首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The retinoblastoma protein Rb is critical for the regulation of mammalian cell cycle entry. Hypophosphorylated Rb is considered to be the active form and directs G1 arrest, while hyperphosphorylated Rb permits the transition from G1 to S phase for cell proliferation. Upon stimulation by various growth factors, Rb appears to be phosphorylated by a cascade of phosphorylation events mediated mainly by kinases associated with cyclins D and E. Here we report that in prototype small intestine crypt stem cells (RIEC-6), stimulation with either epidermal growth factor or fetal bovine serum results in an unexpected rapid and sustained Rb phosphorylation at sites Ser780, Ser795, and Thr821 which precedes cyclin D1 expression, cyclin D1/cdk4 complex formation, and cdk4 kinase activity. Rb phosphorylation at Ser780 and Ser795 is prevented by MEK, but not phosphatidylinositol 3-kinase, inhibitors. In vitro, Rb is directly phosphorylated by active ERK1/2 as shown by [gamma-32P]ATP labeling. The phosphorylation sites are further directed to Ser780 and Ser795 by kinase assays using recombined active ERK1/2 or immunoprecipitated phospho-ERK1/2 from mitogen stimulated cells. Pull-down assays revealed that Rb interacts with active ERK1/2 but not their inactive unphosphorylated forms. Upon EGF stimulation, phosphorylated ERK1/2 co-immunoprecipitates together with phosphorylated Rb. Collectively, these results demonstrate a novel rapid Rb phosphorylation at specific sites induced by mitogen stimulation in epithelial cells of the small intestine. These data specifically identify ERK1/2 as the kinase responsible for Rb phosphorylation targeted to sites Ser780 and Ser795. It appears that ERK1/2 could be an important link between a mitogenic signal directly to Rb, thereby providing a rapid response mechanism between mitogen stimulation and cell cycle machinery.  相似文献   

2.
3.
Fucoxanthin, a natural carotenoid, has been reported to have antitumorigenic activity in mouse colon, skin and duodenum models. The present study was designed to evaluate the molecular mechanisms of fucoxanthin against colon cancer using the human colon adenocarcinoma cell lines. Fucoxanthin reduced the viability of WiDr cells in a dose-dependent manner accompanied by the induction of cell cycle arrest during the G0/G1 phase at 25 microM and apoptosis at 50 microM. Fucoxanthin at 25 microM inhibited the phosphorylation of the retinoblastoma protein (pRb) at Ser780 and Ser807/811 24 h after treatment without changes in the protein levels of the D-types of cyclin and cyclin-dependent kinase (cdk) 4, whose complexes are responsible for the phosphorylation of pRb at these sites. A cdk inhibitory protein, p21WAF1/Cip1 increased 24 h after the treatment with 25 microM of fucoxanthin, but not p27Kip1. In addition, the mRNA of p21WAF1/Cip1 also increased in a dose-dependent manner. According to the experiments using the isogenic human colon adenocarcinoma cell lines, fucoxanthin failed to induce G0/G1 arrest in the p21-deficient HCT116 cells, but not in HCT116 wild-type cells. All of these findings showed that fucoxanthin inhibited proliferation of colon cancer cells. The inhibitory mechanism is due to the cell cycle arrest during the G0/G1 phase mediated through the up-regulation of p21WAF1/Cip1, which may be related to the antitumorigenic activity.  相似文献   

4.
The synthesis and CDK inhibitory properties of a series of indolo[6,7-a]pyrrolo[3,4-c]carbazoles is reported. In addition to their potent CDK activity, the compounds display antiproliferative activity against two human cancer cell lines. These inhibitors also effect strong G1 arrest in these cell lines and inhibit Rb phosphorylation at Ser780 consistent with inhibition of cyclin D1/CDK4.  相似文献   

