首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The extrinsic photosystem II (PSII) protein of 33 kDa (PsbO), which stabilizes the water-oxidizing complex, is represented in Arabidopsis thaliana (Arabidopsis) by two isoforms. Two T-DNA insertion mutant lines deficient in either the PsbO1 or the PsbO2 protein were retarded in growth in comparison with the wild type, while differing from each other phenotypically. Both PsbO proteins were able to support the oxygen evolution activity of PSII, although PsbO2 was less efficient than PsbO1 under photoinhibitory conditions. Prolonged high light stress led to reduced growth and fitness of the mutant lacking PsbO2 as compared with the wild type and the mutant lacking PsbO1. During a short period of treatment of detached leaves or isolated thylakoids at high light levels, inactivation of PSII electron transport in the PsbO2-deficient mutant was slowed down, and the subsequent degradation of the D1 protein was totally inhibited. The steady-state levels of in vivo phosphorylation of the PSII reaction centre proteins D1 and D2 were specifically reduced in the mutant containing only PsbO2, in comparison with the mutant containing only PsbO1 or with wild-type plants. Phosphorylation of PSII proteins in vitro proceeded similarly in thylakoid membranes from both mutants and wild-type plants. However, dephosphorylation of the D1 protein occurred much faster in the thylakoids containing only PsbO2. We conclude that the function of PsbO1 in Arabidopsis is mostly in support of PSII activity, whereas the interaction of PsbO2 with PSII regulates the turnover of the D1 protein, increasing its accessibility to the phosphatases and proteases involved in its degradation.  相似文献   

2.
Thylakoid membranes were isolated and purified from diploid filamentous sporophytes of Porphyra yezoensis Ueda using sucrose density gradient ultracentrifugation (SDGUC). After thylakoid membranes were solubilized with SDS, the phtosystem II (PSII) particles with high 2, 6-dichloroindophenol (DCIP) photoreduction activity were isolated by SDGUC. The absorption and fluorescence spectra, DCIP photoreduction activity and oxygen evolution activity of the thylakoid membranes and PSII particles were determined. The polypeptide composition of purified PSII particles was distinguished by SDS-PAGE. Results showed that PSII particles of sporophytes differed from the gametophytes in spectral properties and polypeptide composition. Apart from 55 kDa D1-D2 heterodimer, CP47, CP43, 33 kDa protein, D1, D2, cyt b559 and 12 kDa protein were identified from PSII particles from sporophytes; a new 102 kDa protein was also detected. However, cyt c-550, 20 kDa, 14 kDa and 16 kDa proteins found in PSII particles from gametophytes were not detected in the sporophytes.  相似文献   

3.
Thylakoid membranes retaining high oxygen-evolving activity (about 250 micromol O(2)/mg Chl/h) were prepared from a marine centric diatom, Chaetoceros gracilis, after disruption of the cells by freeze-thawing. We also succeeded in purification of Photosystem II (PSII) particles by differential centrifugation of the thylakoid membranes after treatment with 1% Triton X-100. The diatom PSII particles showed an oxygen-evolving activity of 850 and 1045 micromol O(2)/mg Chl/h in the absence and presence of CaCl(2), respectively. The PSII particles contained fucoxanthin chlorophyll a/c-binding proteins in addition to main intrinsic proteins of CP47, CP43, D2, D1, cytochrome b559, and the antenna size was estimated to be 229 Chl a per 2 molecules of pheophytin. Five extrinsic proteins were stoichiometrically released from the diatom PSII particles by alkaline Tris-treatment. Among these five extrinsic proteins, four proteins were red algal-type extrinsic proteins, namely, PsbO, PsbQ', PsbV and PsbU, whereas the other one was a novel, hypothetical protein. This is the first report on isolation and characterization of diatom PSII particles that are highly active in oxygen evolution and retain the full set of extrinsic proteins including an unknown protein.  相似文献   

