首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The MUC1 tumor-associated antigen is overexpressed in the majority of human carcinomas and several hematologic malignancies. Much attention has been paid to the hypoglycosylated variable number of tandem repeats (VNTR) region of the N-terminus of MUC1 as a vaccine target, and recombinant viral vector vaccines are also being evaluated that express the entire MUC1 transgene. While previous studies have described MUC1 as a tumor-associated tissue differentiation antigen, studies have now determined that the C-terminus of MUC1 (MUC1-C) is an oncoprotein, and its expression is an indication of poor prognosis in numerous tumor types. We report here the identification of nine potential CD8+ cytotoxic T lymphocyte epitopes of MUC1, seven in the C-terminus and two in the VNTR region, and have identified enhancer agonist peptides for each of these epitopes. These epitopes span HLA-A2, HLA-A3, and HLA-A24 major histocompatibility complex (MHC) class I alleles, which encompass the majority of the population. The agonist peptides, compared to the native peptides, more efficiently (a) generate T-cell lines from the peripheral blood mononuclear cells of cancer patients, (b) enhance the production of IFN-γ by peptide-activated human T cells, and (c) lyse human tumor cell targets in an MHC-restricted manner. The agonist epitopes described here can be incorporated into various vaccine platforms and for the ex vivo generation of human T cells. These studies provide the rationale for the T-cell-mediated targeting of the oncogenic MUC1-C, which has been shown to be an important factor in both drug resistance and poor prognosis for numerous tumor types.  相似文献   

2.
Pancreatic cancer is a highly aggressive, treatment refractory disease and is the fourth leading cause of death in the United States. In humans, 90% of pancreatic adenocarcinomas over-express altered forms of a tumor-associated antigen, MUC1 (an epithelial mucin glycoprotein), which is a target for immunotherapy. Using a clinically relevant mouse model of pancreas cancer that demonstrates peripheral and central tolerance to human MUC1 and develops spontaneous tumors of the pancreas, we have previously reported the presence of functionally active, low affinity, MUC1-specific precursor cytotoxic T cells (pCTLs). Hypothesis for this study is that MUC1-based immunization may enhance the low level MUC1-specific immunity that may lead to an effective anti-tumor response. Data demonstrate that MUC1 peptide-based immunization elicits mature MUC1-specific CTLs in the peripheral lymphoid organs. The mature CTLs secrete IFN-gamma and are cytolytic against MUC1-expressing tumor cells in vitro. However, active CTLs that infiltrate the pancreas tumor microenvironment become cytolytically anergic and are tolerized to MUC1 antigen, allowing the tumor to grow. We demonstrate that the CTL tolerance could be reversed at least in vitro with the use of anti-CD40 co-stimulation. The pancreas tumor cells secrete immunosuppressive cytokines, including IL-10 and TGF-beta that are partly responsible for the down-regulation of CTL activity. In addition, they down-regulate their MHC class I molecules to avoid immune recognition. CD4+ CD25+ T regulatory cells, which secrete IL-10, were also found in the tumor environment. Together these data indicate the use of several immune evasion mechanisms by tumor cells to evade CTL killing. Thus altering the tumor microenvironment to make it more conducive to CTL killing may be key in developing a successful anti-cancer immunotherapy.  相似文献   

3.
The targeting of epitopes on tumor-associated glycoforms of human MUC1 represents a primary goal in immunotherapeutic anticancer strategies. Effective immune responses to cancer cells certainly require the activation of specific cytotoxic T cell repertoires by cross-priming of dendritic cells either via immunoproteasomal or by endosomal processing of ectodomain epitopes on MUC1-positive carcinomas. Because no evidence is currently available on the capacities of human immunoproteasomes to cleave mucin-type O-glycosylated peptides, we performed in vitro studies to address the questions of whether glycosylated MUC1 repeats are cleaved by immunoproteasomes and in which way O-linked glycans control the site specificity of peptide cleavage via their localization and structures. We show for the first time that mucin-type O-glycosylated peptides are effective substrates of immunoproteasomes, however, the patterns of cleavage are qualitatively and quantitatively influenced by O-glycosylation. The nonglycosylated MUC1 repeat peptide (clusters of oligorepeats AHGVTSAPDTRPAPGSTAPP or AHGVTSAPESRPAPGSTAPA) is cleaved preferentially within or adjacent to the SAP and GST motifs with formation of a complex fragment pattern that includes major nona- and decapeptides. O-GalNAc modified peptides are largely resistant to proteolysis if these preferred cleavage sites are located adjacent to O-glycosylation, whereas peptides even with elongated glycans at more distant sites can form effective substrates yielding major glycopeptide fragments in the class I size range.  相似文献   

