首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Picornavirus proteases cleave translation initiation factor eIF4G into a C-terminal two-thirds fragment (hereafter named p100) and an N-terminal one-third fragment, which interacts with the cap-binding factor eIF4E. As the timing of this cleavage correlates broadly with the shut-off of host cell protein synthesis in infected cells, a very widespread presumption has been that p100 cannot support capped mRNA translation. Through the use of an eIF4G-depleted reticulocyte lysate system, we show that this presumption is incorrect. Moreover, recombinant p100 can also reverse the inhibition of capped mRNA translation caused either by m7GpppG cap analogue, by 4E-BP1, which sequesters eIF4E and thus blocks its association with eIF4G, or by cleavage of endogenous eIF4G by picornavirus proteases. The concentration of p100 required for maximum translation of capped mRNAs is approximately 4-fold higher than the endogenous eIF4G concentration in reticulocyte lysates. Our results imply that picornavirus-induced shut-off is not due to an intrinsic inability of p100 to support capped mRNA translation, but to the viral RNA outcompeting host cell mRNA for the limiting concentration of p100.  相似文献   

2.
T Ohlmann  M Rau  V M Pain    S J Morley 《The EMBO journal》1996,15(6):1371-1382
The foot and mouth disease virus, a picornavirus, encodes two forms of a cysteine proteinase (leader or L protease) that bisects the EIF4G polypeptide of the initiation factor complex eIF4F into N-terminal (Nt) and C-terminal (Ct) domains. Previously we showed that, although in vitro cleavage of the translation initiation factor, eIF4G, with L protease decreases cap-dependent translation, the cleavage products themselves may directly promote cap-dependent protein synthesis. We now demonstrate that translation of uncapped mRNAs normally exhibits a strong requirement for eIF4F. However, this dependence is abolished when eIF4G is cleaved, with the Ct domain capable of supporting translation in the absence of the Nt domain. In contrast, the efficient translation of the second cistron of bicistronic mRNAs, directed by two distinct Internal Ribosome Entry Segments (IRES), exhibits no requirement for eIF4E but is dependent upon either intact eIF4G or the Ct domain. These results demonstrate that: (i) the apparent requirement for eIF4F for internal initiation on IRES-driven mRNAs can be fulfilled by the Ct proteolytic cleavage product; (ii) when eIF4G is cleaved, the Ct domain can also support cap-independent translation of cellular mRNAs not possessing an IRES element, in the absence of eIF4E; and (iii) when eIF4G is intact, translation of cellular mRNAs, whether capped or uncapped, is strictly dependent upon eIF4E. These data complement recent work in other laboratories defining the binding sites for other initiation factors on the eIF4G molecule.  相似文献   

3.
Eukaryotic initiation factor 4A (eIF4A) is an RNA-dependent ATPase and ATP-dependent RNA helicase that is thought to melt the 5' proximal secondary structure of eukaryotic mRNAs to facilitate attachment of the 40S ribosomal subunit. eIF4A functions in a complex termed eIF4F with two other initiation factors (eIF4E and eIF4G). Two isoforms of eIF4A, eIF4AI and eIF4AII, which are encoded by two different genes, are functionally indistinguishable. A third member of the eIF4A family, eIF4AIII, whose human homolog exhibits 65% amino acid identity to human eIF4AI, has also been cloned from Xenopus and tobacco, but its function in translation has not been characterized. In this study, human eIF4AIII was characterized biochemically. While eIF4AIII, like eIF4AI, exhibits RNA-dependent ATPase activity and ATP-dependent RNA helicase activity, it fails to substitute for eIF4AI in an in vitro-reconstituted 40S ribosome binding assay. Instead, eIF4AIII inhibits translation in a reticulocyte lysate system. In addition, whereas eIF4AI binds independently to the middle and carboxy-terminal fragments of eIF4G, eIF4AIII binds to the middle fragment only. These functional differences between eIF4AI and eIF4AIII suggest that eIF4AIII might play an inhibitory role in translation under physiological conditions.  相似文献   