5.
Prostate cancer is one of the most common cancers among men. Recent studies demonstrated that PI3K signaling is an important intracellular mediator which is involved in multiple cellular functions including proliferation, differentiation, anti-apoptosis, tumorigenesis, and angiogenesis. In the present study, we demonstrate that the inhibition of PI3K activity by LY294002, inhibited prostate cancer cell proliferation and induced the G(1) cell cycle arrest. This effect was accompanied by the decreased expression of G(1)-associated proteins including cyclin D1, CDK4, and Rb phosphorylation at Ser780, Ser795, and Ser807/811, whereas expression of CDK6 and beta-actin was not affected by LY294002. The expression of cyclin kinase inhibitor, p21(CIP1/WAF1), was induced by LY294002, while levels of p16(INK4) were decreased in the same experiment. The inhibition of PI3K activity also inhibited the phosphorylation and p70(S6K), but not MAPK. PI3K regulates cell cycle through AKT, mTOR to p70(S6K). The mTOR inhibitor rapamycin has similar inhibitory effects on G(1) cell cycle progression and expression of cyclin D1, CDK4, and Rb phosphorylation. These results suggest that PI3K mediates G(1) cell cycle progression and cyclin expression through the activation of AKT/mTOR/p70(S6K) signaling pathway in the prostate cancer cells.  相似文献   

6.
Cyclin D-Cdk4/6 and cyclin A/E-Cdk2 are suggested to be involved in phosphorylation of the retinoblastoma protein (pRB) during the G1/S transition of the cell cycle. However, it is unclear why several Cdks are needed and how they are different from one another. We found that the consensus amino acid sequence for phosphorylation by cyclin D1-Cdk4 is different from S/T-P-X-K/R, which is the consensus sequence for phosphorylation by cyclin A/E-Cdk2 using various synthetic peptides as substrates. Cyclin D1-Cdk4 efficiently phosphorylated the G1 peptide, RPPTLS780PIPHIPR that contained a part of the sequence of pRB, while cyclins E-Cdk2 and A-Cdk2 did not. To determine the phosphorylation state of pRB in vitro and in vivo, we raised the specific antibody against phospho-Ser780 in pRB. We confirmed that cyclin D1-Cdk4, but not cyclin E-Cdk2, phosphorylated Ser780 in recombinant pRB. The Ser780 in pRB was phosphorylated in the G1 phase in a cell cycle-dependent manner. Furthermore, we found that pRB phosphorylated at Ser780 cannot bind to E2F-1 in vivo. Our data show that cyclin D1-Cdk4 and cyclin A/E Cdk2 phosphorylate different sites of pRB in vivo.  相似文献   

7.
Peroxisome proliferator activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily. Ligand activation of PPARgamma has been shown to cause growth arrest in several human tumor cell types, but the underlying molecular mechanism has not been elucidated. We report here that the PPARgamma ligand troglitazone (TRO) inhibited MCF-7 cell proliferation by blocking events critical for G1 --> S progression. Flow cytometry demonstrated that TRO at 20 microM increased the percentage of cells in G1 from 51 to 69% after 24 h. Accumulation of cells in G1 was accompanied by an attenuation of Rb protein phosphorylation associated with decreased CDK4 and CDK2 activities. Inhibition of CDK activity by TRO correlates with decreased protein levels for several G1 regulators of Rb phosphorylation (cyclin D1, and CDKs 2, 4, and 6). Overexpression of cyclin D1 partially rescued MCF-7 cells from TRO-mediated G1 arrest. Targeting of G1 regulatory proteins, particularly cyclin D1, and the resulting induction of G1 arrest by TRO may provide a novel antiproliferative therapy for human breast cancer.  相似文献   

8.
Han YH  Kim SH  Kim SZ  Park WH 《Life sciences》2008,83(9-10):346-355
Antimycin A (AMA), an electron transport chain inhibitor in mitochondria can produce reactive oxygen species (ROS) in cells. It has been reported that ROS may have roles in cell cycle progression via regulating cell cycle-related proteins. In the present study, we investigated the changes of the cell cycle distribution in AMA-treated HeLa cells in relation to cell cycle-related proteins. DNA flow cytometric analysis indicated that treatment with AMA significantly induced an S phase arrest of the cell cycle at 72 h. AMA decreased the expression of cyclin-dependent kinase inhibitor (CDKI), p21 and p27, CDK4, and cdc2 proteins. The expression of CDK6, cyclin D1, cyclin E, cyclin A, and cyclin B proteins was increased by 0.5 muM AMA, but was decreased by 2 and 10 muM AMA. The phosphorylation of Rb on the Ser (780) residue was increased by 0.5 muM AMA. Furthermore, treatment with AMA caused the accumulation of cells expressing cyclin A, B, and D1 proteins at the S phase of the cell cycle. However, treatment with 100 muM AMA nonspecifically extended all phases of the cell cycle. In conclusion, treatment with AMA (2, 10 and 50 muM) induced an S phase arrest of the cell cycle. An S phase arrest was accompanied by the alteration of other cell cycle-regulated proteins as well as S phase-related proteins.  相似文献   

