首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cerebral ischemia induces disruption of the blood-brain barrier (BBB), and this disruption can initiate the development of brain injuries. Although the molecular structure of tight junctional complexes in the BBB has been identified, little is known about alterations of tight junctional proteins after cerebral ischemia. Therefore, we investigated alterations of tight junctional proteins, i.e., occludin and zonula occludens (ZO)-1, in isolated rat brain capillaries after microsphere-induced cerebral embolism. We demonstrated that the levels of occludin and ZO-1 had decreased after the embolism. The embolism also resulted in a marked increase in tyrosine phosphorylation of occludin, which was coincident with an increase in the activity of c-Src. These results suggest that a decrease in the levels of occludin and ZO-1, and an increase in tyrosine phosphorylation of occludin may play an important role in the disruption of tight junctions, which may lead to dysfunction of the BBB after cerebral ischemia.  相似文献   

2.
The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and low permeability. BBB maintenance is important in the central nervous system (CNS) because disruption of the BBB may contribute to many brain disorders, including Alzheimer disease and ischemic stroke. The molecular mechanisms of BBB development remain ill-defined, however. Here we report that src-suppressed C-kinase substrate (SSeCKS) decreases the expression of vascular endothelial growth factor (VEGF) through AP-1 reduction and stimulates expression of angiopoietin-1 (Ang-1), an antipermeability factor in astrocytes. Conditioned media from SSeCKS-overexpressing astrocytes (SSeCKS-CM) blocked angiogenesis in vivo and in vitro. Moreover, SSeCKS-CM increased tight junction proteins in endothelial cells, consequently decreasing [3H]sucrose permeability. Furthermore, immunoreactivity to SSeCKS gradually increased during the BBB maturation period, and SSeCKS-expressing astrocytes closely interacted with zonula occludens (ZO)-1-expressing blood vessels in vivo. Collectively, our results suggest that SSeCKS regulates BBB differentiation by modulating both brain angiogenesis and tight junction formation.  相似文献   

3.
Blood-brain barrier (BBB) disruption is a common feature of numerous neurologic disorders. A fundamental question in these diseases is the extent inflammatory immune cells contribute to CNS vascular permeability. We have previously shown that CD8 T cells play a critical role in initiating BBB disruption in the peptide-induced fatal syndrome model developed by our laboratory. However, myelomonocytic cells such as neutrophils have also been implicated in promoting CNS vascular permeability and functional deficit in murine models of neuroinflammatory disease. For this reason, we evaluated neutrophil depletion in a murine model of CD8 T cell-initiated BBB disruption by employing traditionally used anti-granulocyte receptor-1 mAb RB6-8C5 and Ly-6G-specific mAb 1A8. We report that CNS-infiltrating antiviral CD8 T cells express high levels of granulocyte receptor-1 protein and are depleted by treatment with RB6-8C5. Mice treated with RB6-8C5, but not 1A8, display: 1) intact BBB tight junction proteins; 2) reduced CNS vascular permeability visible by gadolinium-enhanced T1-weighted magnetic resonance imaging; and 3) preservation of motor function. These studies demonstrate that traditional methods of neutrophil depletion with RB6-8C5 are broadly immune ablating. Our data also provide evidence that CD8 T cells initiate disruption of BBB tight junction proteins and CNS vascular permeability in the absence of neutrophil support.  相似文献   

4.
The blood-brain barrier (BBB) is essential for maintaining brain homeostasis and low permeability. Because disruption of the BBB may contribute to many brain disorders, they are of considerable interests in the identification of the molecular mechanisms of BBB development and integrity. We here report that the giant protein AHNAK is expressed at the plasma membrane of endothelial cells (ECs) forming specific blood-tissue barriers, but is absent from the endothelium of capillaries characterized by extensive molecular exchanges between blood and extracellular fluid. In the brain, AHNAK is widely distributed in ECs with BBB properties, where it co-localizes with the tight junction protein ZO-1. AHNAK is absent from the permeable brain ECs of the choroid plexus and is down-regulated in permeable angiogenic ECs of brain tumors. In the choroid plexus, AHNAK accumulates at the tight junctions of the choroid epithelial cells that form the blood-cerebrospinal fluid (CSF) barrier. In EC cultures, the regulation of AHNAK expression and its localization corresponds to general criteria of a protein involved in barrier organization. AHNAK is up-regulated by angiopoietin-1 (Ang-1), a morphogenic factor that regulates brain EC permeability. In bovine cerebral ECs co-cultured with glial cells, AHNAK relocates from the cytosol to the plasma membrane when endothelial cells acquire BBB properties. Our results identify AHNAK as a protein marker of endothelial cells with barrier properties.  相似文献   