4.
Oxygen-evolving photosystem II (PSII) complexes of Euglena gracilis were isolated and characterized. (1) The PSII complexes contained three extrinsic proteins of 33 kDa (PsbO), 23 kDa (PsbP) and 17 kDa (PsbQ), and showed oxygen-evolving activity of around 700 micromol O2 (mg Chl)(-1) h(-1) even in the absence of Cl- and Ca2+ ions. (2) NaCl-treatment removed not only PsbP and PsbQ but also a part of PsbO from Euglena PSII, indicating that PsbO binds to Euglena PSII more loosely than those of other organisms. Treatments by urea/NaCl, alkaline Tris or CaCl2 completely removed the three extrinsic proteins from Euglena PSII. (3) Each of the Euglena extrinsic proteins bound directly to PSII independent of the other extrinsic proteins, which is similar to the binding properties of the extrinsic proteins in a green alga, Chlamydomonas reinhardtii. (4) One of the significant features of Euglena PSII is that the oxygen evolution was not enhanced by Ca2+. When CaCl2-treated Euglena PSII was reconstituted with PsbO, the oxygen-evolving activity was stimulated by the addition of NaCl, but no further stimulation was observed by CaCl2. (5) Oxygen evolution of Euglena PSII reconstituted with PsbO from C. reinhardtii or spinach instead of that from Euglena also showed no enhancement by Ca2+, whereas a significant enhancement of oxygen evolution was observed by Ca2+ when the green algal or higher plant PSII was reconstituted with Euglena PsbO instead of their own PsbO. These results indicate that the PSII intrinsic proteins instead of the extrinsic PsbO protein, are responsible for the stimulation of oxygen evolution by Ca2+. Sequence comparison of major PSII intrinsic proteins revealed that PsbI of Euglena PSII is remarkably different from other organisms in that Euglena PsbI possesses extra 16-17 residues exposed to the luminal side. This may be related to the loss of enhancement of oxygen evolution by Ca2+ ion.  相似文献   

5.
Thylakoid membranes retaining high oxygen-evolving activity (about 250 μmol O2/mg Chl/h) were prepared from a marine centric diatom, Chaetoceros gracilis, after disruption of the cells by freeze-thawing. We also succeeded in purification of Photosystem II (PSII) particles by differential centrifugation of the thylakoid membranes after treatment with 1% Triton X-100. The diatom PSII particles showed an oxygen-evolving activity of 850 and 1045 μmol O2/mg Chl/h in the absence and presence of CaCl2, respectively. The PSII particles contained fucoxanthin chlorophyll a/c-binding proteins in addition to main intrinsic proteins of CP47, CP43, D2, D1, cytochrome b559, and the antenna size was estimated to be 229 Chl a per 2 molecules of pheophytin. Five extrinsic proteins were stoichiometrically released from the diatom PSII particles by alkaline Tris-treatment. Among these five extrinsic proteins, four proteins were red algal-type extrinsic proteins, namely, PsbO, PsbQ', PsbV and PsbU, whereas the other one was a novel, hypothetical protein. This is the first report on isolation and characterization of diatom PSII particles that are highly active in oxygen evolution and retain the full set of extrinsic proteins including an unknown protein.  相似文献   

6.
Sakurai I  Mizusawa N  Wada H  Sato N 《Plant physiology》2007,145(4):1361-1370
The galactolipid digalactosyldiacylglycerol (DGDG) is present in the thylakoid membranes of oxygenic photosynthetic organisms such as higher plants and cyanobacteria. Recent x-ray crystallographic analysis of protein-cofactor supercomplexes in thylakoid membranes revealed that DGDG molecules are present in the photosystem II (PSII) complex (four molecules per monomer), suggesting that DGDG molecules play important roles in folding and assembly of subunits in the PSII complex. However, the specific role of DGDG in PSII has not been fully clarified. In this study, we identified the dgdA gene (slr1508, a ycf82 homolog) of Synechocystis sp. PCC6803 that presumably encodes a DGDG synthase involved in the biosynthesis of DGDG by comparison of genomic sequence data. Disruption of the dgdA gene resulted in a mutant defective in DGDG synthesis. Despite the lack of DGDG, the mutant cells grew as rapidly as the wild-type cells, indicating that DGDG is not essential for growth in Synechocystis. However, we found that oxygen-evolving activity of PSII was significantly decreased in the mutant. Analyses of the PSII complex purified from the mutant cells indicated that the extrinsic proteins PsbU, PsbV, and PsbO, which stabilize the oxygen-evolving complex, were substantially dissociated from the PSII complex. In addition, we found that heat susceptibility but not dark-induced inactivation of oxygen-evolving activity was notably increased in the mutant cells in comparison to the wild-type cells, suggesting that the PsbU subunit is dissociated from the PSII complex even in vivo. These results demonstrate that DGDG plays important roles in PSII through the binding of extrinsic proteins required for stabilization of the oxygen-evolving complex.  相似文献   