9.
We examined the relationship between mitogen-activated MEK (mitogen and extracellular signal-regulated protein kinase kinase) and phosphorylation of the gene product encoded by retinoblastoma (hereafter referred to as Rb) in vascular smooth muscle cells. Brief treatment of the cells with 100 nm angiotensin II or 1 microm serotonin resulted in serine phosphorylation of Rb that was equal in magnitude to that induced by treating cells for 20 h with 10% fetal bovine serum ( approximately 3 x basal). There was no detectable rapid phosphorylation of two close cousins of Rb, p107 and p130. Phosphorylation state-specific antisera demonstrated that the rapid phosphorylation occurred on Ser(795), but not on Ser(249), Thr(252), Thr(373), Ser(780), Ser(807), or Ser(811). Phosphorylation of Rb Ser(795) peaked at 10 min, lagging behind phosphorylation of MEK and ERK (extracellular signal-regulated protein kinase). Rb Ser(795) phosphorylation could be blocked by PD98059, a MEK inhibitor, and greatly attenuated by apigenin, an inhibitor of the Ras --> Raf --> MEK --> ERK pathway. The effect also appears to be mediated by CDK4. Immunoprecipitation/immunoblot studies revealed that serotonin and angiotensin II induced complex formation between CDK4, cyclin D1, and phosphorylated ERK. These studies show a rapid, novel, and selective phosphorylation of Rb Ser(795) by mitogens and demonstrate an unexpected rapid linkage between the actions of the Ras --> Raf --> MEK --> ERK pathway and the phosphorylation state of Rb.  相似文献   

10.
11.
In search of chemical substances applicable for the treatment of cancer and other proliferative disorders, we studied the signal transduction of Dictyostelium differentiation-inducing factors (DIFs) in mammalian cells mainly using HeLa cells. Although DIF-1 and DIF-3 both strongly inhibited cell proliferation by inducing G(0)/G(1) arrest, DIF-3 was more effective than DIF-1. DIF-3 suppressed cyclin D1 expression at both mRNA and protein levels, whereas the overexpression of cyclin D1 overrode DIF-3-induced cell cycle arrest. The DIF-3-induced decrease in the amount of cyclin D1 protein preceded the reduction in the level of cyclin D1 mRNA. The decrease in cyclin D1 protein seemed to be caused by accelerated proteolysis, since it was abrogated by N-acetyl-Leu-Leu-norleucinal, a proteasome inhibitor. DIF-3-induced degradation of cyclin D1 was also prevented by treatment with lithium chloride, an inhibitor of glycogen synthase kinase-3beta (GSK-3beta), suggesting that DIF-3 induced cyclin D1 proteolysis through the activation of GSK-3beta. Indeed, DIF-3 dephosphorylated Ser(9) and phosphorylated tyrosine on GSK-3beta, and it stimulated GSK-3beta activity in an in vitro kinase assay. Moreover, DIF-3 was revealed to induce the nuclear translocation of GSK-3beta by immunofluorescent microscopy and immunoblotting of subcellular protein fractions. These results suggested that DIF-3 activates GSK-3beta to accelerate the proteolysis of cyclin D1 and that this mechanism is involved in the DIF-3-induced G(0)/G(1) arrest in mammalian cells.  相似文献   