5.
Feng S  Cen J  Huang Y  Shen H  Yao L  Wang Y  Chen Z 《PloS one》2011,6(8):e20599
Central nervous system (CNS) involvement remains an important cause of morbidity and mortality in acute leukemia, the mechanisms of leukemic cell infiltration into the CNS have not yet been elucidated. The blood-brain barrier (BBB) makes CNS become a refugee to leukemic cells and serves as a resource of cells that seed extraneural sites. How can the leukemic cells disrupt this barrier and invasive the CNS, even if many of the currently available chemotherapies can not cross the BBB? Tight junction in endothelial cells occupies a central role in the function of the BBB. Except the well known role of degrading extracellular matrix in metastasis of cancer cells, here we show matrix metalloproteinase (MMP)-2 and -9, secreted by leukemic cells, mediate the BBB opening by disrupting tight junction proteins in the CNS leukemia. We demonstrated that leukemic cells impaired tight junction proteins ZO-1, claudin-5 and occludin resulting in increased permeability of the BBB. However, these alterations reduced when MMP-2 and -9 activities were inhibited by RNA interference strategy or by MMP inhibitor GM6001 in an in vitro BBB model. We also found that the disruption of the BBB in company with the down-regulation of ZO-1, claudin-5 and occludin and the up-regulation of MMP-2 and -9 in mouse brain tissues with leukemic cell infiltration by confocal imaging and the assay of in situ gelatin zymography. Besides, GM6001 protected all mice against CNS leukemia. Our findings suggest that the degradation of tight junction proteins ZO-1, claudin-5 and occludin by MMP-2 and -9 secreted by leukemic cells constitutes an important mechanism in the BBB breakdown which contributes to the invasion of leukemic cells to the CNS in acute leukemia.  相似文献   

6.
The blood-brain barrier (BBB), which constitutes the interface between blood and cerebral parenchyma, has been shown to be disrupted during retroviral associated neuromyelopathies. Human T cell leukemia virus (HTLV-1)-associated myelopathy/tropical spastic paraparesis is a slowly progressive neurodegenerative disease, in which evidence of BBB breakdown has been demonstrated by the presence of lymphocytic infiltrates in the CNS and plasma protein leakage through cerebral endothelium. Using an in vitro human BBB model, we investigated the cellular and molecular mechanisms involved in endothelial changes induced by HTLV-1-infected lymphocytes. We demonstrate that coculture with infected lymphocytes induces an increase in paracellular endothelial permeability and transcellular migration, via IL-1alpha and TNF-alpha secretion. This disruption is associated with tight junction disorganization between endothelial cells, and alterations in the expression pattern of tight junction proteins such as zonula occludens 1. These changes could be prevented by inhibition of the NF-kappaB pathway or of myosin light chain kinase activity. Such disorganization was confirmed in histological sections of spinal cord from an HTLV-1-associated myelopathy/tropical spastic paraparesis patient. Based on this BBB model, the present data indicate that HTLV-1-infected lymphocytes can induce BBB breakdown and may be responsible for the CNS infiltration that occurs in the early steps of retroviral-associated neuromyelopathies.  相似文献   