7.
Oxygen-evolving photosystem II (PSII) particles were purified from Chlamydomonas reinhardtii having His-tag extension at the C terminus of the CP47 protein, by a single-step Ni(2+)-affinity column chromatography after solubilization of thylakoid membranes with sucrose monolaurate. The PSII particles consisted of, in addition to intrinsic proteins, three extrinsic proteins of 33, 23 and 17 kDa. The preparation showed a high oxygen-evolving activity of 2,300-2,500 micro mol O(2) (mg Chl)(-1) h(-1) in the presence of Ca(2+) using ferricyanide as the electron acceptor, while its activity was 680-720 micro mol O(2) (mg Chl)(-1) h(-1) in the absence of Ca(2+) and Cl(-) ions. The activity was 710-820 micro mol O(2) (mg Chl)(-1) h(-1) independent of the presence or absence of Ca(2+) and Cl(-) when 2,6-dichloro-p-benzoquinone was used as the acceptor. These activities were scarcely inhibited by DCMU. The kinetics of flash-induced fluorescence decay revealed that the electron transfer from Q(A)(-) to Q(B) was significantly inhibited, and the electron transfer from Q(A)(-) to ferricyanide was largely stimulated in the presence of Ca(2+). These results indicate that the acceptor side, Q(B) site, was altered in the PSII particles but its donor side remained intact. Release-reconstitution experiments revealed that the extrinsic 23 and 17 kDa proteins were released only partially by NaCl-wash, while most of the three extrinsic proteins were removed when treated with urea/NaCl, alkaline Tris or CaCl(2). The 23 and 17 kDa proteins directly bound to PSII independent of the other extrinsic proteins, and the 33 kDa protein functionally re-bound to CaCl(2)-treated PSII which had been reconstituted with the 23 and 17 kDa proteins. These binding properties were largely different from those of the extrinsic proteins in higher plant PSII, and suggest that each of the three extrinsic proteins has their own binding sites independent of the others in the green algal PSII.  相似文献   

8.
Previously we observed that the oxygen-evolving complex 33 kDa protein (OEC33) which stabilizes the Mn cluster in photosystem II (PSII), was modified with malondialdehyde (MDA), an end-product of peroxidized polyunsaturated fatty acids, and the modification increased in heat-stressed plants (Yamauchi et al. 2008). In this study, we examined whether the modification of OEC33 with MDA affects its binding to the PSII complex and causes inactivation of the oxygen-evolving complex. Purified OEC33 and PSII membranes that had been removed of extrinsic proteins of the oxygen-evolving complex (PSII∆OEE) of spinach (Spinacia oleracea) were separately treated with MDA. The binding was diminished when both OEC33 and PSII∆OEE were modified, but when only OEC33 or PSII∆OEE was treated, the binding was not impaired. In the experiment using thylakoid membranes, release of OEC33 from PSII and corresponding loss of oxygen-evolving activity were observed when thylakoid membranes were treated with MDA at 40°C but not at 25°C. In spinach leaves treated at 40°C under light, maximal efficiency of PSII photochemistry (F v/F m ratio of chlorophyll fluorescence) and oxygen-evolving activity decreased. Simultaneously, MDA contents in heat-stressed leaves increased, and OEC33 and PSII core proteins including 47 and 43 kDa chlorophyll-binding proteins were modified with MDA. In contrast, these changes were to a lesser extent at 40°C in the dark. These results suggest that MDA modification of PSII proteins causes release of OEC33 from PSII and it is promoted in heat and oxidative conditions.  相似文献   