4.
Analyses of MUC1-specific cytotoxic T cell precursor (CTLp) frequencies were performed in mice immunized with three different MUC1 vaccine immunotherapeutic agents. Mice were immunized with either a fusion protein comprising MUC1 and glutathione S-transferase (MUC1-GST), MUC1-GST fusion protein coupled to mannan (MFP) or with a recombinant vaccinia virus expressing both MUC1 and interleukin-2. Mouse strain variations in immune responsiveness have been observed with these vaccines. We have constructed mice transgenic for the human MUC1 gene to study MUC1-specific immune responses and the risk of auto-immunity following MUC1 immunization. Transgenic mice immunized with MUC1 were observed to be partially tolerant in that the MUC1-specific antibody response is lower than that observed in syngeneic but non-transgenic mice. However, a significant MUC1-specific CTLp response to all three vaccines was observed, indicating the ability to overcome T cell, but to a lesser extent B cell, tolerance to MUC1 in these mice. Histological analysis indicates no evidence of auto-immunity to the cells expressing the human MUC1 molecule. These results suggest that it is possible to generate an immune response to a cancer-related antigen without damage to normal tissues expressing the antigen. Received: 7 July 1999 / Accepted: 26 August 1999  相似文献   

5.
 Mucins (MUC) are highly glycosylated molecules widely expressed on epithelia of different origins, including colonic mucosa. Altered glycosylation processes in tumour cells result in the exposure of normally cryptic peptide epitopes, which may then be recognized as tumour-specific antigens. Recently, MUC1-specific antibodies were detected in the serum of a broad range of cancer patients, and from different tumours tumour-specific cytotoxic T lymphocytes (CTL) were isolated that recognized MUC1. Absence of HLA restriction in the recognition has been ascribed to the highly repetitive sequence of the polypeptide core, allowing simultaneous recognition of multiple identical epitopes and cross-linking and aggregation of T cell receptor on mucin-specific T cells. We investigated the expression of MUC1 epitopes in 56 cell suspensions from Dukes’ B to D colorectal carcinomas using antibodies that recognize distinct peptide sequences on the glycosylated or deglycosylated MUC1 protein backbone. No relation was observed between MUC1 expression, or the extent of its glycosylation, and Dukes’ stage, tumour location and tumour differentiation, but a positive correlation was detected between the percentages of tumour cells expressing mucin-1 and the numbers of CD3+ infiltrating cells. These tumour-infiltrating lymphocytes contained, however, only a few MUC1-specific T lymphocytes, as CTL showing preferential killing of MUC1-expressing target cells were only obtained from one tumour. Since, in addition, the majority of colorectal carcinomas were found to express the fully glycosylated MUC1 glycoprotein, its potential role as a target antigen for T-lymphocyte-mediated immunotherapy in this tumour type is probably limited. Received: 2 April 1996 / Accepted: 28 May 1996  相似文献   

