首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Regulation of whole-body angular momentum (WBAM) is essential for maintaining dynamic balance during gait. Patients with hemiparesis frequently fall toward the anterior direction; however, whether this is due to impaired WBAM control in the sagittal plane during gait remains unknown. The present study aimed to investigate the differences in WBAM in the sagittal plane during gait between patients with hemiparesis and healthy individuals. Thirty-three chronic stroke patients with hemiparesis and twenty-two age- and gender-matched healthy controls walked along a 7-m walkway while gait data were recorded using a motion analysis system and force plates. WBAM and joint moment were calculated in the sagittal plane during each gait cycle. The range of WBAM in the sagittal plane in the second half of the paretic gait cycle was significantly larger than that in the first and second halves of the right gait cycle in the controls (P = 0.015 and P = 0.011). Furthermore, multiple regression analysis revealed the slower walking speed (P < 0.001) and larger knee extension moment on the non-paretic side (P = 0.003) contributed to the larger range of WBAM in the sagittal plane in the second half of the paretic gait cycle. Our findings suggest that dynamic stability in the sagittal plane is impaired in the second half of the paretic gait cycle. In addition, the large knee extension moment on the non-paretic side might play a role in the dynamic instability in the sagittal plane during gait in patients with hemiparesis.  相似文献   

2.
    
Abstract The paper deals with the morphology of the larva of Ctenophthalmus quadratus. It can be distinguished from Ctenophthalmus arvalis by the anterior part of the egg burster being longer, 1.6 to 1. 8 times as long as the posterior part, number of mandibular teeth and number of the setae of anal comb.  相似文献   

3.
本文首次描述了方叶栉眼蚤Ctenophthalmusquadratus幼虫的形态。它与栉眼蚤属已经描述的田栉眼蚤的鉴别特征是:破卵器前都较长,是后部的1.6-1.8倍,大颚的齿数和肛梳刚毛的数目。  相似文献   

4.
    
Exploring the rheological properties of intracellular materials is essential for understanding cellular and subcellular processes. Optical traps have been widely used for physical manipulation of micro and nano objects within fluids enabling studies of biological systems. However, experiments remain challenging as it is unclear how the probe particle's mobility is influenced by the nearby membranes and organelles. We use liposomes (unilamellar lipid vesicles) as a simple biomimetic model of living cells, together with a trapped particle rotated by optical tweezers to study mechanical and rheological properties inside a liposome both theoretically and experimentally. Here, we demonstrate that this system has the capacity to predict the hydrodynamic interaction between three‐dimensional spatial membranes and internal probe particles within submicron distances, and it has the potential to aid in the design of high resolution optical micro/nanorheology techniques to be used inside living cells.   相似文献   

5.
    
Despite considerable literature on the functional anatomy of the hominoid upper limb, there are no quantitative approaches relating to bone design and the resulting muscular-activity enhancement. The purpose of this study is to quantitatively analyze the relationship between the rotational efficiency of the pronator teres muscle and the design of the skeletal structures on which it acts. Using conventional scan images of a human forearm for three rotational positions, this study develops an original biomechanical model that defines rotational efficiency as a mathematical function expressing a geometrical relationship between the origin and insertion muscular sites. The results show that this parameter varies throughout the entire pronation range, being maximal when the forearm lies around its functional position. Moreover, the rotational-efficiency formula allows us to demonstrate, by several simulation conditions, that an improvement in pronation efficiency is derived from a large shaft radius curvature, a large humeral medial epicondyle, and a more proximal pronator teres radial attachment. The fact that forearm pronation efficiency can be inferred, even quantified, throughout the entire rotational range, by applying the biomechanical model developed here allows us to undertake anatomical approaches in the field of Evolutionary Anthropology, to interpret more precisely how skeletal design is related to upper-limb function in extant and fossil primate taxa.  相似文献   

6.
    
