首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Statins have recently been shown to exert neuronal protection in ischemic stroke. Reactive oxygen species, specifically superoxide formed during the early phase of reperfusion, augment neuronal injury. NADPH oxidase is a key enzyme for superoxide production. The present study tested the hypothesis that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia. Transient focal ischemia was created in halothane-anesthetized adult male Sprague-Dawley rats (250-300 g) by middle cerebral artery occlusion (MCAO). Atorvastatin (Lipitor, 10 mg/kg sc) was administered three times before MCAO. Infarct volume was measured by triphenyltetrazolium chloride staining. NADPH oxidase enzymatic activity and superoxide levels were quantified in the ischemic core and penumbral regions by lucigenin (5 microM)-enhanced chemiluminescence. Expression of NADPH oxidase membrane subunit gp91(phox) and membrane-translocated subunit p47(phox) and small GTPase Rac-1 was analyzed by Western blot. NADPH oxidase activity and superoxide levels increased after reperfusion and peaked within 2 h of reperfusion in the penumbra, but not in the ischemic core, in MCAO rats. Atorvastatin pretreatment prevented these increases, blunted expression of membrane subunit gp91(phox), and prevented translocation of cytoplasmic subunit p47(phox) to the membrane in the penumbra 2 h after reperfusion. Consequently, cerebral infarct volume was significantly reduced in atorvastatin-treated compared with nontreated MCAO rats 24 h after reperfusion. These results indicate that atorvastatin protects against cerebral infarction via inhibition of NADPH oxidase-derived superoxide in transient focal ischemia.  相似文献   

2.
Zhou Y  Wei EQ  Fang SH  Chu LS  Wang ML  Zhang WP  Yu GL  Ye YL  Lin SC  Chen Z 《Life sciences》2006,79(17):1645-1656
The role of 5-lipoxygenase (5-LOX) in brain injury after cerebral ischemia has been reported; however, the spatio-temporal properties of 5-LOX expression and the enzymatic activation are unclear. To determine these properties, we observed post-ischemic 5-LOX changes from 3 h to 14 days after reperfusion in rats with transient focal cerebral ischemia induced by 30 min of middle cerebral artery occlusion. We found that the expression of 5-LOX, both mRNA and protein, was increased in the ischemic core 12-24 h after reperfusion, and in the boundary zone adjacent to the ischemic core 7-14 days after reperfusion. The increased 5-LOX was primarily localized in the neurons in the ischemic core at 24 h, but in the proliferated astrocytes in the boundary zone 14 days after reperfusion. As 5-LOX metabolites, the level of cysteinyl-leukotrienes in the ischemic brain was substantially increased 3 h to 24 h, near control at 3 days, and moderately increased again 7 days after reperfusion; whereas the level of LTB(4) was increased mildly 3 h but substantially 7-14 days after reperfusion. Thus, we conclude that 5-LOX expression and the enzymatic activity are increased after focal cerebral ischemia, and spatio-temporally involved in neuron injury in the acute phase and astrocyte proliferation in the late phase.  相似文献   

3.
Oxidative stress after stroke is associated with the inflammatory system activation in the brain. The complement cascade, especially the degradation products of complement component 3, is a key inflammatory mediator of cerebral ischemia. We have shown that pro‐inflammatory complement component 3 is increased by oxidative stress after ischemic stroke in mice using DNA array. In this study, we investigated whether up‐regulation of complement component 3 is directly related to oxidative stress after transient focal cerebral ischemia in mice and oxygen‐glucose deprivation in brain cells. Persistent up‐regulation of complement component 3 expression was reduced in copper/zinc‐superoxide dismutase transgenic mice, and manganese‐superoxide dismutase knock‐out mice showed highly increased complement component 3 levels after transient focal cerebral ischemia. Antioxidant N‐tert‐butyl‐α‐phenylnitrone treatment suppressed complement component 3 expression after transient focal cerebral ischemia. Accumulation of complement component 3 in neurons and microglia was decreased by N‐tert‐butyl‐α‐phenylnitrone, which reduced infarct volume and impaired neurological deficiency after cerebral ischemia and reperfusion in mice. Small interfering RNA specific for complement component 3 transfection showed a significant increase in brain cells viability after oxygen‐glucose deprivation. Our study suggests that the neuroprotective effect of antioxidants through complement component 3 suppression is a new strategy for potential therapeutic approaches in stroke.  相似文献   