9.
The protein assembly and stability of photosystem II (PSII) (sub)complexes were studied in mature leaves of four plastid mutants of tobacco (Nicotiana tabacum L), each having one of the psbEFLJ operon genes inactivated. In the absence of psbL, no PSII core dimers or PSII-light harvesting complex (LHCII) supercomplexes were formed, and the assembly of CP43 into PSII core monomers was extremely labile. The assembly of CP43 into PSII core monomers was found to be necessary for the assembly of PsbO on the lumenal side of PSII. The two other oxygen-evolving complex (OEC) proteins, PsbP and PsbQ, were completely lacking in Delta psbL. In the absence of psbJ, both intact PSII core monomers and PSII core dimers harboring the PsbO protein were formed, whereas the LHCII antenna remained detached from the PSII dimers, as demonstrated by 77 K fluorescence measurements and by the lack of PSII-LHCII supercomplexes. The Delta psbJ mutant was characterized by a deficiency of PsbQ and a complete lack of PsbP. Thus, both the PsbL and PsbJ subunits of PSII are essential for proper assembly of the OEC. The absence of psbE and psbF resulted in a complete absence of all central PSII core and OEC proteins. In contrast, very young, vigorously expanding leaves of all psbEFLJ operon mutants accumulated at least traces of D2, CP43 and the OEC proteins PsbO and PsbQ, implying developmental control of the expression of the PSII core and OEC proteins. Despite severe problems in PSII assembly, the thylakoid membrane complexes other than PSII were present and correctly assembled in all psbEFLJ operon mutants.  相似文献   

10.
Photosystem (PS) II particles retaining a high rate of O2 evolution were isolated from the mesophilic filamentous cyanobacterium, Spirulina platensis. To achieve high production of PSII complexes in the cells, irradiance from halogen incandescent lamps was used. Disruption of cells by vibration of glass beads proved to be the most suitable procedure for isolation of thylakoid membranes. The selectivity of detergents for PSII particle preparation rose in the order of Triton X-100 < decyl-β-D-glucopyranoside < dodecyldimethyl-aminooxide < n-heptyl-β-D-thioglucoside < N-dodecyl-N,N-dimethylammonio-3-propane sulphonate < n-octyl-β-thioglycoside < octylglucoside < n-dodecyl-β-D-maltoside. The last four detergents yielded extracts, from which pure PSII particles not contaminated by PSI complexes could be obtained by sucrose-gradient centrifugation (20–45%) at the 43% sucrose level. We assumed both the acceptor and donor sides of the isolated n-dodecyl-β-D-maltoside (DM) particles to be intact due to high oxygen production by DM particles [1,500 meq(e?) mol?1 (Chl) s?1] achieved in the presence of all artificial acceptors tested. The PSII particle fraction from the sucrose gradient was used with immobilized metal (Cu2+) affinity chromatography (IMAC) for the preparation of the PSII core complex. By washing the column with a MES buffer containing MgCl2 and CaCl2, the phycobiliproteins were stripped off. The PSII core complex was eluted in a buffer containing 1% DM, mannitol, MgCl2, NaCl, CaCl2, and ?-aminocaproic acid. SDS-PAGE of the core complex provided pure bands of D1 and D2 proteins and PsbO protein from thylakoid membrane, which were used to raise polyclonal antibodies in rabbits. These antibodies recognized D1 and D2 not only as monomers of 31 and 32 kDa proteins, but also as heterodimers of D1, D2 corresponding to the band of 66 kDa on SDS-PAGE. This was in contrast to antibodies of synthetic determinants, which reacted only with the monomers of D1 and D2 proteins. These negative reactions against heterodimers of D1, D2 supported the hypothesis that dimeric forms of PSII reaction centre proteins have a C-terminal sequence sterically protected against a reaction with specific antibodies.  相似文献   

11.
Oxygenic photosynthesis takes place in the thylakoid membrane of cyanobacteria, algae, and higher plants. Initially light is absorbed by an oligomeric pigment-protein complex designated as photosystem II (PSII), which catalyzes light-induced water cleavage under release of molecular oxygen for the biosphere on our planet. The membrane-extrinsic manganese stabilizing protein (PsbO) is associated on the lumenal side of the thylakoids close to the redox-active (Mn)(4)Ca cluster at the catalytically active site of PSII. Recombinant PsbO from the thermophilic cyanobacterium Thermosynechococcus elongatus was expressed in Escherichia coli and spectroscopically characterized. The secondary structure of recombinant PsbO (recPsbO) was analyzed in the absence and presence of Ca(2+) using Fourier transform infrared spectroscopy (FTIR) and circular dichroism spectropolarimetry (CD). No significant structural changes could be observed when the PSII subunit was titrated with Ca(2+) in vitro. These findings are compared with data for spinach PsbO. Our results are discussed in the light of the recent 3D-structural analysis of the oxygen-evolving PSII and structural/thermodynamic differences between the two homologous proteins from thermophilic cyanobacteria and plants.  相似文献   

