首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Giardia and Cryptosporidium spp. in filtered drinking water supplies.   总被引:10,自引:7,他引:3       下载免费PDF全文
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for filtered drinking water samples collected from 66 surface water treatment plants in 14 states and 1 Canadian province. Giardia cysts were detected in 17% of the 83 filtered water effluents. Cryptosporidium oocysts, were observed in 27% of the drinking water samples. Overall, cysts or oocysts were found in 39% of the treated effluent samples. Despite the frequent detection of parasites in drinking water, microscopic observations of the cysts and oocysts suggested that most of the organisms were nonviable. Compliance with the filtration criteria outlined by the Surface Water Treatment Rule of the U.S. Environmental Protection Agency did not ensure that treated water was free of cysts and oocysts. The average plant effluent turbidity for sites which were parasite positive was 0.19 nephelometric turbidity units. Of sites that were positive for Giardia or Cryptosporidium spp., 78% would have been able to meet the turbidity regulations of the Surface Water Temperature Rule. Evaluation of the data by using a risk assessment model developed for Giardia spp. showed that 24% of the utilities examined would not meet a 1/10,000 annual risk of Giardia infection. For cold water conditions (0.5 degree C), 46% of the plants would not achieve the 1/10,000 risk level.  相似文献   

2.
Occurrence of Giardia and Cryptosporidium spp. in surface water supplies.   总被引:11,自引:0,他引:11  
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency.  相似文献   

3.
Giardia and Cryptosporidium levels were determined by using a combined immunofluorescence test for source waters of 66 surface water treatment plants in 14 states and 1 Canadian province. The results showed that cysts and oocysts were widely dispersed in the aquatic environment. Giardia spp. were detected in 81% of the raw water samples. Cryptosporidium spp. were found in 87% of the raw water locations. Overall, Giardia or Cryptosporidium spp. were detected in 97% of the raw water samples. Higher cyst and oocyst densities were associated with source waters receiving industrial or sewage effluents. Significant correlations were found between Giardia and Cryptosporidium densities and raw water quality parameters such as turbidity and total and fecal coliform levels. Statistical modeling suggests that cyst and oocyst densities could be predicted on the basis of watershed and water quality characteristics. The occurrence of high levels of Giardia cysts in raw water samples may require water utilities to apply treatment beyond that outlined in the Surface Water Treatment Rule of the U.S. Environmental Protection Agency.  相似文献   

4.
The steps of two immunofluorescent-antibody-based detection methods were evaluated for their efficiencies in detecting Giardia cysts and Cryptosporidium oocysts. The two methods evaluated were the American Society for Testing and Materials proposed test method for Giardia cysts and Cryptosporidium oocysts in low-turbidity water and a procedure employing sampling by membrane filtration, Percoll-Percoll step gradient, and immunofluorescent staining. The membrane filter sampling method was characterized by higher recovery rates in all three types of waters tested: raw surface water, partially treated water from a flocculation basin, and filtered water. Cyst and oocyst recovery efficiencies decreased with increasing water turbidity regardless of the method used. Recoveries of seeded Giardia cysts exceeded those of Cryptosporidium oocysts in all types of water sampled. The sampling step in both methods resulted in the highest loss of seeded cysts and oocysts. Furthermore, much higher recovery efficiencies were obtained when the flotation step was avoided. The membrane filter method, using smaller tubes for flotation, was less time-consuming and cheaper. A serious disadvantage of this method was the lack of confirmation of presumptive cysts and oocysts, leaving the potential for false-positive Giardia and Cryptosporidium counts when cross-reacting algae are present in water samples.  相似文献   