4.
目的:探讨ELAM-1和ICAM-1在局部脑缺血/再灌流炎性反应过程中的作用。方法:采用厅局级龙线栓堵大脑中动脉造成局部脑缺血/再灌流模型,用RT-PCR方法检测缺血侧脑组织缺血/再灌流不同时间点ELAM-1和ICAM-1mRNA的表达。结果:假手术组脑组织未见ELAM-1和ICAM-1mRNA的表达,手术组非缺血侧脑组织仅见少量表达。脑缺血/再灌流后1h,缺血侧脑组织ELAM-1和ICAM-1mRNA的表达量已开始升高;再灌流后3h,ICAM-1mRNA的上调达高峰,而ELAM-1mRNA的上调在缺血/再灌流后6h达高峰,且持续至缺血/再灌流后48h。结论:EL-AM-1和ICAM-1参与了局部缺血再灌流脑组织损伤的病理过程。二者在白细胞进入缺血区脑组织的病理过程中发挥着重要作用。  相似文献   

5.
Zhu DY  Deng Q  Yao HH  Wang DC  Deng Y  Liu GQ 《Life sciences》2002,71(17):1985-1996
The present observations examined the hypothesis that the iNOS expression in the ischemic penumbra after a transient focal ischemic insult is involved in the recruitment of penumbra into infarction. The middle cerebral artery in mice was occluded for 2 h by an intraluminal filament and then recirculated. The measurement of iNOS activity, iNOS protein formation and NO concentration in the ischemic core and penumbra, and the determination of infarct volume were performed at 6, 12, 24 and 48 h after reperfusion. iNOS protein and iNOS enzymatic activity appeared at 6 h, peaked at 24 h, and declined at 48 h in the penumbra after reperfusion. iNOS protein was not detectable in contralateral area and in sham-operated brains. The time course of iNOS protein, enzymatic activity and NO concentration in the penumbra but not in the core matched the process of infarct maturation. Treatment with iNOS inhibitor aminoguanidine (100 mg.kg(-1), i.p.) at 6 and 12 h after reperfusion inhibited iNOS activity by 88.0 +/- 10.4% and reduced NO concentration by 48.5 +/- 8.3% in the penumbra, and lessened infarct size by 48.8 +/- 7.2%. The iNOS activity and NO level in the core were not affected by the administration of aminoguanidine. These results suggest that iNOS expression in the ischemic penumbra is involved in the recruitment of penumbra into infarction and thereby contributing to the enlargement of infarct.  相似文献   

6.
Fetal ischemia or hypoxia can lead to cerebral palsy, mental retardation and epilepsy. We propose that the production of nitric oxide and oxygen radicals by neurons when ischemic or hypoxic brain is reperfused may contribute to cerebral injury. Ischemia will depolarize neuronal membranes causing the synaptic discharge of the excitatory neurotransmitter glutamate, which in turn opens the voltage-dependent, N-methyl-D-aspartic acid-specific glutamate receptor/ionophore, allowing calcium to accumulate in the neuron. Calcium in turn activates an oxygen-dependent neuronal nitric oxide synthetase, which oxidizes arginine to produce nitric oxide (.NO) when oxygen is readmitted to brain by reperfusion. Nitric oxide reacts with the oxygen radical superoxide (O2-), also produced by reperfusion, to form peroxynitrite (ONOO-). Peroxynitrite can diffuse for several micrometers before decomposing to form the powerful and cytotoxic oxidants hydroxyl radical and nitrogen dioxide. The hypothesis is consistent with available evidence on the protective action of glutamate antagonists and of oxygen radical scavengers for limiting cerebral infarction following focal ischemia.  相似文献   