6.
Purpose: CD227 (MUC1), a membrane-associated glycoprotein expressed by many types of ductal epithelia, including pancreas, breast, lung, and gastrointestinal tract, is overexpressed and aberrantly glycosylated by malignant cells. We sought to define epitopes on MUC1 recognized by the different cell-mediated immune responses by an in vivo assay. Epitopes identified by this assay were evaluated for efficacy to protect mice transgenic for human MUC1 (MUC1.Tg) against MUC1-expressing tumor growth. Methods: We investigated contributions of the tandem repeat (TR) and the cytoplasmic tail (CT) of MUC1 to the MUC1-specific immunological rejection of tumor cells. MUC1 cDNA constructs, in which the TR region was deleted or the CT was truncated, were transfected into two different murine tumor cell lines (B16 and Panc02), which were used to challenge mice and evaluate immunological rejection of the tumors. We used tumor rejection in vivo to define epitopes on the TR and CT of MUC1 recognized by T cell–mediated immune responses in a preclinical murine model. Results: Our findings demonstrated that the TR and a portion of the MUC1 CT contributed to CD4+ T cell rejection of MUC1-expressing B16 tumor cells, but not rejection of MUC1-expressing Panc02 tumor cells. A separate epitope in the CT of MUC1 was necessary for CD8+ T cell rejection of Panc02 tumor cells. Based on these studies, we sought to evaluate the efficacy of immunizing mice transgenic for (and immunologically tolerant to) human MUC1 with peptides derived from the amino acid sequence of the CT of MUC1. Results showed that survival can be significantly prolonged in vaccinated MUC1.Tg mice challenged with MUC1-expressing tumor cells, without induction of autoimmune responses. Conclusions: These studies demonstrated that MUC1 peptides may be utilized as an effective anticancer immunotherapeutic, and confirmed the importance of immunogenic epitopes outside of the TR.Abbreviations aa Amino acid - CT Cytoplasmic tail - IFN- Interferon gamma - MUC1.Tg MUC1 transgenic mice - TR Tandem repeat - wt Wild-type C57BL/6 mice This work was supported by National Institutes of Health grants CA72712 and CA57362 (M.A.H.), National Institutes of Health training grant CA09476 (K.G.K., A.J.G, and M.L.V.), and fellowship awards from the University of Nebraska Medical Center (to K.G.K. and M.L.V).  相似文献   

7.
8.
MUC1 and cancer   总被引:25,自引:0,他引:25  
The MUC1 membrane mucin was first identified as the molecule recognised by mouse monoclonal antibodies directed to epithelial cells, and the cancers which develop from them. Cloning the gene showed that the extracellular domain is made up of highly conserved repeats of 20 amino acids, the actual number varying between 25 and 100 depending on the allele. Each tandem repeat contains five potential glycosylation sites, and between doublets of threonines and serines lies an immunodominant region which contains the epitopes recognised by most of the mouse monoclonal antibodies. The O-glycans added to the mucin produced by the normal breast are core 2 based and can be complex, while the O-glycans added to the breast cancer mucin are mainly core 1 based. This means that some core protein epitopes in the tandem repeat which are masked in the normal mucin are exposed in the cancer associated mucin. Since novel carbohydrate epitopes are also carried on the breast cancer mucin, the molecule is antigenically distinct from the normal breast mucin. (Changes in glycosylation in other epithelial cancers have been observed but are not so well documented.) Immune responses to MUC1 have been seen in breast and ovarian cancer patients and clinical studies have been initiated to evaluate the use of antibodies to MUC1 and of immunogens based on MUC1 for immunotherapy of these patients. The role of the carbohydrates in the immune response and in other interactions with the effector cells of the immune system is of particular interest and is discussed.  相似文献   

9.
The mucin MUC1 molecule is overexpressed on a variety of adenocarcinomas and is thus, a potential target for immunotherapy. Of the MUC1 peptides that bind to HLA-A*0201(A2), M1.2 (LLLLTVLTV) from the signal sequence appears to be the most immunogenic in humans. Here we have shown that large numbers (109) of tetramer-binding M1.2-specific cytotoxic T lymphocytes (CTL) can be generated ex vivo from circulating precursors, derived from healthy adults. However, there was significant interpersonal variation in the level of co-stimulatory signal required. Tetramer-binding cells also required maturation in culture to become proficient killers of the HLA-A2+ MUC1+ MCF7 cell line, known to express a low number of endogenously processed M1.2. The functional avidity of M1.2-specific CTL, however, was low as compared to CTL specific for an HIV-1 epitope. Despite the low avidity, M1.2-specific CTL were polyfunctional, secreting multiple cytokines upon degranulation with antigen recognition. To identify potential agonist peptides that may be superior immunogens, an M1.2-specific CTL culture was used to scan a large nonameric combinatorial peptide library. Of 54 predicted peptides, 4 were “consensus” agonists because they were recognized by CTL from two other donors. Two agonists, p29 (LLPWTVLTV) and p15 (VLLWTVLTV), were equally stimulatory when loaded onto C1R target cells transfected with wild-type HLA-A2. Both agonists induced IL-2, TNF-α, IFN-γ, and degranulation with M1.2-specific CTL. In contrast, production of these cytokines, which are tightly regulated by specific activation through the T cell receptor, was restricted when the CTL were stimulated with peptides loaded onto C1R cells that were transfected with an HLA-A2 molecule bearing a mutation that abrogates binding to the CD8 co-receptor. Thus, activation by both M1.2 and its agonists was dependent upon CD8, showing that compensation by the co-receptor was necessary for the human T cell response to M1.2.  相似文献   