7.
Numerous neurological disorders are characterized by central nervous system (CNS) vascular permeability. However, the underlying contribution of inflammatory-derived factors leading to pathology associated with blood-brain barrier (BBB) disruption remains poorly understood. In order to address this, we developed an inducible model of BBB disruption using a variation of the Theiler''s murine encephalomyelitis virus (TMEV) model of multiple sclerosis. This peptide induced fatal syndrome (PIFS) model is initiated by virus-specific CD8 T cells and results in severe CNS vascular permeability and death in the C57BL/6 mouse strain. While perforin is required for BBB disruption, the cellular source of perforin has remained unidentified. In addition to CD8 T cells, various innate immune cells also express perforin and therefore could also contribute to BBB disruption. To investigate this, we isolated the CD8 T cell as the sole perforin-expressing cell type in the PIFS model through adoptive transfer techniques. We determined that C57BL/6 perforin−/− mice reconstituted with perforin competent CD8 T cells and induced to undergo PIFS exhibited: 1) heightened CNS vascular permeability, 2) increased astrocyte activation as measured by GFAP expression, and 3) loss of linear organization of BBB tight junction proteins claudin-5 and occludin in areas of CNS vascular permeability when compared to mock-treated controls. These results are consistent with the characteristics associated with PIFS in perforin competent mice. Therefore, CD8 T cells are sufficient as a sole perforin-expressing cell type to cause BBB disruption in the PIFS model.  相似文献   

8.
The blood-brain barrier (BBB) is important physiologically. Pathologically, BBB disruption has been implicated in a wide spectrum of neurological disorders including Parkinson's disease (PD). Recent studies indicate that caffeine is protective against PD, but by poorly understood mechanisms. Using a MPTP neurotoxin model of PD we tested the hypothesis that the protective actions of caffeine were because of, at least in part, preventing MPTP-induced BBB dysfunction. FVB mice were pre-treated with caffeine (10 mg/kg, i.p.) or saline for 7 days prior to initiation of neurotoxin treatments; during the 7 days of neurotoxin treatment, caffeine or saline continued to be administered 10 min before each dose of MPTP (20 mg/kg, i.p.). Striatum (and for some studies hippocampus and cerebral cortex as well) were evaluated for BBB leakage, tight junction protein expression levels, integrity of dopaminergic neurons, and activation of astrocytes and microglia using immunostaining, immunoblotting and real-time PCR techniques. We found that caffeine blocked MPTP-induced decreases in numbers of tyrosine hydroxylase-positive dopaminergic neurons, increases in leakage of Evan's blue dye and FITC-albumin in striatum but not in cerebral cortex or hippocampus, decreases in levels of the tight junction proteins occludin and ZO-1, and increases in reactive gliosis. Our results suggest that caffeine might protect against PD and PD-like features in animal models, in part, by stabilizing the BBB.  相似文献   

9.
Summary 1. Alterations of brain microvasculature and the disruption of the blood–brain barrier (BBB) integrity are commonly associated with human immunodeficiency virus type 1 (HIV-1) infection. These changes are most frequently found in human immunodeficiency virus-related encephalitis (HIVE) and in human immunodeficiency virus-associated dementia (HAD).2. It has been hypothesized that the disruption of the BBB occurs early in the course of HIV-1 infection and can be responsible for HIV-1 entry into the CNS.3. The current review discusses the mechanisms of injury to brain endothelial cells and alterations of the BBB integrity in HIV-infection with focus on the vascular effects of HIV Tat protein. In addition, this review describes the mechanisms of the BBB disruption due to HIV-1 or Tat protein interaction with selected risk factors for HIV infection, such as substance abuse and aging.This revised article was published online in May 2005 with a February 2005 cover date.  相似文献   

10.
血脑屏障是维持中枢神经系统内环境稳定的重要结构,限制血液中大多数病原体的入侵;但有些病毒可穿越血脑屏障入侵中枢神经系统,导致神经功能障碍及炎症性疾病。目前认为,病毒可通过细胞和细胞间隙两种方式穿越血脑屏障,前者为直接感染脑微血管内皮细胞和跨细胞途径,后者为破坏内皮细胞间紧密连接及"特洛伊木马"途径。本文就近年来病毒穿越血脑屏障的途径和机制进行综述。  相似文献   