7.
The long-term impacts of cerebral ischemia and diabetic ischemia on astrocytes and oligodendrocytes have not been defined. The objective of this study is to define profile of astrocyte and changes of myelin in diabetic and non-diabetic rats subjected to focal ischemia.Focal cerebral ischemia of 30-min duration was induced in streptozotocin-induced diabetic and vehicle-injected normoglycemic rats. The brains were harvested for immunohistochemistry of glial fibrillary acidic protein (GFAP) and 2'', 3''-cyclic nucleotide 3''-phosphodiesterase (CNPase) at various reperfusion endpoints ranging from 30 min up to 28 days. The results showed that activate astrocytes were observed after 30 min and peaked at 3 h to 1 day after reperfusion in ischemic penumbra, and peaked at 7 days of reperfusion in ischemic core. Diabetes inhibited the activation of astrocytes in ischemic hemisphere. Demyelination occurred after 30 min of reperfusion in ischemic core and peaked at 1 day. Diabetes caused more severe demyelination compared with non-diabetic rats. Remyelination started at 7 days and completed at 14 and 28 days in ischemic region. Diabetes inhibited the remyelination processes. It is concluded that ischemia activates astrocytes and induces demyelination. Diabetes inhibits the activation of astrocytes, exacerbates the demyelination and delays the remyelination processes. These may contribute to the detrimental effects of hyperglycemia on ischemic brain damage.  相似文献   

8.

Glutamate represents the main excitatory neurotransmitter in the mammalian brain; however, its excessive elevation in the extracellular space is cytotoxic and can result in neuronal death. The ischemia initiated brain damage reflects changes in glutamate concentration in peripheral blood. This paper investigated the role of the brain in blood efflux of the glutamate in an improved tolerance of the brain tissue to ischemic conditions. In the rat model of focal brain ischemia, the neuroprotection was initiated by rapid remote ischemic preconditioning (rRIPC). Our results confirmed a strong neuroprotective effect of rRIPC. We observed reduced infarction by about 78% related to improved neuronal survival by about 70% in the ischemic core. The level of tissue glutamate in core and penumbra dropped significantly and decreased to control value also in the core region of the contralateral hemisphere. Despite significant improvement of blood–brain barrier integrity (by about 76%), the additional gain of glutamate content in the peripheral blood was caused by rRIPC. Based on our results, we can assume that neuroprotection mediated by rapid remote ischemic preconditioning could lie in the regulated, whole-brain release of glutamate from nerve tissue to the blood, which preserves neurons from the exposure to glutamate toxicity and results in reduced infarction.

  相似文献   

9.
Apoptosis is one of the major mechanisms of cell death during cerebral ischemia and reperfusion injury. Flurbiprofen has been shown to reduce cerebral ischemia/reperfusion injury in both focal and global cerebral ischemia models, but the mechanism remains unclear. This study aimed to investigate the potential association between the neuroprotective effect of flurbiprofen and the apoptosis inhibiting signaling pathways, in particularly the Akt/GSK-3β pathway. A focal cerebral ischemia rat model was subjected to middle cerebral artery occlusion (MCAO) for 120 min and then treated with flurbiprofen at the onset of reperfusion. The infarct volume and the neurological deficit scores were evaluated at 24 h after reperfusion. Cell apoptosis, apoptosis-related proteins and the levels of p-Akt and p-GSK-3β in ischemic penumbra were measured using TUNEL and western blot. The results showed that administration of flurbiprofen at the doses of 5 and 10 mg/kg significantly attenuated brain ischemia/reperfusion injury, as shown by a reduction in the infarct volume, neurological deficit scores and cell apoptosis. Moreover, flurbiprofen not only inhibited the expression of Bax protein and p-GSK-3β, but also increased the expression of Bcl-2 protein, the ratio of Bcl-2/Bax as well as the P-Akt level. Taken together, these results suggest that flurbiprofen protects the brain from ischemia/reperfusion injury by reducing apoptosis and this neuroprotective effect may be partly due to the activation of Akt/GSK-3β signaling pathway.  相似文献   

