoxide may be involved in the biosynthesis of violaxanthin in diatoms. Received: 16 March 2000 / Accepted: 30 June 2000  相似文献   

12.
 We address the segregation of photosystems I (PSI) and II (PSII) in thylakoid membranes by means of a molecular dynamics method. We assume a two-dimensional (in-plane) problem with PSI and PSII being represented by particles with different values of negative charge. The pair interactions between particles include a screened Coulomb repulsive part and am exponentially decaying attractive part. Our modeling results suggest that the system may have a complicated phase behavior, including a quasi-crystalline phase at low ionic screening, a disordered phase and, in addition, a possible “clotting” agglomerate phase at high screening where the photosystems tend to clot together. The relevance of the observed phenomena to the stacking of thylakoid membranes is discussed. Received: 14 October 1999 / Revised version: 30 March 2000 / Accepted: 30 March 2000  相似文献   

13.
Ascorbate biosynthesis and function in photoprotection   总被引:23,自引:0,他引:23  
Ascorbate (vitamin C) can reach very high concentrations in chloroplasts (20-300 mM). The pool size in leaves and chloroplasts increases during acclimation to high light intensity and the highest concentrations recorded are in high alpine plants. Multiple functions for ascorbate in photosynthesis have been proposed, including scavenging of active oxygen species generated by oxygen photoreduction and photorespiration, regeneration of alpha-tocopherol from alpha-tocopheryl radicals, cofactor for violaxanthin de-epoxidase and donation of electrons to photosystem II. Hydrogen peroxide scavenging is catalysed by ascorbate peroxidase (Mehler peroxidase reaction) and the subsequent regeneration of ascorbate by reductant derived from photosystem I allows electron flow in addition to that used for CO2 assimilation. Ascorbate is synthesized from guanosine diphosphate-mannose via L-galactose and L-galactono-1,4-lactone. The last step, catalysed by L-galactono-1,4-lactone dehydrogenase, is located on the inner mitochondrial membrane and uses cytochrome c as electron acceptor. L-galactono-1,4-lactone oxidation to ascorbate by intact leaves is faster in high-light acclimated leaves and is also enhanced by high light, suggesting that this step contributes to the control of pool size by light. Ascorbate-deficient Arabidopsis thaliana vtc mutants are hypersensitive to a number of oxidative stresses including ozone and ultraviolet B radiation. Further investigation of these mutants shows that they have reduced zeaxanthin-dependent non-photochemical quenching, confirming that ascorbate is the cofactor for violaxanthin de-epoxidase and that availability of thylakoid lumen ascorbate could limit this reaction. The vtc mutants are also more sensitive to photo-oxidation imposed by combined high light and salt treatments.  相似文献   

14.
Yamamoto HY 《Planta》2006,224(3):719-724
Monogalactosyldiacylglyceride (MGDG) and digalactosyldiacylglyceride (DGDG) are the major membrane lipids of chloroplasts. The question of the specialized functions of these unique lipids has received limited attention. One function is to support violaxanthin de-epoxidase (VDE) activity, an enzyme of the violaxanthin cycle. To understand better the properties of this system, the effects of galactolipids and phosphatidylcholines on VDE activity were examined by two independent methods. The results show that the micelle-forming lipid (MGDG) and bilayer forming lipids (DGDG and phosphatidylcholines) support VDE activity differently. MGDG supported rapid and complete de-epoxidation starting at a threshold lipid concentration (10 μM) coincident with complete solubilization of violaxanthin. In contrast, DGDG supported slow but nevertheless complete to nearly complete de-epoxidation at a lower lipid concentration (6.7 μM) that did not completely solubilize violaxanthin. Phosphotidylcholines showed similar effects as DGDG except that de-epoxidation was incomplete. Since VDE requires solubilized violaxanthin, aggregated violaxanthin in DGDG at low concentration must become solubilized as de-epoxidation proceeds. High lipid concentrations had lower activity possibly due to formation of multilayered structures (liposomes) that restrict accessibility of violaxanthin to VDE. MGDG micelles do not present such restrictions. The results indicate VDE operates throughout the lipid phase of the single bilayer thylakoid membrane and is not limited to putative MGDG micelle domains. Additionally, the results also explain the differential partitioning of violaxanthin between the envelope and thylakoid as due to the relative solubilities of violaxanthin and zeaxanthin in MGDG, DGDG and phospholipids. The violaxanthin cycle is hypothesized to be a linked system of the thylakoid and envelope for signal transduction of light stress.  相似文献   