11.
The blood–brain barrier (BBB) is composed of capillary endothelial cells, pericytes, and perivascular astrocytes, which regulate central nervous system homeostasis. Sonic hedgehog (SHH) released from astrocytes plays an important role in the maintenance of BBB integrity. BBB disruption and microglial activation are common pathological features of various neurologic diseases such as multiple sclerosis, Parkinson’s disease, amyotrophic lateral sclerosis, and Alzheimer’s disease. Interleukin-1β (IL-1β), a major pro-inflammatory cytokine released from activated microglia, increases BBB permeability. Here we show that IL-1β abolishes the protective effect of astrocytes on BBB integrity by suppressing astrocytic SHH production. Astrocyte conditioned media, SHH, or SHH signal agonist strengthened BBB integrity by upregulating tight junction proteins, whereas SHH signal inhibitor abrogated these effects. Moreover, IL-1β increased astrocytic production of pro-inflammatory chemokines such as CCL2, CCL20, and CXCL2, which induce immune cell migration and exacerbate BBB disruption and neuroinflammation. Our findings suggest that astrocytic SHH is a potential therapeutic target that could be used to restore disrupted BBB in patients with neurologic diseases.  相似文献   

12.
The blood-brain barrier (BBB) disruption and brain edema are important pathophysiologies of early brain injury after subarachnoid hemorrhage (SAH). This study is to evaluate whether Rho kinase (Rock) enhances BBB permeability via disruption of tight junction proteins during early brain injury. Adult male rats were assigned to five groups; Sham-operated, SAH treated with saline, a Rock inhibitor hydroxyfasudil (HF) (10 mg/kg) treatment at 0.5 h after SAH, HF treatment at 0.5 and 6 h (10 mg/kg, each) after SAH, and another Rock inhibitor Y27632 (10 mg/kg) treatment at 0.5 h after SAH. The perforation model of SAH was performed and neurological score and brain water content were evaluated 24 and 72 h after surgery. Evans blue extravasation, Rock activity assay, and western blotting analyses were evaluated 24 h after surgery. Treatment of HF significantly improved neurological scores 24 h after SAH. Single treatment with HF and Y27632, and two treatments with HF reduced brain water content in the ipsilateral hemisphere. HF reduced Evans blue extravasation in the ipsilateral hemisphere after SAH. Rock activity increased 24 h after SAH, and HF reversed the activity. SAH significantly decreased the levels of tight junction proteins, occludin and zonula occludens-1 (ZO-1), and HF preserved the levels of occluding and ZO-1 in ipsilateral hemisphere. In conclusion, HF attenuated BBB permeability after SAH, possibly by protection of tight junction proteins.  相似文献   

13.
Wernicke's encephalopathy is a cerebral disorder caused by thiamine (vitamin B1) deficiency (TD). Neuropathologic consequences of TD include region-selective neuronal cell loss and blood-brain barrier (BBB) breakdown. Early increased expression of the endothelial isoform of nitric oxide synthase (eNOS) occurs selectively in vulnerable brain regions in TD. We hypothesize that region-selective eNOS induction in TD leads to altered expression of tight junction proteins and BBB breakdown. In order to address this issue, TD was induced in C57BL/6 wild-type (WT) and eNOS−/− mice by feeding a thiamine-deficient diet and treatment with the thiamine antagonist pyrithiamine. Pair-fed control mice were fed the same diet with additional thiamine. In medial thalamus of TD-WT mice (vulnerable area), increased heme oxygenase-1 and S -nitrosocysteine immunostaining was observed in vessel walls, compared to pair-fed control-WT mice. Concomitant increases in IgG extravasation, decreases in expression of the tight junction proteins occludin, zona occludens-1 and zona occludens-2, and up-regulation of matrix metalloproteinase-9 in endothelial cells were observed in the medial thalamus of TD-WT mice. eNOS gene deletion restored these BBB alterations, suggesting that eNOS-derived nitric oxide is a major factor leading to cerebrovascular alterations in TD. However, eNOS gene deletion only partially attenuated TD-related neuronal cell loss, suggesting the presence of mechanisms additional to BBB disruption in the pathogenesis of these changes.  相似文献   