5.
Several outbreaks of waterborne giardiasis have occurred in southern Canada, but nothing has been reported from the Canadian North. The objective of this study was to collect information relevant to waterborne giardiasis and cryptosporidiosis in the Yukon including epidemiological data and analyses of water, sewage, and animal fecal samples. Remote, pristine water samples were found to be contaminated with Giardia cysts (7 of 22 or 32%) but not with Cryptosporidium oocysts. Giardia cysts were found in 21% (13 of 61) of animal scats, but no Cryptosporidium oocysts were observed (small sample size). Whitehorse's drinking water was episodically contaminated with Giardia cysts (7 of 42 or 17%) and Cryptosporidium oocysts (2 of 42 or 5%). Neither were found in Dawson City's water supply. The only water treatment in the Yukon is chlorination, but contact times and free chlorine residuals are often too low to provide adequate protection by disinfection. Raw sewage samples from the five largest population centers in the Yukon contained 26 to 3,022 Giardia cysts and 0 to 74 Cryptosporidium oocysts per liter. Treated sewage from Whitehorse contained fewer Giardia cysts but more Cryptosporidium oocysts on average. Both were detected in Lake Laberge, downstream of Whitehorse, which has a history of fecal coliform contamination. Daily monitoring of raw sewage from the suburbs of Whitehorse showed a summertime peak of Giardia cysts and occasional Cryptosporidium oocysts after springtime contamination of drinking water. Despite this evidence, epidemiological data for the Yukon showed an endemic infection rate of only 0.1% for giardiasis (cryptosporidiosis is not notifiable).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
This study was carried out to estimate the prevalence and potential for human infectivity of Giardia cysts in Canadian drinking water supplies. The presence of Cryptosporidium oocysts was also noted, but isolates were not collected for further study. A total of 1,760 raw water samples, treated water samples, and raw sewage samples were collected from 72 municipalities across Canada for analysis, 58 of which treat their water by chlorination alone. Giardia cysts were found in 73% of raw sewage samples, 21% of raw water samples, and 18.2% of treated water samples. There was a trend to higher concentration and more frequent incidence of Giardia cysts in the spring and fall, but positive samples were found in all seasons. Cryptosporidium oocysts were found in 6.1% of raw sewage samples, 4.5% of raw water samples, and 3.5% of treated water samples. Giardia cyst viability was assessed by infecting Mongolian gerbils (Meriones unguiculatus) and by use of a modified propidium iodide dye exclusion test, and the results were not always in agreement. No Cryptosporidium isolates were recovered from gerbils, but 8 of 276 (3%) water samples and 19 of 113 (17%) sewage samples resulted in positive Giardia infections. Most of the water samples contained a low number of cysts, and 12 Giardia isolates were successfully recovered from gerbils and cultured. Biotyping of these isolates by isoenzyme analysis and karyotyping by pulsed-field gel electrophoresis separated the isolates into the same three discrete groups. Karyotyping revealed four or five chromosomal bands ranging in size from 0.9 to 2 Mb, and four of the isolates had the same banding pattern as that of the WB strain. Analysis of the nucleotide sequences of the 16S DNA coding for rRNA divided the isolates into two distinct groups corresponding to the Polish and Belgian designations found by other investigators. The occurrence of these biotypes and karyotypes appeared to be random and was not related to geographic or other factors (e.g., different types were found in both drinking water and sewage from the same community). Biotyping and karyotyping showed that isolates from this study were genetically and biochemically similar to those found elsewhere, including well-described human source strains such as WB. We conclude that potentially human-infective Giardia cysts are commonly found in raw surface waters and sewage in Canada, although cyst viability is frequently low. Cryptosporidium oocysts are less common in Canada. An action level of three to five Giardia cysts per 100 liters in treated drinking water is proposed on the basis of the monitoring data from outbreak situations. This action level is lower than that proposed by Haas and Rose (C. N. Haas and J. B. Rose, J. Am. Water Works Assoc. 87(9):81-84, 1995) for Cryptosporidium spp. (10 to 30 oocysts per 100 liters).  相似文献   

7.
AIMS: To evaluate the prevalence of Cryptosporidium and Giardia in surface water supplies from the province of Alava, northern Spain, and to investigate possible associations among the presence of these pathogenic protozoa with microbiological, physicochemical and atmospheric parameters. METHODS AND RESULTS: A total of 284 samples of drinking and recreational water supplies were analysed. Cryptosporidium oocysts were found in 63.5% of river samples, 33.3% of reservoirs samples, 15.4% and 22.6% of raw water samples from conventional and small water treatment facilities (respectively), 30.8% of treated water from small treatment facilities, and 26.8% of tap water from municipalities with chlorination treatment only. Giardia cysts were found in 92.3% of river samples, 55.5% of reservoirs samples, 26.9% and 45.2% of raw water samples from conventional and small water treatment facilities (respectively), 19.2% of treated water from small treatment facilities, and 26.8% of tap water from municipalities with chlorination treatment only. The presence of Cryptosporidium and Giardia had significant Pearson's correlation coefficients (P < 0.01) with the turbidity levels of the samples, and a number of significant associations were also found with the count levels for total coliforms and Escherichia coli. The samples were positive for Cryptosporidium significantly (P < 0.05) more frequently during the autumn season than during the spring and winter seasons. No significant differences were found in the seasonal pattern of Giardia. A moderate association (r = 0.52) was found between rainfall and the presence of Cryptosporidium oocysts. CONCLUSIONS: Cryptosporidium and Giardia are consistently found at elevated concentrations in surface waters for human consumption from the province of Alava, northern Spain. SIGNIFICANCE AND IMPACT OF THE STUDY: Water treatments based on rapid filtration process and/or chlorination only are often unsatisfactory to provide safe drinking water, a situation that represents an important public health problem for the affected population because of the risk of waterborne outbreaks.  相似文献   