4.
Translation initiation factor (eIF) 4G represents a critical link between mRNAs and 40S ribosomal subunits during translation initiation. It interacts directly with the cap-binding protein eIF4E through its N-terminal part, and binds eIF3 and eIF4A through the central and C-terminal region. We expressed and purified recombinant variants of human eIF4G lacking the N-terminal domain as GST-fusion proteins, and studied their function in cell-free translation reactions. Both eIF4G lacking its N-terminal part (aa 486-1404) and the central part alone (aa 486-935) exert a dominant negative effect on the translation of capped mRNAs. Furthermore, these polypeptides potently stimulate the translation of uncapped mRNAs. Although this stimulation is cap-independent, it is shown to be dependent on the accessibility of the mRNA 5' end. These results reveal two unexpected features of eIF4G-mediated translation. First, the C-terminal eIF4A binding site is dispensable for activation of uncapped mRNA translation. Second, translation of uncapped mRNA still requires 5' end-dependent ribosome binding. These new findings are incorporated into existing models of mammalian translation initiation.  相似文献   

5.
The question of whether translation initiation factor eIF4E and the complete eIF4G polypeptide are required for initiation dependent on the IRES (internal ribosome entry site) of hepatitis A virus (HAV) has been examined using in vitro translation in standard and eIF4G-depleted rabbit reticulocyte lysates. In agreement with previous publications, the HAV IRES is unique among all picornavirus IRESs in that it was inhibited if translation initiation factor eIF4G was cleaved by foot-and-mouth disease L-proteases. In addition, the HAV IRES was inhibited by addition of eIF4E-binding protein 1, which binds tightly to eIF4E and sequesters it, thus preventing its association with eIF4G. The HAV IRES was also inhibited by addition of m(7)GpppG cap analogue, irrespective of whether the RNA tested was capped or not. Thus, initiation on the HAV IRES requires that eIF4E be associated with eIF4G and that the cap-binding pocket of eIF4E be empty and unoccupied. This suggests two alternative models: (i) initiation requires a direct interaction between an internal site in the IRES and eIF4E/4G, an interaction which involves the cap-binding pocket of eIF4E in addition to any direct eIF4G-RNA interactions; or (ii) it requires eIF4G in a particular conformation which can be attained only if eIF4E is bound to it, with the cap-binding pocket of the eIF4E unoccupied.  相似文献   

6.
Certain picornaviruses encode proteinases which cleave the translation initiation factor eIF4G, a member of the eIF4F complex which recruits mRNA to the 40S ribosomal subunit during initiation of protein synthesis in eukaryotes. We have compared the efficiency of eIF4G cleavage in rabbit reticulocyte lysates during translation of mRNAs encoding the foot-and-mouth disease virus leader proteinase (Lpro) or the human rhinovirus 2Apro. Under standard translation conditions, Lpro cleaved 50% of eIF4G within 4 min after initiation of protein synthesis, whereas 2Apro required 15 min. At these times, the molar ratios of proteinase to eIF4G were 1:130 for Lpro and 1:12 for 2Apro, indicating a much more efficient in vitro cleavage than previously observed. The molar ratios are similar to those observed during viral infection in vivo.  相似文献   

7.
Infection of cells by foot-and-mouth disease virus (FMDV) results in the rapid inhibition of host cell protein synthesis. This process is accompanied by the early cleavage of the translation initiation factor eIF4G, a component of the cap-binding complex eIF4F. This cleavage is mediated by the leader (L) protease. Subsequently, as the virus proteins accumulate, secondary cleavages of eIF4G occur. Furthermore, eIF4A (46 kDa), a second component of eIF4F, is also cleaved in these later stages of the infection cycle. The 33-kDa cleavage product of eIF4A has lost a fragment from its N terminus. Transient-expression assays demonstrated that eIF4A was not cleaved in the presence of FMDV L or with the poliovirus 2A protease (which also mediates eIF4G cleavage) but was cleaved when the FMDV 3C protease was expressed. The FMDV 3C protease was also shown in such assays to induce cleavage of eIF4G, resulting in the production of cleavage products different from those generated by the L protease. Consistent with these results, within cells infected with a mutant FMDV lacking the L protease or within cells containing an FMDV replicon lacking L-P1 coding sequences it was again shown that eIF4A and eIF4G were cleaved.  相似文献   