14.
The blood–brain barrier (BBB) is a specialized system of capillary endothelial cells that protects the brain from harmful substances in the blood stream, while supplying the brain with the required nutrients for proper function. The BBB controls transport through both tight junctions and metabolic barriers and is often a rate-limiting factor in determining permeation of therapeutic drugs into the brain. It is a significant obstacle for delivery of both small molecules and macromolecular agents. Although many drugs could be potentially used to treat brain disease, there has been no method that allows non-invasive-targeted delivery through the BBB. Recently, promising studies indicate that ultrasound can be used to locally deliver a drug or gene to a specific region of interest in the brain. If microbubbles are combined with ultrasound exposure, the effects of ultrasound can be focused upon the vasculature to reduce the acoustic intensity needed to produce BBB opening. Several avenues of transcapillary passage after ultrasound sonication have been identified including transcytosis, passage through endothelial cell cytoplasmic openings, opening of tight junctions and free passage through injured endothelium. This article reviews the topic of transient disruption of the BBB with ultrasound and microbubbles and addresses related safety issues. It also discusses possible roles of the BBB in brain disease and potential interactions with ultrasound and microbubbles in such disease states.  相似文献   

15.
The blood–brain barrier (BBB) is essential for maintaining homeostasis within the central nervous system (CNS) and is a prerequisite for proper neuronal function. The BBB is localized to microvascular endothelial cells that strictly control the passage of metabolites into and out of the CNS. Complex and continuous tight junctions and lack of fenestrae combined with low pinocytotic activity make the BBB endothelium a tight barrier for water soluble moleucles. In combination with its expression of specific enzymes and transport molecules, the BBB endothelium is unique and distinguishable from all other endothelial cells in the body. During embryonic development, the CNS is vascularized by angiogenic sprouting from vascular networks originating outside of the CNS in a precise spatio-temporal manner. The particular barrier characteristics of BBB endothelial cells are induced during CNS angiogenesis by cross-talk with cellular and acellular elements within the developing CNS. In this review, we summarize the currently known cellular and molecular mechanisms mediating brain angiogenesis and introduce more recently discovered CNS-specific pathways (Wnt/β?catenin, Norrin/Frizzled4 and hedgehog) and molecules (GPR124) that are crucial in BBB differentiation and maturation. Finally, based on observations that BBB dysfunction is associated with many human diseases such as multiple sclerosis, stroke and brain tumors, we discuss recent insights into the molecular mechanisms involved in maintaining barrier characteristics in the mature BBB endothelium.  相似文献   

16.
The blood-brain barrier (BBB), which protects the CNS from pathogens, is composed of specialized brain microvascular endothelial cells (BMECs) joined by tight junctions and ensheathed by pericytes and astrocyte endfeet. The stability of the BBB structure and function is of great significance for the maintenance of brain homeostasis. When a neurotropic virus invades the CNS via a hematogenous or non-hematogenous route, it may cause structural and functional disorders of the BBB, and also activate the BBB anti-inflammatory or pro-inflammatory innate immune response. This article focuses on the structural and functional changes that occur in the three main components of the BBB (endothelial cells, astrocytes, and pericytes) in response to infection with neurotropic viruses transmitted by hematogenous routes, and also briefly describes the supportive effect of three cells on the BBB under normal physiological conditions. For example, all three types of cells express several PRRs, which can quickly sense the virus and make corresponding immune responses. The pro-inflammatory immune response will exacerbate the destruction of the BBB, while the anti-inflammatory immune response, based on type I IFN, consolidates the stability of the BBB. Exploring the details of the interaction between the host and the pathogen at the BBB during neurotropic virus infection will help to propose new treatments for viral encephalitis. Enhancing the defense function of the BBB, maintaining the integrity of the BBB, and suppressing the pro-inflammatory immune response of the BBB provide more ideas for limiting the neuroinvasion of neurotropic viruses. In the future, these new treatments are expected to cooperate with traditional antiviral methods to improve the therapeutic effect of viral encephalitis.  相似文献   

17.
All-trans retinoic acid (ATRA) influences the outcomes of cerebral ischemic reperfusion (CIR) injury, but the mechanism remains unclear. The present study aimed to investigate the effects of ATRA on loss of the blood brain barrier (BBB) following CIR and to explore the possible mechanisms. Transient middle cerebral artery occlusion was performed on male SD rats to construct an in vivo CIR model. Neurological deficits, BBB permeability, brain edema, MRI and JNK/P38 MAPK proteins were detected at 24 h following CIR. We demonstrated that ATRA pretreatment could alleviate CIR-induced neurological deficits, increase of BBB permeability, infarct volume, degradation of tight junction proteins, inhibit MMP-9 protein expression and activity. ATRA treatment also reduced the p-P38 and p-JNK protein level. However the protective effect of ATRA on CIR could be reversed by administration of retinoic acid alpha receptor antagonist Ro41-5253. SP600125 and SB203580, which is the JNK/P38 pathway inhibitors has the same protective effect as ATRA. These results indicated that ATRA may inhibit the JNK/P38 MAPK pathway to alleviate BBB disruption and improve CIR outcomes.  相似文献   