10.
杨倩  王四旺  谢艳华 《生物磁学》2009,(20):3861-3863
目的:观察双丹胶囊对大鼠局灶性脑缺血再灌注损伤的脑梗死体积、自由基变化的影响,探讨双丹胶囊对脑缺血损伤的保护作用。方法:复制大鼠中动脉缺血再灌注模型,分别给药干预,在给药后观察行为学、脑梗死率、脑指数、脑含水量、SOD、MAD等指标。结果:双丹胶囊可改善动物的神经行为学评分,明显降低动物的脑梗死率、脑指数、脑含水量、提高脑组织SOD活性、降低MDA含量,并成剂量依赖。结论:双丹胶囊对脑缺血再灌注损伤具有保护作用。  相似文献   

11.
The aim of the present study was to identify the distinguishing metabolic characteristics of brain tissue salvaged by reperfusion following focal cerebral ischemia. Rats were subjected to 120 min of middle cerebral artery occlusion followed by 120 min of reperfusion. The rats received an intravenous bolus injection of [1-(13)C]glucose plus [1,2-(13)C]acetate. Subsequently two brain regions considered to represent penumbra and ischemic core, i.e. the frontoparietal cortex and the lateral caudoputamen plus lower parietal cortex, respectively, were analyzed with (13)C NMRS and HPLC. The results demonstrated four metabolic events that distinguished the reperfused penumbra from the ischemic core. (1) Improved astrocytic metabolism demonstrated by increased amounts of [4,5-(13)C]glutamine and improved acetate oxidation. (2) Neuronal mitochondrial activity was better preserved although the flux of glucose via pyruvate dehydrogenase into the tricarboxylic acid (TCA) cycle in glutamatergic and GABAergic neurons was halved. However, NAA content was at control level. (3) Glutamatergic and GABAergic neurons used relatively more astrocytic metabolites derived from the pyruvate carboxylase pathway. (4) Lactate synthesis was not increased despite decreased glucose metabolism in the TCA cycle via pyruvate dehydrogenase. In the ischemic core both neuronal and astrocytic TCA cycle activity declined significantly despite reperfusion. The utilization of astrocytic precursors originating from the pyruvate carboxylase pathway was markedly reduced compared the pyruvate dehydrogenase pathway in glutamate, and completely stopped in GABA. The NAA level fell significantly and lactate accumulated. The results demonstrate that preservation of astrocytic metabolism is essential for neuronal survival and a predictor for recovery.  相似文献   

12.
卢奎  胡斌  黎捷  刘中华  周敏  吴文军 《生物磁学》2013,(35):6806-6809
目的:研究神经调节素及基质金属蛋白酶-9对于小鼠大脑缺血再灌注损伤后炎症反应的抑制作用和机制。方法:选取100只成年雄性大鼠,随机分成对照和治疗组。采用线栓方法由颈内到颈外进行插线处理,造成大脑中动脉处于闭塞状态的再灌注动物模型。治疗组颈动脉进行注射少量NRG-1β干预性治疗,通过氯化三苯基四氮唑(TTC)检查脑梗塞范围,细胞凋亡采用原住脱氧核糖核苷酸末端转移酶介导缺口末端进行标记,采用免疫组织化学、免疫荧光双标记法及免疫印迹法观察脑组织基质金属蛋白酶-9(MMP-9)表达。结果:脑缺血再灌注损伤后,随时间延长及缺氧,对照组大鼠大脑皮质和纹状体区脑组织细胞凋亡,并且胶质细胞MMP-9蛋白表达逐渐增加。治疗组大鼠经注射NRG-1β干预性治疗后,缺血脑组织梗死范围及其细胞凋亡数量相对呈明显下降趋势。胶质细胞MMP-9表达呈降低趋势。结论:大鼠脑缺血再灌注损伤后体内NRG-1β抑制胶质细胞MMP-9的表达,控制缺血脑组织梗死的范围并抑制正常细胞的凋亡,发挥了重要的抗炎作用,可作为对于大脑缺血再灌注损伤的研究新靶点。  相似文献   