12.
13.
In this study, we determined the cytotoxic effects of piperine, a major constituent of black and long pepper in melanoma cells. Piperine treatment inhibited the growth of SK MEL 28 and B16 F0 cells in a dose and time-dependent manner. The growth inhibitory effects of piperine were mediated by cell cycle arrest of both the cell lines in G1 phase. The G1 arrest by piperine correlated with the down-regulation of cyclin D1 and induction of p21. Furthermore, this growth arrest by piperine treatment was associated with DNA damage as indicated by phosphorylation of H2AX at Ser139, activation of ataxia telangiectasia and rad3-related protein (ATR) and checkpoint kinase 1 (Chk1). Pretreatment with AZD 7762, a Chk1 inhibitor not only abrogated the activation of Chk1 but also piperine mediated G1 arrest. Similarly, transfection of cells with Chk1 siRNA completely protected the cells from G1 arrest induced by piperine. Piperine treatment caused down-regulation of E2F1 and phosphorylation of retinoblastoma protein (Rb). Apoptosis induced by piperine was associated with down-regulation of XIAP, Bid (full length) and cleavage of Caspase-3 and PARP. Furthermore, our results showed that piperine treatment generated ROS in melanoma cells. Blocking ROS by tiron protected the cells from piperine mediated cell cycle arrest and apoptosis. These results suggest that piperine mediated ROS played a critical role in inducing DNA damage and activation of Chk1 leading to G1 cell cycle arrest and apoptosis.  相似文献   

14.
15.
We have previously found that bone morphogenetic protein-2 (BMP-2), a member of the transforming growth factor-beta family, induces cell-cycle arrest in the G1 phase and apoptotic cell death of HS-72 mouse hybridoma cells. In this study, we show that BMP-2 did not alter expression of cyclin D, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4, p27KIP1, p16INK4a, or p15INK4b, but enhanced expression of p21(CIP1/WAF1). Accumulation of p21(CIP1/WAF1) resulted in increased binding of p21(CIP1/WAF1) to CDK4 and concomitantly caused a profound decrease in the in vitro retinoblastoma protein (Rb) kinase activity of CDK4. Furthermore, the ectopic expression of human papilloma virus type-16 E7, an inhibitor of p21(CIP1/WAF1) and Rb, reverted G1 arrest induced by BMP-2. Expression of E6/E7, without increasing the p53 level, blocked inhibition of Rb phosphorylation and G1 arrest, but did not attenuate cell death in BMP-treated HS-72 cells. Taken together, these results suggest that inhibition of Rb phosphorylation by p21(CIP1/WAF1) is responsible for BMP-2-mediated G1 arrest and that BMP-2-induction of apoptosis might be independent of Rb hypophosphorylation.  相似文献   

16.
We previously reported the potential of a novel small molecule 3-amino-6-(3-methoxyphenyl)thieno[2.3-b]pyridine-2-carboxamide (SKLB70326) as an anticancer agent. In the present study, we investigated the anticancer effects and possible mechanisms of SKLB70326 in vitro. We found that SKLB70326 treatment significantly inhibited human hepatic carcinoma cell proliferation in vitro, and the HepG2 cell line was the most sensitive to its treatment. The inhibition of cell proliferation correlated with G(0)/G(1) phase arrest, which was followed by apoptotic cell death. The SKLB70326-mediated cell-cycle arrest was associated with the downregulation of cyclin-dependent kinase (CDK) 2, CDK4 and CDK6 but not cyclin D1 or cyclin E. The phosphorylation of the retinoblastoma protein (Rb) was also observed. SKLB70326 treatment induced apoptotic cell death via the activation of PARP, caspase-3, caspase-9 and Bax as well as the downregulation of Bcl-2. The expression levels of p53 and p21 were also induced by SKLB70326 treatment. Moreover, SKLB70326 treatment was well tolerated. In conclusion, SKLB70326, a novel cell-cycle inhibitor, notably inhibits HepG2 cell proliferation through the induction of G(0)/G(1) phase arrest and subsequent apoptosis. Its potential as a candidate anticancer agent warrants further investigation.  相似文献   