10.
11.
Eight to eleven amino acid residues are the sizes of predominant peptides found to be associated with MHC class I molecules. Proteasomes have been implicated in antigen processing and generation of such peptides. Advanced methodologies in peptide elution together with sequence determination have led to the characterisation of MHC class I binding motifs. More recently, screening of random peptide phage display libraries and synthetic combinatorial peptide libraries have also been successfully used. This has led to the development and use of predictive algorithms to screen antigens for potential CTL epitopes. Not all predicted epitopes will be generated in vivo and the emerging picture suggests differential presentation of predicted CTL epitopes ranging from cryptic to immunodominant. The scope of this review is to discuss antigen processing by proteasomes, and to put forward a hypothesis that the molecular basis of immunogenicity can be a function of proteasomal processing. This may explain how pathogens and tumours are able to escape immunosurveillance by altering sequences required by proteasomes for epitope generation. Abbreviations: CTL – cytotoxic T lymphocytes; DRiPs – defective ribosomal products; ER – endoplasmic reticulum; Hsps – heat shock proteins; LMP – low molecular weight peptide; MHC – major histocompatibility complex; TAP – transporter associated with antigen processing.  相似文献   

12.
The product of Wilms‘ tumor gene 1 (WT1) is overexpressed in diverse human tumors, including leukemia, lung and breast cancer, and is often recognized by antibodies in the sera of patients with leukemia. Since WT1 encodes MHC class I-restricted peptides recognized by cytotoxic T lymphocytes (CTL), WT1 has been considered as a promising tumor-associated antigen (TAA) for developing anticancer immunotherapy. In order to carry out an effective peptide-based cancer immunotherapy, MHC class II-restricted epitope peptides that elicit anti-tumor CD4+ helper T lymphocytes (HTL) will be needed. In this study, we analyzed HTL responses against WT1 antigen using HTL lines elicited by in vitro immunization of human lymphocytes with synthetic peptides predicted to serve as HTL epitopes derived from the sequence of WT1. Two peptides, WT1124–138 and WT1247–261, were shown to induce peptide-specific HTL, which were restricted by frequently expressed HLA class II alleles. Here, we also demonstrate that both peptides-reactive HTL lines were capable of recognizing naturally processed antigens presented by dendritic cells pulsed with tumor lysates or directly by WT1+ tumor cells that express MHC class II molecules. Interestingly, the two WT1 HTL epitopes described here are closely situated to known MHC class I-restricted CTL epitopes, raising the possibility of stimulating CTL and HTL responses using a relatively small synthetic peptide vaccine. Because HTL responses to TAA are known to be important for promoting long-lasting anti-tumor CTL responses, the newly described WT1 T-helper epitopes could provide a useful tool for designing powerful vaccines against WT1-expressing tumors.  相似文献   

13.
MUC1 is a glycoprotein overexpressed in tumors as a hypoglycosylated form. A vaccine composed of a 100–amino acid peptide corresponding to five 20–amino acid long repeats, and SB-AS2 adjuvant, was tested in a phase I study for safety, toxicity, and ability to elicit or boost MUC1-specific immune responses. Patients with resected or locally advanced pancreatic cancer without prior chemotherapy or radiotherapy were eligible. Escalating doses of the peptide (100, 300, 1,000, and 3,000 g) were admixed with SB-AS2 and administered intramuscularly every 3 weeks for three doses, in cohorts of four patients. Sixteen patients were enrolled. Common adverse effects were grade 1 flu-like symptoms, tenderness, and erythema at the injection site. Delayed-type hypersensitivity (DTH) sites showed few or no T cells prevaccination (Pre V), but increased T-cell infiltration postvaccination (Post V). There was an increase in the percentage of CD8+ T cells in the peripheral blood Post V. An increase in total MUC1-specific antibody was seen in some patients, and several patients developed IgG antibody. Two of 15 resected pancreatic cancer patients are alive and disease free at follow-up of 32 and 61 months. MUC1 100mer peptide with SB-AS2 adjuvant is a safe vaccine that induces low but detectable mucin-specific humoral and T-cell responses in some patients. No difference was seen between different peptide doses. Further evaluation is warranted to examine the effect on disease-free survival and overall survival, especially in early disease and in the absence of immunosuppressive standard therapy.Work presented in part at the 36th Annual American Society of Clinical Oncology Meeting, New Orleans, LA, May 2000  相似文献   

