首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article we describe the partial characterization of a Synechococcus sp. PCC 7942 mutant Mu1 with an enhanced resistance towards the herbicide bentazone (3-isopropyl-1H-2,1,3-benzothiadiazine-4(3H)-one 2,2-dioxide). The mutant was derived from a random mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine (NSG) and exhibited superior growth rates, pigment content and overall photosynthetic activities under regular growth conditions compared to wild type. Whereas Synechococcus PCC 7942 wild type showed significant photoinhibition, especially in the presence of lincomycin, Mu1 was much more robust. A comparative analysis of the content of several photosynthesis-associated proteins revealed that Mu1 had an increased expression of PsbO on mRNA and protein level and that PsbO is tightly bound to Photosystem II, relative to wild type. This result was substantiated by mass spectrometer measurements of photosynthetic water oxidation revealing a higher stability and integrity of the water oxidizing complex in Mu1 cells grown under regular or calcium deficient conditions. Therefore, our results give rise to the possibility that the overexpression of PsbO in mutant Mu1 confers resistance to reactive oxygen species (ROS) formed as a consequence of bentazone binding to the acceptor side of PS II. In addition, we observed a significantly higher tolerance towards bentazone in iron depleted wild type cells, conditions under which the IdiA protein becomes expressed in highly elevated amounts. As we have previously shown, IdiA preferentially protects the acceptor site of PS II against oxidative stress, especially under iron limitation. Thus, it is likely that IdiA due to its topology interferes with bentazone binding or protects PS II against ROS generated in the presence of bentazone. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
We have examined the molecular and photosynthetic responses of a planktonic cyanobacterium to shifts in light intensity over periods up to one generation (7 h). Synechococcus sp. PCC 7942 possesses two functionally distinct forms of the D1 protein, D1∶1 and D1∶2. Photosystem II (PSII) centers containing D1∶1 are less efficient and more susceptible to photoinhibition than are centers containing D 1∶2. Under 50 μmol photons· m?2·s?1, PSII centers contain D1∶1, but upon shifts to higher light (200 to 1000 μmol photons·m?2·s?1), D1∶1 is rapidly replaced by D 1∶2, with the rate of interchange dependent on the magnitude of the light shift. This interchange is readily reversed when cells are returned to 50 μmol photons·m?2·s?1. If, however, incubation under 200 μmol photons·m?2·s?1 is extended, D1∶1 content recovers and by 3 h after the light shift D1∶1 once again predominates. Oxygen evolution and chlorophyll (Chl) fluorescence measurements spanning the light shift and D1 interchanges showed an initial inhibition of photosynthesis at 200 μmol photons·m?2·s?1, which correlates with a proportional loss of total D1 protein and a cessation of growth. This was followed by recovery in photosynthesis and growth as the maximum level of D 1∶2 is reached after 2 h at 200 μmol photons·m?2·s?1. Thereafter, photosynthesis steadily declines with the loss of D1∶2 and the return of the less-efficient D1∶1. During the D1∶1/D1∶2 interchanges, no significant change occurs in the level of phycocyanin (PC) and Chl a, nor of the phycobilisome rod linkers. Nevertheless, the initial PC/Chl a ratio strongly influences the magnitude of photo inhibition and recovery during the light shifts. In Synechococcus sp. PCC 7942, the PC/Chl a ratio responds only slowly to light intensity or quality, while the rapid but transient interchange between D1∶1 and D 1∶2 modulates PSII activity to limit damage upon exposure to excess light.  相似文献   