17.
The irreversible G1 arrest in senescent human diploid fibroblasts is probably caused by inactivation of the G1 cyclin-cyclin-dependent kinase (Cdk) complexes responsible for phosphorylation of the retinoblastoma protein (pRb). We show that the Cdk inhibitor p21(Sdi1,Cip1,Waf1), which accumulates progressively in aging cells, binds to and inactivates all cyclin E-Cdk2 complexes in senescent cells, whereas in young cells only p21-free Cdk2 complexes are active. Furthermore, the senescent-cell-cycle arrest occurs prior to the accumulation of the Cdk4-Cdk6 inhibitor p16(Ink4a), suggesting that p21 may be sufficient for this event. Accordingly, cyclin D1-associated phosphorylation of pRb at Ser-780 is lacking even in newly senescent fibroblasts that have a low amount of p16. Instead, the cyclin D1-Cdk4 and cyclin D1-Cdk6 complexes in these cells are associated with an increased amount of p21, suggesting that p21 may be responsible for inactivation of both cyclin E- and cyclin D1-associated kinase activity at the early stage of senescence. Moreover, even in the late stage of senescence when p16 is high, cyclin D1-Cdk4 complexes are persistent, albeit reduced by 相似文献   

18.
In this study, we investigated the mechanisms responsible for the growth-inhibitory action of parathyroid hormone-related protein (PTHRP) in A10 vascular smooth muscle cells (VSMC). Fluorescence-activated cell sorting analysis of serum-stimulated VSMC treated with PTHRP or dibutyryl-cAMP (DBcAMP) demonstrated an enrichment of cells in G1 and a reduction in the S phase. Measurement of DNA synthesis in platelet-derived growth factor-stimulated VSMC treated with DBcAMP revealed that cells became refractory to growth inhibition by 12-16 h, consistent with blockade in mid-G1. cAMP treatment blunted the serum-induced rise in cyclin D1 during cell cycle progression without altering levels of the cyclin-dependent kinase cdk4 or cyclin E and its associated kinase, cdk2. Exposure of cells to PTHRP or cAMP resulted in a reduction in retinoblastoma gene product (Rb) phosphorylation. Immunoblotting of extracts from cAMP-treated cells with antibodies to cdk inhibitors revealed a striking increase in p27(kip1) abundance coincident with the G1 block. Immunoprecipitation with an anti-cyclin D1 antibody of cell lysates prepared from cAMP-treated cells followed by immunoblotting with antisera to p27(kip1) disclosed a threefold increase in p27(kip1) associated with cyclin D1 compared with lysates treated with serum alone. We conclude that PTHRP, by increasing intracellular cAMP, induces VSMC cycle arrest in mid-G1. This occurs secondary to a suppression in cyclin D1 and induction of p27(kip1) expression, which in turn inhibits Rb phosphorylation.  相似文献   

19.
20.
The present study examines the molecular mechanisms by which a member of a novel series of pyrrolo-1,5-benzoxazepines, PBOX-21, induces G1 arrest in 1321N1 cells. PBOX-21-induced G1 arrest is preceded by both a decrease in CDK2 kinase activity, which is critical for the G1/S transition, and a downregulation in cyclin D(3) protein expression levels, suggesting that these two events may be crucially involved in the mediation of the cell cycle arrest. The decrease in CDK2 activity may be due to an observed decrease in CDK2 protein levels following PBOX-21 treatment. Coinciding with the arrest is a reduction in the activity of CDK4, due to either the observed PBOX-21 induced downregulation in CDK4 expression, or a reduction in complex formation between cyclin D(3)-CDK4 leading to a decrease in the levels of active cyclin D(3)-CDK4 complexes with kinase activity. The level of CDK6 activity was also seen to be reduced following PBOX-21 treatment, also possibly due to a reduction in complex formation with cyclin D(3). However, this reduction in CDK6 kinase activity was not seen until after PBOX-21-induced G1 arrest has reached its maximum, and therefore may be viewed as a consequence of, and a method of maintaining the PBOX-21-induced arrest, rather than a cause. Also in parallel with the G1 arrest elicited by PBOX-21 is an upregulation in the universal CDK inhibitor, p21. Furthermore, the retinoblastoma protein (Rb), a substrate of CDK2 and CDK6, whose phosphorylation is necessary for cell cycle progression, becomes hypophosphorylated. These results indicate that PBOX-21 exerts its growth inhibitory effects through the modulation of the expression and activity of several key G1 regulatory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号