14.
Persistent infections are subject to constant surveillance by CD8+ cytotoxic T cells (CTL). Their control should therefore depend on MHC class I-restricted epitope presentation. Many epitopes are described for γ-herpesviruses and form a basis for prospective immunotherapies and vaccines. However the quantitative requirements of in vivo immune control for epitope presentation and recognition remain poorly defined. We used Murid Herpesvirus-4 (MuHV-4) to determine for a latently expressed viral epitope how MHC class-I binding and CTL functional avidity impact on host colonization. Tracking MuHV-4 recombinants that differed only in epitope presentation, we found little latitude for sub-optimal MHC class I binding before immune control failed. By contrast, control remained effective across a wide range of T cell functional avidities. Thus, we could define critical engagement thresholds for the in vivo immune control of virus-driven B cell proliferation.  相似文献   

15.
We previously reported that the glycosylated MUC1 tumor antigen circulating as soluble protein in patients' serum is not processed by dendritic cells and does not elicit MHC-Class II-restricted T helper responses in vitro. In contrast, a long synthetic peptide from the MUC1 tandem repeat region is presented by Class II molecules, resulting in the initiation of T helper cell responses. Here we addressed the ability of dendritic cells to present various glycosylated or not glycosylated forms of MUC1 by MHC Class I. We found that three different forms of MUC1, ranging from glycosylated and underglycosylated protein to unglycosylated synthetic peptide, were able to elicit MUC1-specific, Class-I-restricted CTL responses. The efficiency of processing and the resulting strength of CTL activity were inversely correlated with the degree of glycosylation of the antigen. Furthermore, the more efficiently processed 100mer peptide primed a broader repertoire of CTL than the glycosylated protein.  相似文献   

16.
17.
Human MUC1 mucin: a multifaceted glycoprotein   总被引:23,自引:0,他引:23  
Human MUC1 mucin, a membrane-bound glycoprotein, is a major component of the ductal cell surface of normal glandular cells. MUC1 is overexpressed and aberrantly glycosylated in carcinoma cells. The role MUC1 plays in cancer progression represents two sides of one coin: on the one hand, loss of polarity and overexpression of MUC1 in cancer cells interferes with cell adhesion and shields the tumor cell from immune recognition by the cellular arm of the immune system, thus favoring metastases; on the other hand, MUC1, in essence a self-antigen, is displaced and altered in malignancy and induces immune responses. Tumor-associated MUC1 has short carbohydrate sidechains and exposed epitopes on its peptide core; it gains access to the circulation and comes into contact with the immune system provoking humoral and cellular immune responses. Natural antibodies to MUC1 present in the circulation of cancer patients may be beneficial to the patient by restricting tumor growth and dissemination: early stage breast cancer patients with a humoral response to MUC1 have a better disease-specific survival. Several MUC1 peptide vaccines, differing in vectors, carrier proteins and adjuvants, have been tested in phase I clinical trials. They are capable of inducing predominantly humoral responses to the antigen, but evidence that these immune responses may be effective against the tumor in humans is still scarce.  相似文献   

18.
Dendritic cells (DCs) and macrophages (Møs) internalize and process exogenous HIV-derived antigens for cross-presentation by MHC-I to cytotoxic CD8+ T cells (CTL). However, how degradation patterns of HIV antigens in the cross-presentation pathways affect immunodominance and immune escape is poorly defined. Here, we studied the processing and cross-presentation of dominant and subdominant HIV-1 Gag-derived epitopes and HLA-restricted mutants by monocyte-derived DCs and Møs. The cross-presentation of HIV proteins by both DCs and Møs led to higher CTL responses specific for immunodominant epitopes. The low CTL responses to subdominant epitopes were increased by pretreatment of target cells with peptidase inhibitors, suggestive of higher intracellular degradation of the corresponding peptides. Using DC and Mø cell extracts as a source of cytosolic, endosomal or lysosomal proteases to degrade long HIV peptides, we identified by mass spectrometry cell-specific and compartment-specific degradation patterns, which favored the production of peptides containing immunodominant epitopes in all compartments. The intracellular stability of optimal HIV-1 epitopes prior to loading onto MHC was highly variable and sequence-dependent in all compartments, and followed CTL hierarchy with immunodominant epitopes presenting higher stability rates. Common HLA-associated mutations in a dominant epitope appearing during acute HIV infection modified the degradation patterns of long HIV peptides, reduced intracellular stability and epitope production in cross-presentation-competent cell compartments, showing that impaired epitope production in the cross-presentation pathway contributes to immune escape. These findings highlight the contribution of degradation patterns in the cross-presentation pathway to HIV immunodominance and provide the first demonstration of immune escape affecting epitope cross-presentation.  相似文献   