3.
4.
We examined the effects of mutations at amino acid residues S264 and F255 in the D1 protein on the binding affinity of the stimulatory anion bicarbonate and inhibitory anion formate in Photosystem II (PS II) in Synechococcus sp. PCC 7942. Measurements on the rates of oxygen evolution in the wild type and mutant cells in the presence of different concentrations of formate with a fixed bicarbonate concentration and vice versa, analyzed in terms of an equilibrium activator-inhibitor model, led to the conclusion that the equilibrium dissociation constant for bicarbonate is increased in the mutants, while that of the formate remains unchanged (11±0.5 mM). The hierarchy of the equilibrium dissociation constant for bicarbonate (highest to lowest, ±2 M) was: D1-F255L/S264A (46 M)>D1-F255Y/ S264A (31 M)D1-S264A (34 M)D1-F255Y (33 M)>wild type (25 M). The data suggest the importance of D1-S264 and D1-F255 in the bicarbonate binding niche. A possible involvement of bicarbonate and these two residues in the protonation of QB -, the reduced secondary plastoquinone of PS II, in the D1 protein is discussed.Abbreviations Chl a chlorophyll a - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DMQ 2,5-dimethyl-p-benzoquinone - HEPES N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid - MES 2-[N-morpholino]ethanesulfonic acid - PSI Photosystem I - PS II Photosystem II - QA bound plastoquinone, a one-electron acceptor in Photosystem II - QB another bound plastoquinone, a two-electron acceptor in Photosystem II This paper is dedicated to the memory of my dear friend Robin Hill-Govindjee.  相似文献   

5.
The gene encoding nitrite reductase (nir) from the cyanobacterium Synechococcus sp. PCC 7942 has been identified and sequenced. This gene comprises 1536 nucleotides and would encode a polypeptide of 56506 Da that shows similarity to nitrite reductase from higher plants and to the sulfite reductase hemoprotein from enteric bacteria. Identities found at positions corresponding to those amino acids which in the above-mentioned proteins hold the Fe4S4-siroheme active center suggest that nitrite reductase from Synechococcus bears an active site much alike that present in those reductases. The fact that the Synechococcus and higher-plant nitrite reductases are homologous proteins gives support to the endosymbiont theory for the origin of chloroplasts.  相似文献   

6.
Light-induced modification of Photosystem II (PS II) complex was characterized in the cyanobacterium Synechococcus sp. PCC 7942 treated with either DCMU (a phenylurea PS II inhibitor) or BNT (a phenolic PS II inhibitor). The irradiance response of photoinactivation of PS II oxygen evolution indicated a BNT-specific photoinhibition that saturated at relatively low intensity of light. This BNT-specific process was slowed down under anaerobiosis, was accompanied by the oxygen-dependent formation of a 39 kDa D1 protein adduct, and was not related to stable QA reduction or the ADRY effect. In the BNT-treated cells, the light-induced, oxygen-independent initial drop of PS II electron flow was not affected by formate, an anion modifying properties of the PS II non-heme iron. For DCMU-treated cells, anaerobiosis did not significantly affect PS II photoinactivation, the D1 adduct was not observed and addition of formate induced similar initial decrease of PS II electron flow as in the BNT-treated cells. Our results indicate that reactive oxygen species (most likely singlet oxygen) and modification of the PS II acceptor side are responsible for the fast BNT-induced photoinactivation of PS II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Two open reading frames denoted as cpcE and cpcF were cloned and sequenced from Synechococcus sp. PCC 6301. The cpcE and cpcF genes are located downstream of the cpcB2A2 gene cluster in the phycobilisome rod operon and can be transcribed independently of the upstream cpcB2A2 gene cluster. The cpcE and cpcF genes were separately inactivated by insertion of a kanamycin resistance cassette in Synechococcus sp. PCC 7942 to generate mutants R2EKM and R2FKM, respectively, both of which display a substantial reduction in spectroscopically detectable phycocyanin. The levels of - and -phycocyanin polypeptides were reduced in the R2EKM and R2FKM mutants although the phycocyanin and linker genes are transcribed at normal levels in the mutants as in the wild type indicating the requirement of the functional cpcE and cpcF genes for normal accumulation of phycocyanin. Two biliprotein fractions were isolated on sucrose density gradient from the R2EKM/R2FKM mutants. The faster sedimenting fraction consisted of intact phycobilisomes. The slower sedimenting biliprotein fraction was found to lack phycocyanin polypeptides, thus no free phycocyanin was detected in the mutants. Characterization of the phycocyanin from the mutants revealed that it was chromophorylated, had a max similar to that from the wild type and could be assembled into the phycobilisome rods. Thus, although phycocyanin levels are reduced in the R2EKM and R2FKM mutants, the remaining phycocyanin seems to be chromophorylated and similar to that in the wild type with respect to phycobilisome rod assembly and energy transfer to the core.  相似文献   

