首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 905 毫秒
1.
We have determined the cDNA sequence of the chicken embryonic β-like ?-globin gene. Comparison with the sequences of the chicken ρ-globin and β-globin genes reveals the presence of two regions that are identical or nearly identical in ? and ρ. The first contains the 5′ untranslated sequence and exon 1, while the second region includes the second half of axon 2. Outside these regions ρ and ? are less homologous to each other than to the adult β-globin gene. The embryonic ρ and ? genes are located at opposite ends of the β-globin-gene cluster, not contiguously as are all other known pairs of simultaneously expressed globin genes. We suggest a role for gene conversion in the synchronization of expression of two highly diverged genes.  相似文献   

2.
Plastids are organelles derived from cyanobacterial endosymbionts and the evolutionary process that gave rise to them is well understood. Or is it? The complete genome sequence of a recently evolved photosynthetic body in Paulinella chromatophora is cause for reflection on the distinction between 'endosymbiont' and 'organelle', and how the boundaries between these terms can blur.  相似文献   

3.
Whether evolutionary change can occur by genetic assimilation, or more generally by genetic accommodation, remains controversial. Here we examine some of the experimental evidence for both phenomena. Several experiments in Drosophila suggest that assimilation is possible, and a new paper shows that a color polyphenism in the tobacco hornworm, Manduca sexta, can evolve by genetic accommodation. We argue that genetic accommodation, including assimilation, is a plausible mechanism in evolution; however, more work is required to test how this mechanism acts and how often it is involved in evolutionary change.  相似文献   

4.
Howe CJ 《Current biology : CB》2008,18(10):R429-R431
Mitochondria and their relatives constitute a wide range of organelles, only some of which function in aerobic respiration. Mitochondrial remnants from different anaerobic lineages show a striking degree of functional convergence.  相似文献   

5.
6.
Limited information exists regarding molecular events that occurred during the evolution of C(4) plants from their C(3) ancestors. The enzyme β-carbonic anhydrase (CA; EC 4.2.1.1), which catalyses the reversible hydration of CO(2), is present in multiple forms in C(3) and C(4) plants, and has given insights into the molecular evolution of the C(4) pathway in the genus Flaveria. cDNAs encoding three distinct isoforms of β-CA, CA1-CA3, have been isolated and examined from Flaveria C(3) and C(4) congeners. Sequence data, expression analyses of CA orthologues, and chloroplast import assays with radiolabelled CA precursor proteins from the C(3) species F. pringlei Gandoger and the C(4) species F. bidentis (L.) Kuntze have shown that both contain chloroplastic and cytosolic forms of the enzyme, and the potential roles of these isoforms are discussed. The data also identified CA3 as the cytosolic isoform important in C(4) photosynthesis and indicate that the C(4) CA3 gene evolved as a result of gene duplication and neofunctionalization, which involved mutations in coding and non-coding regions of the ancestral C(3) CA3 gene. Comparisons of the deduced CA3 amino acid sequences from Flaveria C(3), C(4), and photosynthetic intermediate species showed that all the C(3)-C(4) intermediates investigated and F. brownii, a C(4)-like species, have a C(3)-type CA3, while F. vaginata, another C(4)-like species, contains a C(4)-type CA3. These observations correlate with the photosynthetic physiologies of the intermediates, suggesting that the molecular evolution of C(4) photosynthesis in Flaveria may have resulted from a temporally dependent, stepwise modification of protein-encoding genes and their regulatory elements.  相似文献   

7.
Natural genetic transformation is a mechanism of horizontal gene transfer that is widely distributed in bacteria and requires assembly of a DNA uptake machinery. Transformable bacteria use fundamentally the same machine, which in most species is assembled only in cells that are developing competence. Competence regulation usually differs between unrelated species. Here, we examine whether related streptococci use the same competence regulatory cascade. Phylogenetic analyses of streptococcal genome sequences reveal the existence of two paralogous two-component regulatory systems, either of which might control competence. This suggests the distribution of streptococci into two groups that use competence regulatory cascades that have at least partly evolved independently. Comparison of data obtained with two transformable streptococci, Streptococcus pneumoniae and Streptococcus mutans, provides support to this suggestion.  相似文献   