8.
AIMS: To determine the ability of duckweed ponds used to treat domestic waste-water to remove Giardia and Cryptosporidium. METHODS AND RESULTS: The influent and effluent of a pond covered with duckweed with a 6 day retention time was tested for Giardia cysts, Cryptosporidium oocysts, faecal coliforms and coliphage. Giardia cysts and Cryptosporidium oocysts were reduced by 98 and 89%, respectively, total coliforms by 61%, faecal coliforms by 62% and coliphage by 40%. There was a significant correlation between the removal of Giardia cysts and Cryptospordium oocysts by the pond (P < 0.001). Influent turbidity and parasite removal were also significantly correlated (Cryptosporidium and turbidity, P=0.05; Giardia and turbidity, P=0.01). CONCLUSIONS: The larger organisms (parasites) probably settled to the bottom of the pond, while removal of smaller bacteria and coliphages in the pond was not as effective. SIGNIFICANCE AND IMPACT OF THE STUDY: Duckweed ponds may play an important role in wetland systems for reduction of Giardia and Cryptosporidium.  相似文献   

9.
Aims:  In this study, we report a new, simple methodology for the monitoring of Cryptosporidium oocysts and Giardia cysts in drinking water samples, ranging from 10- to 1000-l, which combines a new ARAD microfibre filtration of the (oo)cysts from drinking water and loop-mediated isothermal amplification (LAMP) of a human pathogenic Cryptosporidium parvum , Cryptosporidium hominis , Cryptosporidium meleagridis and Giardia duodenalis Assemblage A and B specific DNA sequence.
Methods and Results:  During the evaluation of the new concentration and detection technique, spiked reagent and matrix water samples plus blank samples were filtered and tested. In total, 27 samples have been investigated. The results clearly demonstrate that the methodology of using a new ARAD filter, which passed through 1000 l of drinking water with high turbidity (2 NTU), and followed by the LAMP assay was able to detect at least one (oo)cyst in 10 l of drinking water based on a 1000-l sample, taken over a 24-h period.
Conclusions:  The described protozoa detection methodology is sensitive, rapid and cost-effective.
Significance and Impact of the Study:  This effective procedure will be useful for small waterworks to achieve continuous monitoring and is also of value for screening catchments to identify those that require further treatment and more detailed microscopic counts.  相似文献   

10.
Immunomagnetic separation (IMS) procedures for the simultaneous isolation of Cryptosporidium oocysts and Giardia cysts have recently become available. We validated Dynal's GC-Combo IMS kit using source water at three turbidity levels (5000, 500 and 50 nephelometric turbidity units [ntu]) obtained from different geographical locations and spiked with approximately 9--11 (oo)cysts per ml. Mean recoveries of Cryptosporidium oocysts and Giardia cysts in deionized water were 62% and 69%, respectively. In turbid water matrices, mean recoveries of Cryptosporidium oocysts were between 55.9% and 83.1% while mean recoveries of cysts were between 61.1% and 89.6%. Marginally higher recoveries of the heat inactivated (oo)cysts were observed (119.4% Cryptosporidium oocysts and 90.9% Giardia cysts) in deionized water when compared with recoveries of viable (oo)cysts (69.7% Cryptosporidium oocysts and 79% Giardia cysts). Age of (oo)cysts on recoveries using the GC-Combo IMS kit demonstrated no effects up to 20 months old. Recovery of Giardia cysts was consistent for isolates aged up to 8 months (81.4%), however, a significant reduction in recoveries was noted at 20 months age. Recoveries of low levels (5 and 10 (oo)cysts) of Cryptosporidium oocysts and Giardia cysts in deionized water using IMS ranged from 51.3% to 78% and from 47.6% to 90.0%, respectively. Results of this study indicate that Dynal's GC-Combo IMS kit is an efficient technique to separate Cryptosporidium/Giardia from turbid matrices and yields consistent, reproducible recoveries. The use of fresh (recently voided and purified) (oo)cysts, aged (oo)cysts, viable and heat-inactivated (oo)cysts indicated that these parameters do not influence IMS performance.  相似文献   