8.
E De Gregorio  T Preiss    M W Hentze 《The EMBO journal》1999,18(17):4865-4874
Most eukaryotic mRNAs possess a 5' cap structure (m(7)GpppN) and a 3' poly(A) tail which promote translation initiation by binding the eukaryotic translation initiation factor (eIF)4E and the poly(A) binding protein (PABP), respectively. eIF4G can bridge between eIF4E and PABP, and-through eIF3-is thought to establish a link to the small ribosomal subunit. We fused the C-terminal region of human eIF4GI lacking both the eIF4E- and PABP-binding sites, to the IRE binding protein IRP-1. This chimeric protein suffices to direct the translation of the downstream cistron of bicistronic mRNAs bearing IREs in their intercistronic space in vivo. This function is preserved even when translation via the 5' end is inhibited. Deletion analysis defined the conserved central domain (amino acids 642-1091) of eIF4G as an autonomous 'ribosome recruitment core' and implicated eIF4A as a critical binding partner. Our data reveal the sufficiency of the conserved eIF4G ribosome recruitment core to drive productive mRNA translation in living cells. The C-terminal third of eIF4G is dispensable, and may serve as a regulatory domain.  相似文献   

9.
The eukaryotic initiation factor eIF4G is a large modular protein which serves as a docking site for initiation factors and proteins involved in RNA translation. Together with eIF4E and eIF4A, eIF4G constitutes the eIF4F complex which is a key component in promoting ribosome binding to the mRNA. Thus, the central role of eIF4G in initiation makes it a valid target for events aimed at modulating translation. Such events occur during viral infection by picornaviruses and lentiviruses and result in the hijack of the translational machinery through cleavage of eIF4G. Proteolysis of eIF4G is also mediated by caspases during the onset of apoptosis causing inhibition of protein synthesis. We will review the role of eIF4G and protein partners as well as the cellular and viral events that modulate eIF4G activity in the initiation of translation.  相似文献   

10.
Cleavage of eukaryotic translation initiation factor 4GI (eIF4GI) is required for shutoff of host cell translation during poliovirus (PV) infection of HeLa cells. Reports published by several groups have led to confusion whether this cleavage is mediated by viral 2A protease (2A(pro)) or a putative cellular enzyme (termed eIF4Gase) which is activated by 2A(pro) or other aspects of viral infection. Here we have further investigated eIF4Gase activities in PV-infected cells. Column purification of eIF4GI cleavage activity separated two activities which generated N-terminal cleavage products of different lengths. Both activities were detected using either native eIF4G or radiolabeled recombinant eIF4G as the substrate. Analysis of cleavage products formed by each activity on native and mutant substrates suggests that one activity cleaves eIF4G1 at or very near the 2A(pro) cleavage site and the other activity cleaves approximately 40 residues upstream of the 2A(pro) cleavage site. When PV infections in HeLa cells were supplemented with 2 mM guanidine, which indirectly limits expression of 2A(pro), two distinct C-terminal cleavage fragments of eIF4GI were detected. These C-terminal cleavage fragments of eIF4GI were purified from infected cells, and a new eIF4GI cleavage site was mapped to a unique site 43 amino acids upstream of the known 2A(pro) cleavage site. Further, eIF4GI cleavage in vivo could be blocked by addition of zVAD to PV-guanidine infections. zVAD is a broad-spectrum caspase inhibitor which had no effect on 2A(pro) cleavage activity or PV polyprotein processing. Lastly, similar types of eIF4Gase cleavage activities were also detected in uninfected cells under various conditions, including early apoptosis or during cell cycle transit. The data suggest that the same types of eIF4GI cleavage activities which are generated in PV-infected cells can also be generated in the absence of virus. Taken together, the data support a model in which multiple cellular activities process eIF4GI in PV-infected cells, in addition to 2A(pro).  相似文献   