A recent study (Galtés et al.: Am J Phys Anthropol 135 (2008) 293-300) demonstrated that during pronation, pronator teres exerts a favorable force for radial lateral bending. On the basis of this finding, we hypothesized that the pattern of muscular loading exerted on the radius by this muscle might play a role as a mechanical stimulus involved in radial bowing. The current work relates the hypertrophy of the forearm muscles to the degree of lateral curvature of the radial diaphysis. The analysis is based on an original osteometrical index to estimate radial curvature, and it applies a visual reference method to grade the osteological appearance of 10 entheses of 104 radii from archaeological and contemporary samples. Using these morphological data as an indirect method to measure the association between muscular hypertrophy and bone curvature, this study reveals that the pattern of muscular loading exerted on the apex of the radial shaft by the pronator teres muscle may play an important role as a mechanical stimulus involved in diaphyseal bowing.  相似文献   

7.
Several prosimian species begin a leap from a vertical support with their back toward the landing target. To reorient themselves from this dorsally facing, head-first lift-off to a ventrally facing, feet-first landing, the animals combine an initial twist with a partial backward somersault. Cinefilms of a captive colony of ringtailed lemurs (Lemur catta) revealed that during leaps from vertical poles to horizontal supports, the backward somersaulting rotations were often initiated while the animals were airborne. How could these prosimians initiate rotations in the absence of externally applied forces without violating angular momentum conservation? The problem was approached through vector analysis to demonstrate angular momentum (H) changes about the three principal (symmetrical) axes of rotation for a series of critical body positions that were extracted from the filmed sequences. One L. catta specimen was segmented to provide the dimensions and weights necessary for modeling the various body positions. These data were also used to calculate moments of inertia about the three principal axes in order to predict if rotations about these axes were stable or metastable. Lemurs, like any projectile, must conserve the total angular momentum (HT) established at lift-off. HT, however, is a vector quantity that is the resultant of component vectors about the three principal axes. Thus, H about the individual axes may change as long as HT remains constant. Strategically timed tail movements tilted the body, thereby changing the H value about the head-to-toe (twisting) axis. To conserve HT, also aligned along the twisting axis, angular momentum transferred to the somersaulting axis. Owing to the direction of tail-throw, the initiated rotations were partial backward somersaults that brought the hindlimbs forward for landing. This strategy for initiating specific rotations parallels that practiced by human springboard divers.  相似文献   

8.
    
This work presents an original methodology for analyzing forearm‐pronation efficiency from skeletal remains and its variation with regard to changes in the elbow position. The methodology is based on a biomechanical model that defines rotational efficiency as a mathematical function expressing a geometrical relationship between the origin and insertion of the pronator teres. The methodology uses humeral distal epiphysis photography, from which the geometrical parameters for the efficiency calculus can be obtained. Rotational efficiency is analyzed in a human specimen and in a living nonhuman hominoid (Symphalangus syndactylus) for a full elbow extension (180°) and an intermediate elbow position (90°). In both specimens, the results show that this rotational‐efficiency parameter varies throughout the entire rotational range and show a dependency on the elbow joint position. The rotational efficiency of the siamang's pronator teres is less affected by flexion of the forearm than that of the human. The fact that forearm‐pronation efficiency can be inferred, even quantified, allows us to interpret more precisely the functional and evolutionary significance of upper‐limb skeletal design in extant and fossil primate taxa. Am J Phys Anthropol 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
In contrast to the upright trunk in humans, trunk orientation in most birds is almost horizontal (pronograde). It is conceivable that the orientation of the heavy trunk strongly influences the dynamics of bipedal terrestrial locomotion. Here, we analyse for the first time the effects of a pronograde trunk orientation on leg function and stability during bipedal locomotion. For this, we first inferred the leg function and trunk control strategy applied by a generalized small bird during terrestrial locomotion by analysing synchronously recorded kinematic (three-dimensional X-ray videography) and kinetic (three-dimensional force measurement) quail locomotion data. Then, by simulating quail gaits using a simplistic bioinspired numerical model which made use of parameters obtained in in vivo experiments with real quail, we show that the observed asymmetric leg function (left-skewed ground reaction force and longer leg at touchdown than at lift-off) is necessary for pronograde steady-state locomotion. In addition, steady-state locomotion becomes stable for specific morphological parameters. For quail-like parameters, the most common stable solution is grounded running, a gait preferred by quail and most of the other small birds. We hypothesize that stability of bipedal locomotion is a functional demand that, depending on trunk orientation and centre of mass location, constrains basic hind limb morphology and function, such as leg length, leg stiffness and leg damping.  相似文献   

11.
    