11.
Giardiasis and cryptosporidiosis are diseases caused by the protozoan parasites Giardia lamblia and Cryptosporidium parvum. Waterborne transmission of these organisms has become more prevalent in recent years, and regulatory agencies are urging that source and finished water be screened for these organisms. A major problem associated with testing for these organisms is the lack of reliable methodologies and baseline information on the prevalence of these parasites in various water sources. Our study addressed both of these issues. We evaluated the presence and reduction of Giardia cysts and Cryptosporidium oocysts in sewage effluent by a combination of indirect fluorescent antibody (IFA) staining and PCR. Our results indicated a 3-log reduction of Giardia cysts and a 2-log reduction of Cryptosporidium oocysts through the sewage treatment process as determined by IFA. We developed a nested PCR to detect Cryptosporidium oocysts and used a double PCR to detect Giardia cysts. A 100% correlation was noted between IFA and PCR detection of Giardia cysts while correlation for Cryptosporidium oocysts was slightly less. On the basis of these results, PCR may be a useful tool in the environmental analysis of water samples for Giardia and Cryptosporidium organisms.  相似文献   

12.
To find the most suitable indicator of viral and parasitic contamination of drinking water, large-volume samples were collected and analyzed for the presence of pathogens (cultivable human enteric viruses, Giardia lamblia cysts, and Cryptosporidium oocysts) and potential indicators (somatic and male-specific coliphages, Clostridium perfringens). The samples were obtained from three water treatment plants by using conventional or better treatments (ozonation, biological filtration). All samples of river water contained the microorganisms sought, and only C. perfringens counts were correlated with human enteric viruses, cysts, or oocysts. For settled and filtered water samples, all indicators were statistically correlated with human enteric viruses but not with cysts or oocysts. By using multiple regression, the somatic coliphage counts were the only explanatory variable for the human enteric virus counts in settled water, while in filtered water samples it was C. perfringens counts. Finished water samples of 1,000 liters each were free of all microorganisms, except for a single sample that contained low levels of cysts and oocysts of undetermined viability. Three of nine finished water samples of 20,000 liters each revealed residual levels of somatic coliphages at 0.03, 0.10, and 0.26 per 100 liters. Measured virus removal was more than 4 to 5 log10, and cyst removal was more than 4 log10. Coliphage and C. perfringens counts suggested that the total removal and inactivation was more than 7 log10 viable microorganisms. C. perfringens counts appear to be the most suitable indicator for the inactivation and removal of viruses in drinking water treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Aims:  Waterborne outbreaks of diarrhoeal illness reported worldwide are mostly associated with Cryptosporidium spp. and Giardia spp. Their presence in aquatic systems makes it essential to develop preventive strategies for water and food safety. This study was undertaken to monitor the presence of Cryptosporidium and Giardia in a total of 175 water samples, including raw and treated water from both surface and ground sources in Portugal.
Methods and Results:  The samples were processed according to USEPA Method 1623 for immunomagnetic separation (IMS) of Cryptosporidium oocysts and Giardia cysts, followed by detection of oocysts/cysts by immunofluorecence (IFA) microscopy, PCR-based techniques were done on all water samples collected. Out of 175 samples, 81 (46·3%) were positive for Cryptosporidium and 67 (38·3%) for Giardia by IFA. Cryptosporidium spp. and G. duodenalis genotypes were identified by PCR in 37 (21·7%) and 9 (5·1%) water samples, respectively. C. parvum was the most common species (78·9%), followed by C. hominis (13·2%), C. andersoni (5·3%), and C. muris (2·6%). Subtype IdA15 was identified in all C. hominis -positive water samples. S ubtyping revealed the presence of C. parvum subtypes IIaA15G2R1, IIaA16G2R1 and IIdA17G1. Giardia duodenalis subtype A1 was identified.
Conclusions:  The results of the present study suggest that Cryptosporidium spp. and Giardia spp. were widely distributed in source water and treated water in Portugal. Moreover, the results obtained indicate a high occurrence of human-pathogenic Cryptosporidium genotypes and subtypes in raw and treated water samples.
Significance and Impact of the Study:  Thus, water can be a potential vehicle in the transmission of cryptosporidiosis, and giardiasis of humans and animals in Portugal.  相似文献   