13.
Shin WH  Park SJ  Kim EJ 《Life sciences》2006,79(2):130-137
Ischemic stroke results from a transient or permanent reduction in cerebral blood flow that is restricted to the territory of a major brain artery. The major pathobiological mechanisms of ischemia/reperfusion injury include excitotoxicity, oxidative stress, inflammation, and apoptosis. In the present report, we first investigated the protective effects of anthocyanins against focal cerebral ischemic injury in rats. The pretreatment of anthocyanins (300 mg/kg, p.o.) significantly reduced the brain infarct volume and a number of TUNEL positive cells caused by middle cerebral artery occlusion and reperfusion. In the immunohistochemical observation, anthocyanins remarkably reduced a number of phospho-c-Jun N-terminal kinase (p-JNK) and p53 immunopositive cells in the infarct area. Moreover, Western blotting analysis indicated that anthocyanins suppressed the activation of JNK and up-regulation of p53. Thus, our data suggested that anthocyanins reduced neuronal damage induced by focal cerebral ischemia through blocking the JNK and p53 signaling pathway. These findings suggest that the consumption of anthocyanins may have the possibility of protective effect against neurological disorders such as brain ischemia.  相似文献   

14.
Understanding and managing ischemic stroke   总被引:21,自引:0,他引:21  
Transient or permanent focal brain injury following acute thromboembolic occlusion develops from a complex cascade of pathophysiological events. The processes of excitotoxicity, peri-infarct depolarisation, inflammation, and apoptosis within the ischemic penumbra are proposed. While the translation of therapeutic agents from the animal models to human clinical trials have been disappointing, there remains an atmosphere of optimism as a result of the development of new diagnostic and therapeutic approaches, which include physiological, as opposed to pharmacological, intervention. This article provides an insight into the understanding of cerebral ischemia, together with current and future treatment strategies.  相似文献   

15.
G X Wang  G R Li  Y D Wang  T S Yang  Y B Ouyang 《Life sciences》2001,69(23):2801-2810
We have studied the forms of cell death following ischemia/reperfusion, and the influence of diabetes mellitus (DM) as an additional factor. Based on the models of diabetes and middle cerebral artery occlusion (MCAO), characteristics of cell death after ischemia/reperfusion were evaluated synthetically by different methods: pathology, FCM, TUNEL and DNA agarose electrophoresis. The results showed that the occurrence of cerebral injury after ischemia/reperfusion was accompanied by cell necrosis and cell apoptosis. Cell apoptosis was mainly located in the ischemic penumbral (IP) zone around the densely ischemic focus. The ischemic core was characterized by cell necrosis. At the same time, the results showed that the process of ischemic cerebral injury worsened by DM was related to inducing cell apoptosis in IP and mid zone. In conclusion, there existed not only cell apoptosis but cell necrosis in brain damage following focal cerebral ischemia/reperfusion and showed a close, internal relationship between them. Brain damage following cerebral ischemia/reperfusion was worsened distinctly under diabetic conditions.  相似文献   

16.
The present study is to determine the effect of mild hypothermia (MHT) on the release of glutamate and glycine in rats subjected to middle cerebral artery occlusion and reperfusion. The relationship between amino acid efflux and brain infarct volume was compared in different periods during MHT. Reversible middle cerebral artery occlusion was performed in Sprague-Dawley rats using a suture model. The rats were divided into four groups including (1) MHT during ischemia (MHTi), (2) MHT during reperfusion (MHTr), (3) MHT during ischemia and reperfusion (MHTi + r), and (4) a normothermic group (NT). Extracellular concentrations of glutamate and glycine in the cortex and striatum were monitored using in vivo microdialysis and analyzed using high-performance liquid chromatography. Morphometric measurements for infarct volume were performed using 2,3,5-triphenyltetrazolium chloride staining. The increase of glutamate and glycine in the ischemic cortex of the MHTi and MHTi + r rats during ischemic and reperfusion periods was significantly less than that of the NT rats (p < 0.05). However, there was no statistical difference among these groups in the peak of glutamate and glycine release in the striatum. Infarct volume paralleled the release of glutamate and glycine. The protective effect of MHTi and MHTi + r in reducing ischemia and reperfusion brain injury may be due to the attenuation of both glutamate and glycine release during ischemia and reperfusion.  相似文献   

17.
银杏叶提取物(ginkgo biloba extract-761,EGb-761)注射液在中国常作为辅助药物被用于治疗脑卒中,但是,其潜在的细胞和药理机制尚未完全了解.该研究旨在探讨EGb-761是否通过调节缺血性脑卒中半暗带神经元的自噬从而发挥保护作用.采用雄性SD大鼠大脑中动脉闭塞(middle cerebral ...  相似文献   