11.
Polypeptide chain initiation factor eIF4GI undergoes caspase-mediated degradation during apoptosis to give characteristic fragments. The most prominent of these has an estimated mass of approximately 76 kDa (Middle-Fragment of Apoptotic cleavage of eIF4G; M-FAG). Subcellular fractionation of the BJAB lymphoma cell line after induction of apoptosis indicates that M-FAG occurs in both ribosome-bound and soluble forms. Affinity chromatography on m7GTP-Sepharose shows that M-FAG retains the ability of eIF4GI to associate with both the mRNA cap-binding protein eIF4E and initiation factor eIF4A and that the ribosome-bound form of M-FAG is also present as a complex with eIF4E and eIF4A. These data suggest that the binding sites for eIF4E, eIF4A and eIF3 on eIF4GI are retained in the caspase-generated fragment. M-FAG is also a substrate for cleavage by the Foot-and-Mouth-Disease Virus-encoded L protease. These properties, together with the pattern of recognition by a panel of antibodies, define the origin of the apoptotic cleavage fragment. N-terminal sequencing of the products of caspase-3-mediated eIF4GI cleavage has identified the major cleavage sites. The pattern of eIF4GI degradation and the possible roles of the individual cleavage products in cells undergoing apoptosis are discussed.  相似文献   

12.
Mammalian translation initiation factor 4F (eIF4F) consists of three subunits, eIF4A, eIF4E, and eIF4G. eIF4G interacts directly with both eIF4A and eIF4E. The binding site for eIF4E is contained in the amino-terminal third of eIF4G, while the binding site for eIF4A was mapped to the carboxy-terminal third of the molecule. Here we show that human eIF4G possesses two separate eIF4A binding domains in the middle third (amino acids [aa] 478 to 883) and carboxy-terminal third (aa 884 to 1404) of the molecule. The amino acid sequence of the middle portion of eIF4G is well conserved between yeasts and humans. We show that mutations of conserved amino acid stretches in the middle domain abolish or reduce eIF4A binding as well as eIF3 binding. In addition, a separate and nonoverlapping eIF4A binding domain exists in the carboxy-terminal third (aa 1045 to 1404) of eIF4G, which is not present in yeast. The C-terminal two-thirds region (aa 457 to 1404) of eIF4G, containing both eIF4A binding sites, is required for stimulating translation. Neither one of the eIF4A binding domains alone activates translation. In contrast to eIF4G, human p97, a translation inhibitor with homology to eIF4G, binds eIF4A only through the amino-terminal proximal region, which is homologous to the middle domain of eIF4G.  相似文献   

13.
Eukaryotic initiation factor 4G (eIF4G) promotes mRNA recruitment to the ribosome by binding to the mRNA cap- and poly(A) tail-binding proteins eIF4E and Pap1p. eIF4G also binds eIF4A at a distinct HEAT domain composed of five stacks of antiparallel alpha-helices. The role of eIF4G in the later steps of initiation, such as scanning and AUG recognition, has not been defined. Here we show that the entire HEAT domain and flanking residues of Saccharomyces cerevisiae eIF4G2 are required for the optimal interaction with the AUG recognition factors eIF5 and eIF1. eIF1 binds simultaneously to eIF4G and eIF3c in vitro, as shown previously for the C-terminal domain of eIF5. In vivo, co-overexpression of eIF1 or eIF5 reverses the genetic suppression of an eIF4G HEAT domain Ts(-) mutation by eIF4A overexpression. In addition, excess eIF1 inhibits growth of a second eIF4G mutant defective in eIF4E binding, which was also reversed by co-overexpression of eIF4A. Interestingly, excess eIF1 carrying the sui1-1 mutation, known to relax the accuracy of start site selection, did not inhibit the growth of the eIF4G mutant, and sui1-1 reduced the interaction between eIF4G and eIF1 in vitro. Moreover, a HEAT domain mutation altering eIF4G moderately enhances translation from a non-AUG codon. These results strongly suggest that the binding of the eIF4G HEAT domain to eIF1 and eIF5 is important for maintaining the integrity of the scanning ribosomal preinitiation complex.  相似文献   

14.
The association of eucaryotic translation initiation factor eIF4G with the cap-binding protein eIF4E establishes a critical link between the mRNA and the ribosome during translation initiation. This association requires a conserved seven amino acid peptide within eIF4G that binds to eIF4E. Here we report that a 98-amino acid fragment of S. cerevisiae eIF4G1 that contains this eIF4E binding peptide undergoes an unfolded to folded transition upon binding to eIF4E. The folding of the eIF4G1 domain was evidenced by the eIF4E-dependent changes in its protease sensitivity and (1)H-(15)N HSQC NMR spectrum. Analysis of a series of charge-to-alanine mutations throughout the essential 55.4-kDa core of yeast eIF4G1 also revealed substitutions within this 98-amino acid region that led to reduced eIF4E binding in vivo and in vitro. These data suggest that the association of yeast eIF4E with eIF4G1 leads to the formation of a structured domain within eIF4G1 that could serve as a specific site for interactions with other components of the translational apparatus. They also suggest that the stability of the native eIF4E-eIF4G complex is determined by amino acid residues outside of the conserved seven-residue consensus sequence.  相似文献   