19.
Viruses can exploit a variety of strategies to evade immune surveillance by cytotoxic T lymphocytes (CTL), including the acquisition of mutations in or adjacent to CTL epitopes. Recently, an amino acid substitution (R384G) in an HLA-B*2705-restricted CTL epitope in the influenza A virus nucleoprotein (nucleoprotein containing residues 383 to 391 [NP383-391]; SRYWAIRTR, where R is the residue that was mutated) was associated with escape from CTL-mediated immunity. The effect of this mutation on the in vitro influenza A virus-specific CTL response was studied. To this end, two influenza A viruses, one with and one without the NP383-391 epitope, were constructed by reverse genetics and designated influenza viruses A/NL/94-384R and A/NL/94-384G, respectively. The absence of the HLA-B*2705-restricted CTL epitope in influenza virus A/NL/94-384G was confirmed by using 51Cr release assays with a T-cell clone specific for the NP383-391 epitope. In addition, peripheral blood mononuclear cells (PBMC) stimulated with influenza virus A/NL/94-384G failed to recognize HLA-B*2705-positive target cells pulsed with the original NP383-391 peptide. The proportion of virus-specific CD8+ gamma interferon (IFN-γ)-positive T cells in in vitro-stimulated PBMC was determined by intracellular IFN-γ staining after restimulation with virus-infected autologous B-lymphoblastoid cell lines and C1R cell lines expressing only HLA-B*2705. The proportion of virus-specific CD8+ T cells was lower in PBMC stimulated in vitro with influenza virus A/NL/94-384G obtained from several HLA-B*2705-positive donors than in PBMC stimulated with influenza virus A/NL/94-384R. This finding indicated that amino acid variations in CTL epitopes can affect the virus-specific CTL response and that the NP383-391 epitope is the most important HLA-B*2705-restricted epitope in the nucleoprotein of influenza A viruses.  相似文献   

20.
Virus-like particles (VLPs) are promising vaccine technology due to their safety and ability to elicit strong immune responses. Chimeric VLPs can extend this technology to low immunogenicity foreign antigens. However, insertion of foreign epitopes into the sequence of self-assembling proteins can have unpredictable effects on the assembly process. We aimed to generate chimeric bovine papillomavirus (BPV) VLPs displaying a repetitive array of polyanionic docking sites on their surface. These VLPs can serve as platform for covalent coupling of polycationic fusion proteins. We generated baculoviruses expressing chimeric BPV L1 protein with insertion of a polyglutamic-cysteine residue in the BC, DE, HI loops and the H4 helix. Expression in insect cells yielded assembled VLPs only from insertion in HI loop. Insertion in DE loop and H4 helix resulted in partially formed VLPs and capsomeres, respectively. The polyanionic sites on the surface of VLPs and capsomeres were decorated with a polycationic MUC1 peptide containing a polyarginine-cysteine residue fused to 20 amino acids of the MUC1 tandem repeat through electrostatic interactions and redox-induced disulfide bond formation. MUC1-conjugated fully assembled VLPs induced robust activation of bone marrow-derived dendritic cells, which could then present MUC1 antigen to MUC1-specific T cell hybridomas and primary naïve MUC1-specific T cells obtained from a MUC1-specific TCR transgenic mice. Immunization of human MUC1 transgenic mice, where MUC1 is a self-antigen, with the VLP vaccine induced MUC1-specific CTL, delayed the growth of MUC1 transplanted tumors and elicited complete tumor rejection in some animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号