18.
Free radicals have been suggested to be largely involved in the genesis of ischemic brain damage, as shown in the protective effects of alpha-phenyl-N-tert-butyl nitrone (PBN), a spin trapping agent, against ischemic cerebral injury. In the present study, the effects of PBN as well as MCI-186, a newly-developed free radical scavenger, and oxypurinol, an inhibitor of xanthine oxidase, were evaluated in a rat transient middle cerebral aretery (MCA) occlusion model to clarify the possible role of free radicals in the reperfusion injury of brain. The volume of cerebral infarction, induced by 2-h occlusion and subsequent 2-h reperfusion of MCA in Fisher-344 rats, was evaluated. The administration of PBN (100 mg/kg) and MCI-186 (100 mg/kg) just before reperfusion of MCA significantly reduced the infarction volume. In contrast, oxypurinol (100 mg/kg) failed to show any preventive effect on the infarction. These results suggest that free radical formation is involved in the cerebral damage induced by ischemia-reperfusion of MCA, and that hydroxyl radical is responsible for the reperfusion injury after transient focal brain ischemia. It is also suggested that xanthine oxidase is not a major source of free radicals.  相似文献   

19.
Pathophysiology and Therapy of Experimental Stroke   总被引:1,自引:0,他引:1  
1. Stroke is the neurological evidence of a critical reduction of cerebral blood flow in a circumscribed part of the brain, resulting from the sudden or gradually progressing obstruction of a large brain artery. Treatment of stroke requires the solid understanding of stroke pathophysiology and involves a broad range of hemodynamic and molecular interventions. This review summarizes research that has been carried out in many laboratories over a long period of time, but the main focus will be on own experimental research.2. The first chapter deals with the hemodynamics of focal ischemia with particular emphasis on the collateral circulation of the brain, the regulation of blood flow and the microcirculation. In the second chapter the penumbra concept of ischemia is discussed, providing a detailed list of the physiological, biochemical and structural viability thresholds of ischemia and examples of how these thresholds can be applied for imaging the penumbra. The third chapter summarizes the pathophysiology of infarct progression, focusing on the role of peri-infarct depolarisation, the multitude of putative molecular injury pathways, brain edema and inflammation. Finally, the fourth chapter provides an overview of currently discussed therapeutic approaches, notably the effect of mechanical or thrombolytic reperfusion, arteriogenesis, pharmacological neuroprotection, ischemic preconditioning and regeneration.3. The main emphasis of the review is placed on the balanced differentiation between hemodynamic and molecular factors contributing to the manifestation of ischemic injury in order to provide a rational basis for future therapeutic interventions.  相似文献   

20.
We investigated the neuroprotective action of nicotinamide in focal ischemia. Male spontaneously hypertensive rats (5–7 months old) were subjected to photothrombotic occlusion of the right distal middle cerebral artery (MCA). Either nicotinamide (125 or 250 mg/kg) or vehicle was injected IV before MCA occlusion. Changes in the cerebral blood flow (CBF) were monitored using laser-Doppler flowmetry, and infarct volumes were determined with TTC staining 3 days after MCA occlusion. In another set of experiments, the brain nicotinamide and nicotinamide adenine dinucleotide (NAD+) levels were analyzed by HPLC using the frozen samples dissected from the regions corresponding to the ischemic core and penumbra. In the 250-mg/kg nicotinamide group, the ischemic CBF was significantly increased compared to that the untreated group, and the infarct volumes were substantially attenuated (–36%). On the other hand, the ischemic CBF in the 125 mg/kg nicotinamide group was not significantly different from the untreated CBF, however, the infarct volumes were substantially attenuated (–38%). Cerebral ischemia per se did not affect the concentrations of nicotinamide and NAD+ both in the penumbra and ischemic core. In the nicotinamide groups, the brain nicotinamide levels increased significantly in all areas examined, and brain NAD+ levels increased in the penumbra but not in the ischemic core. Increased brain levels of nicotinamide are considered to be primarily important for neuroprotection against ischemia, and the protective action may be partly mediated through the increased NAD+ in the penumbra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号