12.
The thylakoid membranes were isolated and purified from gametophyte of Porphyra yezoensis Ueda (P. yezoensis) by sucrose density gradient ultracentrifugation. After P. yezoensis gametophyte thylakoid membranes were solubilized with SDS, the photosystem Ⅱ (PSⅡ) particles were isolated and purified. The activity of PSⅡ  相似文献   

13.
We previously showed that most subunits in the oxygen-evolving photosystem II (PSII) preparation from the diatom Chaetoceros gracilis are proteolytically unstable. Here, we focused on identifying the proteases that cleave PSII subunits in thylakoid membranes. Major PSII subunits and fucoxanthin chlorophyll (Chl) a/c‐binding proteins (FCPs) were specifically degraded in thylakoid membranes. The PSI subunits, PsaA and PsaB, were slowly degraded, and cytochrome f was barely degraded. Using zymography, proteolytic activities for three metalloproteases (116, 83, and 75 kDa) and one serine protease (156 kDa) were detected in thylakoid membranes. Two FCP fractions (FCP-A and FCP-B/C) and a photosystem fraction were separated by sucrose gradient centrifugation using dodecyl maltoside‐solubilized thylakoids. The FCP-A fraction featured enriched Chl c compared with the bulk of FCP-B/C. Zymography revealed that 116, 83, and 94 kDa metalloproteases were mostly in the FCP-A fraction along with the 156 kDa serine protease. When solubilized thylakoids were separated with clear-native PAGE, zymography detected only the 83 kDa metalloprotease in the FCP-A band. Because FCP-A is selectively associated with PSII, these FCP-A-associated metalloproteases and serine protease may be responsible for the proteolytic degradation of FCPs and PSII in thylakoid membranes.  相似文献   

14.
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the β-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn2+ and Ca2+ ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.  相似文献   

15.
Carotene isomerase mutant (crtH mutant) cells of Synechocystis sp. PCC 6803 can accumulate beta-carotene under light conditions. However, the mutant cells grown under a light-activated heterotrophic growth condition contained detectable levels of neither beta-carotene nor D1 protein of the photosystem (PS) II reaction center, and no oxygen-evolving activity of PSII was detected. beta-Carotene and D1 protein appeared and a high level of PSII activity was detected after the cells were transferred to a continuous light condition. The PSI activities of thylakoid membranes from mutant cells were almost the same as those of thylakoid membranes from wild-type cells, both before and after transfer to the continuous light condition. These results suggest that beta-carotene is required for the assembly of PSII but not for that of PSI.  相似文献   

16.
Besides an essential role in optimizing water oxidation in photosystem II (PSII), it has been reported that the spinach PsbO protein binds GTP [C. Spetea, T. Hundal, B. Lundin, M. Heddad, I. Adamska, B. Andersson, Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1409-1414]. Here we predict four GTP-binding domains in the structure of spinach PsbO, all localized in the beta-barrel domain of the protein, as judged from comparison with the 3D-structure of the cyanobacterial counterpart. These domains are not conserved in the sequences of the cyanobacterial or green algae PsbO proteins. MgGTP induces specific changes in the structure of the PsbO protein in solution, as detected by circular dichroism and intrinsic fluorescence spectroscopy. Spinach PsbO has a low intrinsic GTPase activity, which is enhanced fifteen-fold when the protein is associated with the PSII complex in its dimeric form. GTP stimulates the dissociation of PsbO from PSII under light conditions known to also release Mn(2+) and Ca(2+) ions from the oxygen-evolving complex and to induce degradation of the PSII reaction centre D1 protein. We propose the occurrence in higher plants of a PsbO-mediated GTPase activity associated with PSII, which has consequences for the function of the oxygen-evolving complex and D1 protein turnover.  相似文献   