8.
Water transport across plant cell membranes is difficult to measure. We present here a model assay, based on chlorophyll (Chl) a fluorometry, with which net water transport across the cell membrane of freshwater cyanobacterium Synechococcus sp. PCC7942 (S7942) can be followed kinetically with millisecond-time resolution. In cyanobacteria, the phycobilisome (PBS)-sensitized Chl a fluorescence increases when cells expand (e.g., in hypo-osmotic suspension) and decreases when cells contract (e.g., in hyper-osmotic suspension). The osmotically-induced Chl a fluorescence changes are proportional to the reciprocal of the suspension osmolality (ΔF ∝ Osm−1; Papageorgiou GC and Alygizaki-Zorba A (1997) Biochim Biophys Acta 1335: 1–4). In our model assay, S7942 cells were loaded with NaCl (passively penetrating solute) and shrunk in hyper-osmotic glycine betaine (nonpenetrating solute). Upon injecting these cells into hypo-osmotic medium, the PBS-sensitized Chl a fluorescence rose to a maximum due to the osmotically-driven water uptake. The rise of Chl a fluorescence (water uptake) was partially inhibited by HgCl2, at micromolar concentrations. Arrhenius plots of the water uptake rates gave activation energies of EA=4.9 kcal mol−1, in the absence of HgCl2, and EA=11.9 kcal mol−1 in its presence. These results satisfy the usual criteria for facilitated water transport through protein water pores of plasma membranes (aquaporins), namely sensitivity to Hg2+ ions and low activation energy.  相似文献   

9.
A Synechococcus sp. strain PCC 7002 psaAB::cat mutant has been constructed by deletional interposon mutagenesis of the psaA and psaB genes through selection and segregation under low-light conditions. This strain can grow photoheterotrophically with glycerol as carbon source with a doubling time of 25 h at low light intensity (10 E m–2 s–1). No Photosystem I (PS I)-associated chlorophyll fluorescence emission peak was detected in the psaAB::cat mutant. The chlorophyll content of the psaAB::cat mutant was approximately 20% that of the wild-type strain on a per cell basis. In the absence of the PsaA and PsaB proteins, several other PS I proteins do not accumulate to normal levels. Assembly of the peripheral PS I proteins PsaC,PsaD, PsaE, and PsaL is dependent on the presence of the PsaA and PsaB heterodimer core. The precursor form of PsaF may be inserted into the thylakoid membrane but is not processed to its mature form in the absence of PsaA and PsaB. The absence of PS I reaction centers has no apparent effect on Photosystem II (PS II) assembly and activity. Although the mutant exhibited somewhat greater fluorescence emission from phycocyanin, most of the light energy absorbed by phycobilisomes was efficiently transferred to the PS II reaction centers in the absence of the PS I. No light state transition could be detected in the psaAB::cat strain; in the absence of PS I, cells remain in state 1. Development of this relatively light-tolerant strain lacking PS I provides an important new tool for the genetic manipulation of PS I and further demonstrates the utility of Synechococcus sp. PCC 7002 for structural and functional analyses of the PS I reaction center.Abbreviations ATCC American type culture collection - Chl chlorophyll - DCMU 3-(3,4-dichlorophyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid] - PCC Pasteur culture collection - PS I Photosystem I - PS II Photosystem II - SDS sodium dodecyl sulfate  相似文献   

10.
In Synechococcus sp. cells AS-1 cyanophage infection gradually inhibits the photosystem II mediated photosynthetic electron flow whereas the activity of photosystem I is apparently unaffected by the cyanophage infection. Transient fluorescence induction and flash-induced delayed luminescence decay studies revealed that the inhibition may occur at the level of the secondary acceptor, QB of photosystem II. In addition, the breakdown of D1-protein is inhibited, comparable to DCMU-induced protection of D1-protein turnover, in AS-1-infected cells.  相似文献   