15.
In the present study we have examined the effects of grana stacking on the rate of violaxanthin (Vx) de-epoxidation and the extent of non-photochemical quenching of chlorophyll a fluorescence (NPQ) in isolated thylakoid membranes of spinach. Our results show that partial and complete unstacking of thylakoids in reaction media devoid of sorbitol and MgCl2 did not significantly affect the efficiency of Vx de-epoxidation. Under high light (HL) illumination we found slightly higher values of Vx conversion in stacked membranes, whereas in thylakoids incubated at pH 5.2 in the dark, representing the pH-optimum of Vx de-epoxidase, de-epoxidation was slightly increased in the unstacked membranes. Partial and complete unstacking of grana membranes, however, had a dramatic effect on the HL-induced NPQ. High NPQ values could only be achieved in stacked thylakoid membranes in the presence of MgCl2 and sorbitol. In unstacked membranes NPQ was drastically decreased. The effects of grana stacking on the xanthophyll cycle-dependent component of NPQ were even more pronounced, and complete unstacking of thylakoid membranes led to a total loss of this quenching component. Our data imply that grana stacking in the thylakoid membranes of higher plants is of high importance for the process of overall NPQ. For the xanthophyll cycle-dependent component of NPQ it may even be essential. Possible effects of grana stacking on the mechanism of zeaxanthin-dependent quenching are discussed.  相似文献   

16.
Plants are able to deal with variable environmental conditions; when exposed to strong illumination, they safely dissipate excess energy as heat and increase their capacity for scavenging reacting oxygen species. Both these protection mechanisms involve activation of the xanthophyll cycle, in which the carotenoid violaxanthin is converted to zeaxanthin by violaxanthin de-epoxidase, using ascorbate as the source of reducing power. In this work, following determination of the three-dimensional structure of the violaxanthin de-epoxidase catalytic domain, we identified the putative binding sites for violaxanthin and ascorbate by in silico docking. Amino acid residues lying in close contact with the two substrates were analyzed for their involvement in the catalytic mechanism. Experimental results supported the proposed substrate-binding sites and point to two residues, Asp-177 and Tyr-198, which are suggested to participate in the catalytic mechanism, based on complete loss of activity in mutant proteins. The role of other residues and the mechanistic similarity to aspartic proteases and epoxide hydrolases are discussed.  相似文献   

17.
The xanthophyll cycle, its regulation and components   总被引:22,自引:0,他引:22  
During the last few years much interest has been focused on the photoprotective role of zeaxanthin. In excessive light zeaxanthin is rapidly formed in the xanthophyll cycle from violaxanthin, via the intermediate antheraxanthin, a reaction reversed in the dark. The role of zeaxanthin and the xanthophyll cycle in photoprotection, is based on fluorescence quenching measurements, and in many studies a good correlation to the amount of zeaxanthin (and antheraxanthin) has been found. Other suggested roles for the xanthophylls involve, protection against oxidative stress of lipids, participation in the blue light response, modulation of the membrane fluidity and regulation of abscisic acid synthesis. The enzyme violaxanthin de-epoxidase has recently been purified from spinach and lettuce as a 43-kDa protein. It was found as 1 molecule per 20–100 electron-transport chains. The gene has been cloned and sequenced from Lactuca sativa, Nicotiana tabacum and Arabidopsis thaliana. The transit peptide was characteristic of nuclear-encoded and lumen-localized proteins. The activity of violaxanthin de-epoxidase is controlled by the lumen pH. Thus, below pH 6.6 the enzyme binds to the thylakoid membrane. In addition ascorbate becomes protonated to ascorbic acid (pKa= 4.2) the true substrate (Km= 0.1 m M ) for the violaxanthin de-epoxidase. We present arguments for an ascorbate transporter in the thylakoid membrane. The enzyme zeaxanthin epoxidase requires FAD as a cofactor and appears to use ferredoxin rather than NADPH as a reductant. The zeaxanthin epoxidase has not been isolated but the gene has been sequenced and a functional protein of 72.5 kDa has been expressed. The xanthophyll cycle pigments are almost evenly distributed in the thylakoid membrane and at least part of the pigments appears to be free in the lipid matrix where we conclude that the conversion by violaxanthin de-epoxidase occurs.  相似文献   