Caracaras, falcons and forest falcons, which are representative of the three subfamilies of the family Falconidae, have different flight behaviour. Since, during flight, the tail works in coordination with the wings, the tail muscles could be indicative of the type of flight behaviour. The aim of this work was to describe in detail the little-known tail muscles of the Falconidae and to explore their possible association with this different behaviour, by using the muscle mass as an indicator. To this end, the tail muscles of 18 specimens representing the three subfamilies of Falconidae were dissected, weighed and their percentage to the body mass calculated. The possible differences in tail muscle mass between Falconinae and Polyborinae were explored with a Bayesian statistical approach. In all species, the muscles depressor caudae and levator caudae had the highest mass values (0.028%–0.329% and 0.120%–0.274%, respectively), in accordance with the key movements performed during flight, that is, the tail depression and elevation. The total muscle masses of Falconinae and those of Polyborinae were significantly different (p < 0.05). This difference can be related with the different flight behaviour of falcons and caracaras, that is, fast and erratic flight, respectively.  相似文献   

12.
13.
When animals travel on tree branches, avoiding falls is of paramount importance. Animals swiftly running on a narrow branch must rely on movement to create stability rather than on static methods. We examined how Siberian chipmunks (Tamias sibiricus) remain stable while running on a narrow tree branch trackway. We examined the pitch, yaw, and rolling torques around the center of mass, and hypothesized that within a stride, any angular impulse (torque during step time) acting on the center of mass would be canceled out by an equal and opposite angular impulse. Three chipmunks were videotaped while running on a 2 cm diameter branch trackway. We digitized the videos to estimate center of mass and center of pressure positions throughout the stride. A short region of the trackway was instrumented to measure components of the substrate reaction force. We found that positive and negative pitch angular impulse was by far the greatest in magnitude. The anterior body was pushed dorsally (upward) when the forelimbs landed simultaneously, and then the body pitched in the opposite direction as both hindlimbs simultaneously made contact. There was no considerable difference between yaw and rolling angular impulses, both of which were small and equal between fore- and hindlimbs. Net angular impulses around all three axes were usually greater than or less than zero (not balanced). We conclude that the chipmunks may balance out the torques acting on the center of mass over the course of two or more strides, rather than one stride as we hypothesized.  相似文献   

14.
  总被引:1,自引:0,他引:1  
  相似文献   

15.
Oxygen uptake was measured on four male subjects during sculling gondolas at constant speeds from approximately 1 to approximately 3 m.s-1. The number of scullers on board in the different trials was one, two or four. Tractional water resistance (drag, D, N) was also measured in the same range of speeds. Energy cost of locomotion per unit of distance (C, J.m-1), as calculated from the ratio of O2 uptake above resting to, increased with v according to a power function (C = 155.2.v1.67; r = 0.88). Also D could be described as a power function of the speed: D = 12.3.v2.21; r = 0.94). The overall efficiency of motion, as obtained from the ratio of D to C, increased with speed from 9.2% at 1.41 m.s-1 to 14.5% at 3.08 m.s-1. It is concluded that, in spite of this relatively low efficiency of motion, the gondola is a very economic means. Indeed, at low speeds (approximately 1 m.s-1), the absolute amount of energy for propelling a gondola is the same as that for waking on the level at the same speed for a subject of 70 kg body mass.  相似文献   

16.
    
How do arm‐swinging apes locomote effectively over a variety of speeds? One way to reduce the metabolic energy cost of locomotion is to transfer energy between reversible mechanical modes. In terrestrial animals, at least two transfer mechanisms have been identified: 1) a pendulum‐like mechanism for walking, with exchange between gravitational potential energy and translational kinetic energy, and 2) a spring‐like mechanism for running, where the elastic strain energy of stretched muscle and tendon is largely returned to reaccelerate the animal. At slower speeds, a brachiator will always have at least one limb in contact with the support, similar to the overlap of foot contact in bipedal walking. At faster speeds, brachiators exhibit an aerial phase, similar to that seen in bipedal running. Are there two distinct brachiation gaits even though the animal appears to simply swing beneath its overhead support? If so, are different exchange mechanisms employed? Our kinetic analysis of brachiation in a white‐handed gibbon (Hylobates lar) indicates that brachiation is indeed comprised of two mechanically distinct gaits. At slower speeds in “continuous contact” brachiation, the gibbon utilizes a simple pendulum‐like transfer of mechanical energy within each stride. At faster speeds in “ricochetal” brachiation, translational and rotational kinetic energy are exchanged in a novel “whip‐like” transfer. We propose that brachiators utilize the transfer between translational and rotational kinetic energy to control the dynamics of their swing. This maneuver may allow muscle action at the shoulder to control the transfer and adjust the ballistic portion of the step to meet the requirements for the next hand contact. Am J Phys Anthropol 115:319–326, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