14.
Methods for the simultaneous detection of Cryptosporidium parvum oocysts and Giardia cysts from water are described and their relative recovery efficiencies are assessed for seeded samples of both tap and river water. Cartridge filtration, membrane filtration, and calcium carbonate flocculation were evaluated, and steps to optimize the concentration procedures were undertaken. Increasing centrifugation to 5,000 x g, coupled with staining in suspension, was found to increase the overall efficiency of recovery of both cysts and oocysts. Cartridge filtration for both cysts and oocysts was examined by use of 100-liter volumes of both tap and river water. Improvements in recovery were observed for Cryptosporidium oocysts after extra washes of the filters. Calcium carbonate flocculation gave the maximum recovery for both Cryptosporidium oocysts and Giardia cysts and for both water types. A variety of 142-mm membranes was examined by use of 10-liter seeded samples of tap and river water. Cellulose acetate with a 1.2-micron pore size provided the best results for Cryptosporidium oocysts, and cellulose nitrate with a 3.0-micron pore size did so for Giardia cysts.  相似文献   

15.
Collaborative and in-house laboratory trials were conducted to evaluate Cryptosporidium oocyst and Giardia cyst recoveries from source and finished-water samples by utilizing the Filta-Max system and U.S. Environmental Protection Agency (EPA) methods 1622 and 1623. Collaborative trials with the Filta-Max system were conducted in accordance with manufacturer protocols for sample collection and processing. The mean oocyst recovery from seeded, filtered tap water was 48.4% +/- 11.8%, while the mean cyst recovery was 57.1% +/- 10.9%. Recovery percentages from raw source water samples ranged from 19.5 to 54.5% for oocysts and from 46.7 to 70.0% for cysts. When modifications were made in the elution and concentration steps to streamline the Filta-Max procedure, the mean percentages of recovery from filtered tap water were 40.2% +/- 16.3% for oocysts and 49.4% +/- 12.3% for cysts by the modified procedures, while matrix spike oocyst recovery percentages ranged from 2.1 to 36.5% and cyst recovery percentages ranged from 22.7 to 68.3%. Blinded matrix spike samples were analyzed quarterly as part of voluntary participation in the U.S. EPA protozoan performance evaluation program. A total of 15 blind samples were analyzed by using the Filta-Max system. The mean oocyst recovery percentages was 50.2% +/- 13.8%, while the mean cyst recovery percentages was 41.2% +/- 9.9%. As part of the quality assurance objectives of methods 1622 and 1623, reagent water samples were seeded with a predetermined number of Cryptosporidium oocysts and Giardia cysts. Mean recovery percentages of 45.4% +/- 11.1% and 61.3% +/- 3.8% were obtained for Cryptosporidium oocysts and Giardia cysts, respectively. These studies demonstrated that the Filta-Max system meets the acceptance criteria described in U.S. EPA methods 1622 and 1623.  相似文献   

16.
Giardia and Cryptosporidium spp. are parasitic protozoa which are frequent etiologic agents of waterborne diseases. This lecture will summarize the main biological and environmental factors involved in the potential risk for waterborne transmission of giardiosis and cryptosporidiosis, which have caused many outbreaks in different geographical areas. In particular, the current epidemiological situation of these parasitoses in Italy will be analysed, on the basis of research carried out on humans and on the environment. Finally, current methods for evaluating the presence of Giardia cysts and Cryptosporidium oocysts in water and new methods for cyst/oocyst removal from drinking water and wastewater will be examined.  相似文献   