8.
9.
10.
K Matsuno 《Bio Systems》1985,17(3):179-192
Material self-assembly as a self-organizing process is always accompanied by symmetry-breaking in the material configuration. Self-sequencing of amino acids during their thermal polymerization has lost a certain property of permutation symmetry that was observed in the mixture of free amino acids. The evolutionary precursor state is more symmetrical about its internal material configuration and more degenerate due to the multitude of the indistinguishable individuals. The evolution proceeds in the direction along which the degeneracy in the internal states dissolves owing to the symmetry-breaking originating in material flow equilibrium of open material aggregates. Protobiological information is latent in the material system which is highly symmetrical and highly degenerate in its internal states. Evolution of matter is an endogenous process in which the earlier symmetric property is lost and less degenerate states are approached. Quantum-mechanically, the generation of protobiological information is due to the symmetry-breaking of the Hamiltonian originating in the interaction with the exterior through material flow, in contrast to the Schrödinger equation which preserves a symmetry and the associated invariants.  相似文献   

11.
Modern human origins in Australasia: Replacement or evolution?   总被引:2,自引:0,他引:2  
The controversies surrounding the origins of modern humans have spawned two competing hypotheses, namely Replacement and Multiregional Evolution. The first suggests that modern Homo sapiens evolved first in Africa, as late as 140 ka, and subsequently inhabited the balance of the Old World. Conversely, the second hypothesis posits that modern humans evolved principally from local populations of archaic hominids indigenous to the major regions of the Old World. The hominid mandibular remains (ca. 1 Ma) from Sangiran, central Java, Indonesia, were studied in order to test these hypotheses. Non-metric comparisons were performed between these fossils and aboriginal H. sapiens from Africa and Australia. The Replacement model would be supported by a unique Afro-Australian grouping while Multiregional Evolution would be suggested by a Sangiran-Australasian group which would exclude the modern Africans. These data support the Multiregional Evolution hypothesis in that a plurality (eight) of the seventeen non-metric features link Sangiran to modern Australians, while only three exclusively group the humans from Africa and Australia. These results are suggestive of morphological continuity, which implies the presence of a genetic continuum in Australasia dating back at least one million years.  相似文献   

12.
The karyotypes of seven species of Australian Rattus were studied by G-banding. When taken in conjunction with molecular data, it is shown that rate of chromosome evolution in the R. sordidus group (R. sordidus, R. villosissimus and R. colletti) has been remarkably rapid and directed entirely towards changes of the Robertsonian type. From data on hybrid fertility it is concluded that the presence of fusions with monobrachial homology contributes more to reduced fertility than fusions per se or genetic differences.  相似文献   

13.
When the chimpanzee genome sequence was released, human deleterious alleles associated with simple mendelian diseases were observed as wild-type alleles in six genes (AIRE, MKKS, MLH1, MYOC, OTC and PRSS1). The absence of recognizable phenotypic effects in chimpanzee, contrary to the clinical effect observed in humans, is attributed to epistatic interactions (compensation) between potentially deleterious and compensatory alleles. In this report we investigate the possible evolutionary histories by which substitution of alternative variants in these six genes either ameliorates or avoids pathological consequences.  相似文献   

14.
Until recently it was widely accepted that the dynamic cytoskeletal matrix is exclusive to the cytoplasm of eukaryotes, evolving before the emergence of the cell nucleus to enable phagocytosis, cell motility and the sophisticated functioning of the endomembrane system within the cytosol. The discovery of the existence of a prokaryotic cytoskeleton has changed this picture significantly. As a result, the idea has taken shape that the appearance of actin occurred in the very first cell; therefore, the emergence of microfilaments precedes that of the eukaryotic cytoskeleton. The discovery of nuclear actin opened new perspective on the field, suggesting that the nuclear activities of actin reflect the functions of primordial actin-like proteins. In this paper, we review the recent literature to explore the evolutionary origin of nuclear actin. We conclude that both ancient and eukaryotic features of the actin world can be detected in the nucleus today, which supports the idea that the cytoskeleton attained significant eukaryotic innovations before the tandem evolution of the cytoskeleton and nucleus occurred.  相似文献   