17.
Small animals are remarkably efficient climbers but comparatively poor runners, a well-established phenomenon in locomotor energetics that drives size-related differences in locomotor ecology yet remains poorly understood. Here, I derive the energy cost of legged locomotion from two complementary components of muscle metabolism, Activation–Relaxation and Cross-bridge cycling. A mathematical model incorporating these costs explains observed patterns of locomotor cost both within and between species, across a broad range of animals (insects to ungulates), for a wide range of substrate slopes including level running and vertical climbing. This ARC model unifies work- and force-based models for locomotor cost and integrates whole-organism locomotor cost with cellular muscle physiology, creating a predictive framework for investigating evolutionary and ecological pressures shaping limb design and ranging behaviour.  相似文献   

18.
Controversy has existed about the power stroke of cetacean locomotion. We therefore measured cross-sectional areas of the appropriate muscles of the tail and computed possible forces and bending moments. The muscle areas are approximately equal in size and a similar relationship holds for the caudal tendons. It appears that the hypoaxial and epiaxial muscles are capable of generating forces that are approximately equal. Thrust delivered in the upstroke and downstroke may therefore be equal.  相似文献   

19.
《Zoology (Jena, Germany)》2015,118(5):312-319
Despite the physical differences between water and air, a number of fish lineages are known to make terrestrial excursions on land. Many of these fishes exhibit an elongate body plan. Elongation of the body can occur in several ways, the most common of which is increasing the number of vertebrae in one or both regions of the axial skeleton – precaudal and/or caudal. Elongate species are often found in three-dimensionally complex habitats. It has been hypothesized that elongate fishes use this structure to their locomotor advantage. In this study, we consider how elongation and differences in vertebral regionalization correspond with the use of wooden pegs, which are provided as analogs to vertically oriented substrate, structures that protrude above the ground. We compare aquatic and terrestrial locomotor behaviors of Polypterus senegalus, Erpetoichthys calabaricus, and Gymnallabes typus as they move through a peg array. When considering axial elongation we find that the highly elongate species, E. calabaricus and G. typus, contact more pegs but on average move slower in both environments than P. senegalus. When considering axial regionalization, we find that the precaudally elongate species, P. senegalus and E. calabaricus, differ in the patterns of peg contact between the two environments whereas the caudally elongate species, G. typus, exhibits similar peg contact between the two environments. Our study highlights the importance of incorporating body shape and vertebral regionalization to understand how elongate fishes move in water and on land.  相似文献   

20.
Following stepping in place on a rotating treadmill, subjects inadvertently rotate when asked to step in place without vision. This response is called podokinetic after-rotation (PKAR). The purpose of this study was to determine whether PKAR transfers across tasks with different lower limb configurations, that is, from kneeling to stepping. We hypothesized that PKAR would transfer from kneeling to stepping for two reasons. First, there have been several demonstrations of robust PKAR transfer from forward to backward walking, stepping to hopping, running to walking, and from one limb to another. Second, we thought that afferent information regarding hip rotation was likely a key source of information to guide podokinetic adaptation and since hip rotation would be preserved in both stimulation conditions we expected to see little difference between the conditions. We compared the PKAR responses recorded in standing from 13 healthy young volunteers after either standard stepping on a rotating treadmill or stepping while kneeling (kneel-stepping) on a rotating treadmill. Subjects performed two sessions of podokinetic (PK) stimulation, one stepping and one kneel-stepping on a rotating treadmill. Following the PK stimulation, subjects were blindfolded and asked to step in place in standing. Angular velocity of trunk rotation during PKAR from the two sessions was calculated and compared. The maximum angular velocities of PKAR recorded in stepping were significantly higher following the stepping session than following the kneel-stepping session (9.10?±?8.9 and 2.94?±?1.6?deg/s, respectively). This was despite the fact that hip rotation excursion during PK stimulation was significantly greater in kneel-stepping (18.7?±?3.6?deg) than in stepping (12.2?±?2.6?deg). These results indicate very little transfer from kneeling to stepping and suggest that afferent information regarding hip rotation is not the only or even the major source of limb position sense information used to drive locomotor trajectory adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号