15.
Cap-independent translation initiation in Xenopus oocytes.   总被引:2,自引:0,他引:2       下载免费PDF全文
Eukaryotic cellular mRNAs contain a cap at their 5'-ends, but some viral and cellular mRNAs bypass the cap-dependent mechanism of translation initiation in favor of internal entry of ribosomes at specific RNA sequences. Cap-dependent initiation requires intact initiation factor eIF4G (formerly eIF-4gamma, eIF-4Fgamma or p220), whereas internal initiation can proceed with eIF4G cleaved by picornaviral 2A or L proteases. Injection of recombinant coxsackievirus B4 protease 2A into Xenopus oocytes led to complete cleavage of endogenous eIF4G, but protein synthesis decreased by only 35%. Co-injection of edeine reduced synthesis by >90%, indicating that eIF4G-independent synthesis involved ongoing initiation. The spectrum of endogenous proteins synthesized was very similar in the presence or absence of intact eIF4G. Translation of exogenous rabbit globin mRNA, by contrast, was drastically inhibited by eIF4G cleavage. The N-terminal cleavage product of eIF4G (cpN), which binds eIF4E, was completely degraded within 6-12 h, while the C-terminal cleavage product (cpC), which binds to eIF3 and eIF4A, was more stable over the same period. Thus, translation initiation of most endogenous mRNAs inXenopusoocytes requires no eIF4G, or perhaps only cpC, suggesting a cap-independent mechanism.  相似文献   

16.
Human eukaryotic translation initiation factor 4E (eIF4E) binds to the mRNA cap structure and interacts with eIF4G, which serves as a scaffold protein for the assembly of eIF4E and eIF4A to form the eIF4F complex. eIF4E is an important modulator of cell growth and proliferation. It is the least abundant component of the translation initiation machinery and its activity is modulated by phosphorylation and interaction with eIF4E-binding proteins (4E-BPs). One strong candidate for the eIF4E kinase is the recently cloned MAPK-activated protein kinase, Mnk1, which phosphorylates eIF4E on its physiological site Ser209 in vitro. Here we report that Mnk1 is associated with the eIF4F complex via its interaction with the C-terminal region of eIF4G. Moreover, the phosphorylation of an eIF4E mutant lacking eIF4G-binding capability is severely impaired in cells. We propose a model whereby, in addition to its role in eIF4F assembly, eIF4G provides a docking site for Mnk1 to phosphorylate eIF4E. We also show that Mnk1 interacts with the C-terminal region of the translational inhibitor p97, an eIF4G-related protein that does not bind eIF4E, raising the possibility that p97 can block phosphorylation of eIF4E by sequestering Mnk1.  相似文献   

17.
Foeger N  Kuehnel E  Cencic R  Skern T 《The FEBS journal》2005,272(10):2602-2611
The leader proteinase (L(pro)) of foot-and-mouth disease virus (FMDV) initially cleaves itself from the polyprotein. Subsequently, L(pro) cleaves the host proteins eukaryotic initiation factor (eIF) 4GI and 4GII. This prevents protein synthesis from capped cellular mRNAs; the viral RNA is still translated, initiating from an internal ribosome entry site. L(pro) cleaves eIF4GI between residues G674 and R675. We showed previously, however, that L(pro) binds to residues 640-669 of eIF4GI. Binding was substantially improved when the eIF4GI fragment contained the eIF4E binding site and eIF4E was present in the binding assay. L(pro) interacts with eIF4GI via residue C133 and residues 183-195 of the C-terminal extension. This binding domain lies about 25 A from the active site. Here, we examined the binding of L(pro) to eIF4GI fragments generated by in vitro translation to narrow the binding site down to residues 645-657 of human eIF4GI. Comparison of these amino acids with those in human eIF4GII as well as with sequences of eIF4GI from other organisms allowed us to identify two conserved basic residues (K646 and R650). Mutation of these residues was severely detrimental to L(pro) binding. Similarly, comparison of the sequence between residues 183 and 195 of L(pro) with those of other FMDV serotypes and equine rhinitis A virus showed that acidic residues D184 and E186 were highly conserved. Substitution of these residues in L(pro) significantly reduced eIF4GI binding and cleavage without affecting self-processing. Thus, FMDV L(pro) has evolved a domain that specifically recognizes a host cell protein.  相似文献   