17.
The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved reduced eukaryotic (specifically, spinach) PsbO at defined sites and created distinct PsbO fragments that were not further degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803), no PsbO fragments were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA) was detected in the PSII-enriched membrane fraction.  相似文献   

18.
Under strong light, photosystem II (PSII) of oxygenic photosynthetic organisms is inactivated, and this phenomenon is called photoinhibition. In a widely accepted model, photoinhibition is induced by excess light energy, which is absorbed by chlorophyll but not utilized in photosynthesis. Using monochromatic light from the Okazaki Large Spectrograph and thylakoid membranes from Thermosynechococcus elongatus, we observed that UV and blue light inactivated the oxygen-evolving complex much faster than the photochemical reaction center of PSII. These observations suggested that the light-induced damage was associated with a UV- and blue light-absorbing center in the oxygen-evolving complex of PSII. The action spectrum of the primary event in photodamage to PSII revealed the strong effects of UV and blue light and differed considerably from the absorption spectra of chlorophyll and thylakoid membranes. By contrast to the photoinduced inactivation of the oxygen-evolving complex in untreated thylakoid membranes, red light efficiently induced inactivation of the PSII reaction center in Tris-treated thylakoid membranes, and the action spectrum resembled the absorption spectrum of chlorophyll. Our observations suggest that photodamage to PSII occurs in two steps. Step 1 is the light-induced inactivation of the oxygen-evolving complex. Step 2, occurring after step 1 is complete, is the inactivation of the PSII reaction center by light absorbed by chlorophyll. We confirmed our model by illumination of untreated thylakoid membranes with blue and UV light, which inactivated the oxygen-evolving complex, and then with red light, which inactivated the photochemical reaction center.  相似文献   

19.
PsbO, the manganese-stabilizing protein, plays a crucial role in oxygen-evolving complex functioning and stabilization, by maintaining optimal manganese, calcium and chloride concentrations at the active state of PSII. In this paper we present a study focused on recognizing the relationship between psbO gene activity and acclimation of the photosynthetic apparatus under abiotic stresses in the grasses Festuca arundinacea and F. pratensis. PsbO expression was compared between two distinct genotypes within each species which differed in their levels of stress tolerance (drought and frost, respectively) during drought treatment (F. arundinacea) and cold acclimation (F. pratensis). The research involved: (1) the analyses of psbO gene expression profiles using real-time PCR, and (2) the analyses of PsbO protein accumulation profiles using protein gel blot hybridization. The results indicate that PsbO plays a protective function with respect to the photosynthetic apparatus during abiotic stresses. In cold-treated F. pratensis plants the accumulation of PsbO seems to be responsible for differences in the PSII photochemical efficiency. Higher stability of PSII during drought, observed in the high-drought tolerant F. arundinacea genotype, is not associated with PsbO accumulation, although the degradation of this protein affects destabilization of the oxygen-evolving complex in drought.  相似文献   

20.
Our previous studies with the pgsA mutant of the cyanobacterium Synechocystis sp. PCC6803 (hereafter termed pgsA mutant), which is defective for the biosynthesis of phosphatidylglycerol (PG), revealed an important role for PG in the electron acceptor side of photosystem II (PSII), especially in the electron transport between plastoquinones Q(A) and Q(B). This study now shows that PG also plays an important role in the electron donor side of PSII, namely, the oxygen-evolving system. Analyses of purified PSII complexes indicated that PSII from PG-depleted pgsA mutant cells sustained only approximately 50% of the oxygen-evolving activity compared to wild-type cells. Dissociation of the extrinsic proteins PsbO, PsbV, and PsbU, which are required for stabilization of the manganese (Mn) cluster, followed by the release of a Mn atom, was observed in PSII of the PG-depleted mutant cells. The released PsbO rebound to PSII when PG was added back to the PG-depleted mutant cells, even when de novo protein synthesis was inhibited. Changes in photosynthetic activity of the PG-depleted pgsA mutant cells induced by heat treatment or dark incubation resembled those of DeltapsbO, DeltapsbV, and DeltapsbU mutant cells. These results suggest that PG plays an important role in binding extrinsic proteins required for sustaining a functional Mn cluster on the donor side of PSII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号