18.
Nagata N  Min YK  Nakano T  Asami T  Yoshida S 《Planta》2000,211(6):781-790
When a brassinosteroid biosynthesis inhibitor, brassinazole (Brz), was applied at concentrations ranging from 0.1 to 2 μM, Arabidopsis thaliana (L.) Heynh seedlings grown in the dark exhibited morphological features of light-grown plants, i.e. short hypocotyls, expanded cotyledons, and true leaves, in a dose-dependent manner. Control (non Brz-treated) seedlings grown in the dark for 40 d did not develop leaf primordia. However, treatment with the lowest concentration of Brz induced the development of leaf buds, although it hardly induced any short hypocotyls, and treatment with the highest concentration of Brz induced both short hypocotyls and leaves. Labeling experiments with the thymidine analogue 5-bromo-2′-deoxyuridine revealed that amplification of cell nuclei and organellar nucleoids is activated in the shoot apical meristems of dark-grown Brz-treated seedlings. These results suggest that Brz-treatment induces development of true leaves. Furthermore, condensation and scattering of plastid nucleoids, which is known to occur during the differentiation of etioplasts into chloroplasts, was observed in the plastids of dark-grown Brz-treated cotyledons. In addition, high levels of ribulose-1,5-bisphosphate carboxylase-oxygenase proteins accumulated in the plastids of the cotyledons. Electron microscopy showed that the plastids were etioplasts with a prolamellar body and few thylakoid membranes. These results suggest that Brz treatment in the dark induces the initial steps of plastid differentiation, which occur prior to the development of thylakoid membranes. This is a novel presumed function of brassinosteroids. These cytological changes seen in Brz-treated Arabidopsis were exactly the same as those seen in a brassinosteroid-biosynthesis-deficient mutant, det2, supporting the hypothesis that Brz has no side-effects except inhibiting brassinosteroid biosynthesis, and should prove a useful tool in clarifying the role of brassinosteroids. Received: 10 February 2000 / Accepted: 11 April 2000  相似文献   

19.
Peter Jahns  Sandra Heyde 《Planta》1999,207(3):393-400
The de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin in the xanthophyll cycle of higher plants is controlled by the pH of the thylakoid lumen. The influence of N,N′-dicyclohexylcarbodiimide (DCCD) on the pH dependence of the de-epoxidation reactions has been investigated in isolated pea thylakoids. In the presence of DCCD, the decrease in de-epoxidase activity at increasing pH was found to be shifted by about 0.3 pH units to more-alkaline pH values. This was paralleled by a less-pronounced cooperativity for the pH dependence of de-epoxidation. Comparative studies with antenna-depleted thylakoids from plants grown in intermittent light and with unstacked thylakoids indicated that binding of DCCD to antenna proteins is most probably not responsible for the altered pH dependence. Analyses of the zeaxanthin content of different antenna subcomplexes showed that the DCCD-induced de-epoxidation at high pH leads to zeaxanthin formation in all antenna proteins from both photosystems. Our data support the view that DCCD binding to the violaxanthin de-epoxidase may be responsible for the altered pH dependence. Received: 4 July 1998 / Accepted: 9 September 1998  相似文献   

20.
Growth, ageing and death of a photoautotrophic plant cell culture   总被引:2,自引:0,他引:2  
Peters W  Ritter J  Tiller H  Valdes O  Renner U  Fountain M  Beck E 《Planta》2000,210(3):478-487
 Batch cultures of photoautotrophic cell suspensions of Chenopodiumrubrum L., growing in an inorganic medium on CO2 under a daily balanced light–dark regime of 16 : 8 h could be maintained for approximately 100 d without subcultivation. The long-lived cultures showed an initial cell division phase of 4 weeks, followed by a stationary phase of another 4 weeks, after which ageing and progressive cell death reduced the number of living cells and the cultures usually expired after another 3–4 weeks. These developmental phases of the cell culture were characterised with respect to photosynthetic performance, dark respiration, content of phytohormones and capacity of cell division. Cell division of the majority of the cells finished in the G1- or G0-phase of the cell cycle, caused by a pronounced decline in the endogenous levels of auxin and cytokinins. Supply of these growth factors to resting cells resulted in resumption of cytokinesis, at least by some of the cells. However, responsiveness to the phytohomones declined during the stationary phase, and subcultivation was no longer possible beyond day 60 when the phases of ageing and death commenced. Ageing was characterised by a further decline in the photosynthetic capacity of the cells, by a climacteric enhancement of dark respiration, but also by a slight increase in the level of IAA and cytokinins concomitant with a decrease in ethylene. Similarities and differences between the development of batch-cultured photoautotrophic cells of C. rubrum and that of a leaf are discussed with respect to using the cell culture as a model for a leaf. Received: 30 April 1999 / Accepted: 21 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号