18.
mRNA translation in crude extracts from the yeast Saccharomyces cerevisiae is stimulated by the cap structure and the poly(A) tail through the binding of the cap-binding protein eukaryotic translation initiation factor 4E (eIF4E) and the poly(A) tail-binding protein Pab1p. These proteins also bind to the translation initiation factor eIF4G and thereby link the mRNA to the general translational apparatus. In contrast, uncapped, poly(A)-deficient mRNA is translated poorly in yeast extracts, in part because of the absence of eIF4E and Pab1p binding sites on the mRNA. Here, we report that uncapped-mRNA translation is also repressed in yeast extracts due to the binding of eIF4E to eIF4G. Specifically, we find that mutations which weaken the eIF4E binding site on the yeast eIF4G proteins Tif4631p and Tif4632p lead to temperature-sensitive growth in vivo and the stimulation of uncapped-mRNA translation in vitro. A mutation in eIF4E which disturbs its ability to interact with eIF4G also leads to a stimulation of uncapped-mRNA translation in vitro. Finally, overexpression of eIF4E in vivo or the addition of excess eIF4E in vitro reverses these effects of the mutations. These data support the hypothesis that the eIF4G protein can efficiently stimulate translation of exogenous uncapped mRNA in extracts but is prevented from doing so as a result of its association with eIF4E. They also suggest that some mRNAs may be translationally regulated in vivo in response to the amount of free eIF4G in the cell.  相似文献   

19.
Kempf BJ  Barton DJ 《Journal of virology》2008,82(12):5847-5859
Poliovirus (PV) 2A protease (2A(Pro)) cleaves eukaryotic initiation factors 4GI and 4GII (eIF4GI and eIF4GII) within virus-infected cells, effectively halting cap-dependent mRNA translation. PV mRNA, which does not possess a 5' cap, is translated via cap-independent mechanisms within viral protease-modified messenger ribonucleoprotein (mRNP) complexes. In this study, we determined that 2A(Pro) activity was required for viral polysome formation and stability. 2A(Pro) cleaved eIF4GI and eIF4GII as PV polysomes assembled. A 2A(Cys109Ser) (2A(Pro) with a Cys109Ser mutation) protease active site mutation that prevented cleavage of eIF4G coordinately inhibited the de novo formation of viral polysomes, the stability of viral polysomes, and the stability of PV mRNA within polysomes. 2A(Cys109Ser)-associated defects in PV mRNA and polysome stability correlated with defects in PV mRNA translation. 3C(Pro) activity was not required for viral polysome formation or stability. 2A(Pro)-mediated cleavage of eIF4G along with poly(rC) binding protein binding to the 5' terminus of uncapped PV mRNA appear to be concerted mechanisms that allow PV mRNA to form mRNP complexes that evade cellular mRNA degradation machinery.  相似文献   

20.
mTOR-dependent stimulation of the association of eIF4G and eIF3 by insulin   总被引:1,自引:0,他引:1  
Insulin stimulates protein synthesis by increasing translation initiation. This response is mediated by mTOR and is believed to result from 4EBP1 phosphorylation, which allows eIF4E to bind eIF4G. Here, we present evidence that mTOR interacts directly with eIF3 and that mTOR controls the association of eIF3 and eIF4G. Activating mTOR signaling with insulin increased by as much as five-fold the amount of eIF4G bound to eIF3. This novel effect was blocked by rapamycin and other inhibitors of mTOR, and it required neither eIF4E binding to eIF4G nor eIF3 binding to the 40S ribosomal subunit. The increase in eIF4G associated with eIF3 occurred rapidly and at physiological concentrations of insulin. Moreover, the magnitude of the response was similar to the increase in eIF4E binding to eIF4G produced by insulin. Thus, increasing eIF4G association with eIF3 represents a potentially important mechanism by which insulin, as well as amino acids and growth factors that activate mTOR, stimulate translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号