11.
The structural gene encoding a thioredoxin-dependent 5-phosphoadenylyl sulphate (PAPS) reductase (EC 1.8.4.-) from cyanobacterium Synechococcus PCC 7942 (Anacystis nidulans) was detected by heterologous hybridization with the cysH gene from Escherichia coli K12. The cyanobacterial gene (further called par gene) comprised 696 nt which are 57.8% homologous to the enterobacterial gene. The putative open reading frame encoded a polypeptide consisting of 232 amino acid residues (deduced molecular weight 26635) which showed significant homologies to the polypeptide from E. coli (50.8%) and to the polypeptide from Saccharomyces cerevisiae (30.3%). A single cysteine located at the C-terminus of the polypeptide of E. coli (Cys239) was conserved in Synechococcus. Conservation of this cysteinyl residue seems indispensable for catalysis. Complementation of a cysH-deficient mutant of E. coli by the cyanobacterial gene indicated that the cloned DNA is the structural gene of the PAPS reductase.Abbreviations IPTG isopropyl-1-thio--D-galactoside - PAPS 3-phosphoadenosine-5-phosposulphate  相似文献   

12.
Iron-deficiency-induced protein A (IdiA) with a calculated molecular mass of 35 kDa has previously been shown to be essential under manganese- and iron-limiting conditions in the cyanobacteria Synechococcus PCC 6301 and PCC 7942. Studies of mutants indicated that in the absence of IdiA mainly photosystem II becomes damaged, suggesting that the major function of IdiA is in Mn and not Fe metabolism (Michel et al. 1996, Microbiology 142: 2635–2645). To further elucidate the function of IdiA, the immunocytochemical localization of IdiA in the cell was examined. These investigations provided evidence that under mild Fe deficiency IdiA is intracellularly localized and is mainly associated with the thylakoid membrane in Synechococcus PCC 6301. The protein became distributed throughout the cell under severe Fe limitation when substantial morphological changes had already occurred. For additional verification of a preferential thylakoid membrane association of IdiA, these investigations were extended to the thermophilic Synechococcus elongatus. In this cyanobacterium Mn deficiency could be obtained more rapidly than in the mesophilic Synechococcus PCC 6301 and PCC 7942, and the thylakoid membrane structure proved to be more stable under limiting growth conditions. The immunocytochemical investigations with this cyanobacterium clearly supported a thylakoid membrane association of IdiA. In addition, evidence was obtained for a localization of IdiA on the cytoplasmic side of the thylakoid membrane. All available data support a function of IdiA as an Mn-binding protein that facilitates transport of Mn via the thylakoid membrane into the lumen to provide photosystem II with Mn. A possible explanation for the observation that IdiA was not only expressed under Mn deficiency but also under Fe deficiency is given in the discussion. Received: 28 July 1997 / Accepted: 26 November 1997  相似文献   

13.
A physical map of the unicellular cyanobacterium Synechococcus sp. strain PCC6301 genome has been constructed with restriction endonucleases PmeI, SwaI, and an intron-encoded endonuclease I-CeuI. The estimated size of the genome is 2.7 Mb. On the genome 49 genes or operons have been mapped. Two rRNA operons are separated by 600 kb and transcribed oppositely.  相似文献   

14.
The PsbP-like protein of the cyanobacterium Synechocystis sp. PCC 6803 is a peripheral component of Photosystem II, located at the lumenal side of the thylakoid membrane. Removal of this protein leads to decreased competitive potential of a PsbP-like deletion mutant when grown in a mixture with wild-type cells. Flash-induced oxygen evolution traces of the mutant show a higher probability of misses, correlated with increased amplitudes of the S-states decay in the dark. Thermoluminescence emission traces demonstrate a changed charge recombination pattern in the mutant, the S(3)Q(B)(-) couple becoming the major species instead of the S(2)Q(B)(-). Our data suggest a possible role of the PsbP-like protein in stabilisation of the charge separation in Photosystem II of cyanobacteria through interaction with the Mn cluster.  相似文献   

15.
The transformation of the fresh water cyanobacterium Synechococcus PCC7942 with the shuttle-vector pAQ-EX1 developed for the marine cyanobacterium S. PCC7002 was examined. The S. PCC7942 cells were successfully transformed with the pAQ-EX1 vector, and the vector was stably maintained in the transformant cells.  相似文献   