18.
Cerebral edema has been identified in all forms of liver disease and is closely related to the development of hepatic encephalopathy. Cerebral edema is most readily recognized in acute liver failure (ALF), while the main cause of death in patients with ALF is multi-organ failure; brain herniation as a result of intracranial hypertension does remain a major cause of mortality. The mechanisms responsible for cerebral edema in ALF suggest both cytotoxic and vasogenic injury. This article reviews the gross and ultrastructural changes associated with cerebral edema in ALF. The primary cause of cerebral edema is associated with astrocyte swelling, mainly perivascular edema and ammonia still remains the primary neurotoxin involved in its pathogenesis. The astrocytic changes were confined to the gray matter. The other organelles involved in the pathogenesis of ALF include mitochondria, basement membrane, pericytes, microglial cells, blood-brain barrier (BBB) etc. Discrete neuronal changes have recently been reported. Recent studies in animal and humans have demonstrated the microglial changes which have the potential to cause neuronal dysfunction in ALF. The alterations in BBB still remain unclear though few studies have showed disruption of tight junction proteins indicating the involvement of BBB in cellular swelling.  相似文献   

19.
A new concept about sympathetic nerves has emerged recently: not only is sympathetic tone important in short-term regulation of vascular resistance, but chronic effects of nerves on vessels have important effects. This concept is supported by studies of mechanisms by which sympathetic nerves protect the blood-brain barrier (BBB). The BBB is susceptible to disruption during acute and chronic hypertension. Acute, severe hypertension produces passive dilatation of cerebral vessels with disruption of the BBB. Sympathetic stimulation attenuates the increase in cerebral blood flow during acute hypertension and thereby protects the BBB. During chronic hypertension, we have observed disruption of the barrier, which may contribute to hypertensive encephalopathy. Sympathetic nerves protect against disruption of the BBB during chronic hypertension. This protective effect is apparently related to a trophic effect of nerves in promotion of cerebral vascular hypertrophy during chronic hypertension. Thus, this is the first evidence that, in the same vascular bed, sympathetic nerves have two different protective effects. Protection of the BBB is accomplished acutely by sympathetic neural effects on vascular resistance and chronically by promotion of vascular hypertrophy.  相似文献   

20.
Ischemia-Reperfusion (IR) injury is known to contribute significantly to the morbidity and mortality associated with ischemic strokes. Ischemic cerebrovascular accidents account for 80% of all strokes. A common cause of IR injury is the rapid inflow of fluids following an acute/chronic occlusion of blood, nutrients, oxygen to the tissue triggering the formation of free radicals.Ischemic stroke is followed by blood-brain barrier (BBB) dysfunction and vasogenic brain edema. Structurally, tight junctions (TJs) between the endothelial cells play an important role in maintaining the integrity of the blood-brain barrier (BBB). IR injury is an early secondary injury leading to a non-specific, inflammatory response. Oxidative and metabolic stress following inflammation triggers secondary brain damage including BBB permeability and disruption of tight junction (TJ) integrity.Our protocol presents an in vitro example of oxygen-glucose deprivation and reoxygenation (OGD-R) on rat brain endothelial cell TJ integrity and stress fiber formation. Currently, several experimental in vivo models are used to study the effects of IR injury; however they have several limitations, such as the technical challenges in performing surgeries, gene dependent molecular influences and difficulty in studying mechanistic relationships. However, in vitro models may aid in overcoming many of those limitations. The presented protocol can be used to study the various molecular mechanisms and mechanistic relationships to provide potential therapeutic strategies. However, the results of in vitro studies may differ from standard in vivo studies and should be interpreted with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号