17.
Giardia and Cryptosporidium spp. are important enteric protozoan pathogens for humans and animals, and have been found to contaminate water as well as edible shellfish all over the world. This is the first study to simultaneously investigate the presence of Giardia and Cryptosporidium in inflowing water and harvested shellfish in a geographically closed environment (Varano Lagoon, Southern Italy). Samples of treated wastewater were collected each month - at the outlet from the treatment plant, and downstream at the inlet into the lagoon - from the channels flowing into the Lagoon, together with specimens of Ruditapes decussatus and Mytilus galloprovincialis from shellfish-farms on the same lagoon. Giardia cysts were found by immunofluorescence (IF) microscopy in 16 out of 21 samples of treated wastewater and in 7 out of 21 samples from downstream water channels, and viable cysts were also detected by a beta-giardin RT-PCR. G. duodenalis Assemblages A and B were identified by small ribosomal subunit (18S-rDNA) and triosephosphate isomerase (tpi)-PCR, followed by sequencing. Cryptosporidium oocysts were found by IF in 5 out of 21 wastewater samples, and in 8 out of 21 samples from water channels. Molecular analysis identified the zoonotic species Cryptosporidium parvum by oocyst wall protein (COWP)-PCR and sequencing. Higher concentrations of Giardia cysts than Cryptosporidium oocysts were registered in almost all wastewater and water samples. IF and molecular testing of shellfish gave negative results for both protozoa. Wastewaters carrying Giardia and Cryptosporidium (oo)cysts are discharged into the Lagoon; however, the shellfish harvested in the same environment were found to be unaffected, thus suggesting that physical, ecological and climatic conditions may prevent contamination of harvested shellfish.  相似文献   

18.
Giardia and Cryptosporidium are important agents of water-borne parasitic diseases. In this work we have examined the recovery efficiency of two methods for concentrating Giardia cysts and Cryptosporidium oocysts from water: a membrane filtration method and a crossflow filtration method. Results demonstrated a higher recovery efficiency for crossflow filtration method in comparison to the membrane filtration method. In addition, Giardia cysts and Cryptosporidium oocysts concentration was evaluated in wastewater samples submitted to chemical flocculation or chemical flocculation followed by slow sand filtration. Results showed that slow sand filtration was capable of reducing the number of Giardia cysts, but not of Cryptosporidium oocysts in wastewater.  相似文献   

19.
The Gelman Envirochek capsule is a membrane device for the simultaneous concentration of Cryptosporidium oocysts and Giardia cysts from water. Samples are filtered through a Supor® polyethersulphone membrane with a 1 μm absolute pore size. (Oo)cysts are mechanically eluted from the membrane fibre using a wrist action shaker and a non-ionic detergent and concentrated by centrifugation. The concentrate can be further processed using any separation technique to separate the target organisms from other debris. This method enables multiple samples to be processed within 1 h. Recoveries from seeded tap and source water samples were in excess of 70% for Cryptosporidium and 80% for Giardia.  相似文献   

20.
Two adjacent British Columbia, Canada, watersheds with similar topographical features were studied. Both the Black Mountain Irrigation District (BMID) and the Vernon Irrigation District (VID) serve rural agricultural communities which are active in cattle ranching. The present study was carried out in five phases, during which a total of 249 surface water samples were tested in the study watersheds. The aims of these phases were to determine levels of parasite contamination in raw water samples collected from the intakes as well as from other sites in each watershed and to investigate cattle in the watersheds as potential sources of parasite contamination of surface drinking water supplies. Giardia cysts were not detected in the raw water samples collected from lake sources at the headwaters of both watersheds but were found in 100% (70 or 70) of water samples collected at the BMID intake and 97% (68 of 70) of water samples collected at the VID intake. Significantly higher levels (P < 0.05) of Giardia cysts were found at the BMID intake (phase 1, 7 to 2,215 cysts per 100 liters; phase 3, 4.6 to 1,880 cysts per 100 liters) when compared with that of the VID intake (2 to 114 cysts per 100 liters). The BMID watershed has a more complex system of surface water sources than the VID watershed. Cattle have access to creeks in the BMID watershed, whereas access is restricted in the VID watershed. Collection of raw water samples from a creek upstream and downstream of a cattle ranch in the BMID watershed showed that the downstream location had significantly higher (P < 0.05) levels (0.6 to 42.9 cysts per 100 liters and 1.4 to 300.0 oocysts per 100 liters) of both Giardia cysts and Cryptosporidium oocysts than those of the upstream location (0.5 to 34.4 cysts per 100 liters and 0.5 to 34.4 oocysts per 100 liters). Peak concentrations of both parasites coincided with calving activity. Fecal samples, collected from cattle in both watersheds, showed 10% (3 of 30) in the BMID and 50% (5 of 10) in the VID watersheds to be Giardia positive. No Cryptosporidium-positive fecal samples were found. Giardia cysts isolated from the BMID watershed were repeatedly infective to gerbils in contrast to those from the VID watershed. The 10 BMID drinking water Giardia isolates retrieved into culture and biotyped showed zymodeme and karyotype heterogeneity. The differences in patterns of parasite contamination and cattle management practices contribute to the unique watershed characteristics observed between two areas which are topographically similar and geographically adjacent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号