16.
17.
代谢通量分析是研究微藻光自养培养过程中CO2和光能利用的一个非常有用的工具。本研究建立了聚球藻7942光自养培养代谢网络,并通过代谢通量方法分析了不同入射光强下的碳代谢流分布和能量代谢。研究结果表明,CO2固定是代谢能量和还原力消耗的主要途径,分别约占总消耗能量的85%和70%。研究还发现在一定光强范围,基于ATP生成的细胞得率和最大细胞得率基本维持不变,分别约为2.80g/molATP和2.95g/molATP,但基于总吸收光能的细胞得率和对应的光能转换效率则随着光强的增加而降低。  相似文献   

18.
A rapidly labeled photosynthetic membrane protein was identified in the cyanobacterium Synechococcus PCC7942 R2 as the 32 kDA protein that is involved in electron transport and quinone binding in the photosystem II complex. Partial proteolysis of the membrane-bound protein indicates that the internal architecture and the topology of the Synechococcus 32 kDa protein resembles the analogous protein of higher plants. In addition to the R2 wild-type strain, we characterized three psbA-inactivated Synechococcus strains, in which two of the three endogenous psbA genes were inactivated. In all strains, a 32 kDa protein cross-reacts with an antiserum that was raised against a higher-plant 32 kDa protein and displays in vivo light-dependent turnover. In Synechococcus, the herbicide DCMU inhibits the 32 kDa protein turnover at similar concentration ranges as in higher plants; however, a fraction of the molecules always displays a DCMU-insensitive degradation.  相似文献   

19.
聚球藻7942混养培养中碳代谢与能量利用   总被引:1,自引:0,他引:1  
为了考察聚球藻7942在混养条件下的能量利用效率,分别以葡萄糖和乙酸为碳源开展了聚球藻7942的混养培养研究,并在此基础上利用代谢通量分析方法对聚球藻7942混养条件下的碳代谢和能量利用进行了探讨。结果表明:葡萄糖和乙酸均能促进藻细胞生长,且乙酸促进藻细胞生长的作用更为明显;葡萄糖利用可明显增加藻细胞糖酵解途径中碳代谢流量,而乙酸利用则导致糖酵解途径中碳代谢流量减小,两种有机碳源均增加了柠檬酸循环中碳代谢流量;有机碳源导致藻细胞光化学效率下降,而葡萄糖较之乙酸降低藻细胞光化学效率更为明显。虽然混养条件下光能的贡献率要小于光自养,但基于能量的细胞得率和能量转换率均高于光自养,光自养和以葡萄糖、乙酸为碳源的混养中基于ATP生成的能量转换效率分别为6.81%、7.43%和8.77%。  相似文献   

20.
The previously constructed MSP (manganese stabilizing protein-psbO gene product)-free mutant of Synechococcus PCC7942 (Bockholt R, Masepohl B and Pistorius E K (1991) FEBS Lett 294: 59–63) and a newly constructed MSP-free mutant of Synechocystis PCC6803 were investigated with respect to the inactivation of the water-oxidizing enzyme during dark incubation. O2 evolution in the MSP-free mutant cells, when measured with a sequence of short saturating light flashes, was practically zero after an extended dark adaptation, while O2 evolution in the corresponding wild type cells remained nearly constant. It could be shown that this inactivation could be reversed by photoactivation. With isolated thylakoid membranes from the MSP-free mutant of PCC7942, it could be demonstrated that photoactivation required illumination in the presence of Mn2+ and Ca2+, while Cl addition was not required under our experimental conditions. Moreover, an extended analysis of the kinetic properties of the water-oxidizing enzyme (kinetics of the S3(S4)S0 transition, S-state distribution, deactivation kinetics) in wild type and mutant cells of Synechococcus PCC7942 and Synechocystis PCC6803 was performed, and the events possibly leading to the reversible inactivation of the water-oxidizing enzyme in the mutant cells are discussed. We could also show that the water-oxidizing enzyme in the MSP-free mutant cells is more sensitive to inhibition by added NH4Cl-suggesting that NH3 might be a physiological inhibitor of the water oxidizing enzyme in the absence of MSP.Abbreviations Chl chlorophyll - DCBQ 2,6-Dichloro-p-benzoquinone - MSP manganese stabilizing protein (psbO gene product) - PS II Photosystem II - WOE water oxidizing enzyme - WT wild type This paper is dedicated to Prof. Dr. Bernard Axelrod on the occasion of his 80th birthday  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号