15.
Samara (winged fruit) can be dispersed easily by wind and may be a crucial factor for angiosperm spread and diversification. In a narrow sense, a samara is an indehiscent dry fruit with wing(s) developed from fruit pericarp, while in a broad sense samaras also include all winged fruits with wings developed from both pericarp and peri-anth or bracts. According to the wing shape and growth patterns of samaras, we divided samaras into six types, i.e. single-winged, lanceolate-winged, rib-winged, sepal-winged, bract-winged, and perigynous samaras. Perigynous samaras can be further classified into two forms, i.e. round-winged and butterfly-winged samaras. Accordingly, the aerodynamic behavior of samaras can be classified into five types, autogyro, rolling autogyro, undulator, helicopter, and tumbler. The rib-winged and round-winged samaras can be found in Laurales, a basal angiosperm, and may represent the primitive type of early samaras. In the derived clades, samaras evolved enlarged but unequal wings and decreased wing loading (the ratio of fruit weight to wing size), which is likely an adaptation to gentle wind and secondary dispersal through water or ground wind. The wings of some samaras (such as sepal-winged and bract-winged samaras) may have multiple functions including wind dispersal, physical defense for the seeds, and adjust seed germination strategy. The pantropical family Malpighiaceae is extraordinarily rich in samara types, which is likely related to its multiple inter-continent dispersal in history, which is known as “Malpighiaceae Route”. Therefore, Malpighiaceae can be used as a model system for the studies on samara adaptation and evolution. We identified the following issues that deserve further examination in future studies using both ecological and evo-devo methods: 1) the adaption of different types of samaras in dispersal processes, 2) the molecular and developmental mechanism of sepal- and bract-wings, and 3) the evolution of samara types and their effects on angiosperm diversification. © 2018 Editorial Office of Chinese Journal of Plant Ecology. All rights reserved.  相似文献   

16.
Transposable elements are short but complex pieces of DNA or RNA containing a streamlined minimal-genome with the capacity for its selfish replication in a foreign genomic environment. Cis-regulatory sections within the elements orchestrate tempo and mode of TE expression. Proteins encoded by TEs mainly direct their own propagation within the genome by recruitment of host-encoded factors. On the other hand, TE-encoded proteins harbor a very attractive repertoire of functional abilities for a cell. These proteins mediate excision, replication and integration of defined DNA fragments. Furthermore, some of these proteins are able to manipulate important host factors by altering their original function. Thus, if the host genome succeeds in domesticating such TE-encoded proteins by taming their ‘anarchistic behavior,’ such an event can be considered as an important evolutionary innovation for its own benefit. In fact, the domestication of TE-derived cis-regulatory modules and protein coding sections took place repeatedly in the course of genome evolution. We will present prominent cases that impressively demonstrate the beneficial impact of TEs on host biology over evolutionary time. Furthermore, we will propose that molecular domestication might be considered as a resumption of the same evolutionary process that drove the transition from ‘primitive genomes’ to ‘modern’ ones at the early dawn of life, that is, the adaptive integration of a short piece of autonomous DNA into a complex regulatory network. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
The development of a molecular-level understanding of drug resistance through β-lactamase is critical not only in designing newer-generation antibacterial agents but also in providing insight into the evolutionary mechanisms of enzymes in general. In the present study, we have evaluated the effect of four drug resistance mutations (A42G, E104K, G238S, and M182T) on the cefotaximase activity of the TEM-1 β-lactamase. Using computational methods, including docking and molecular mechanics calculations, we have been able to correctly identify the relative order of catalytic activities associated with these four single point mutants. Further analyses suggest that the changes in catalytic efficiency for mutant enzymes are correlated to structural changes within the binding site. Based on the energetic and structural analyses of the wild-type and mutant enzymes, structural rearrangement is suggested as a mechanism of evolution of drug resistance through TEM β-lactamase. The present study not only provides molecular-level insight into the effect of four drug resistance mutations on the structure and function of the TEM β-lactamase but also establishes a foundation for a future molecular-level analysis of complete evolutionary trajectory for this class of enzymes.  相似文献   

18.
Feeding specializations such as herbivory are an often cited example of convergent and adaptive evolution. However, some groups such as lizards appear constrained in the evolution of morphological specializations associated with specialized diets. Here we examine whether the inclusion of plant matter into the diet of omnivorous lacertid lizards has resulted in morphological specializations and whether these specializations reflect biomechanical compromises as expected if omnivores are constrained by functional trade-offs. We examined external head shape, skull shape, tooth structure, intestinal tract length and bite performance as previous studies have suggested correlations between the inclusion of plants into the diet and these traits. Our data show that omnivorous lacertid lizards possess modifications of these traits that allow them to successfully exploit plant material as a food source. Conversely, few indications of a compromise phenotype could be detected, suggesting that the evolution towards herbivory is only mildly constrained by functional trade-offs.  相似文献   

19.
The neotropical butterflies Heliconius melpomene and H. erato are Müllerian mimics that display the same warningly colored wing patterns in local populations, yet pattern diversity between geographic regions. Linkage mapping has previously shown convergent red wing phenotypes in these species are controlled by loci on homologous chromosomes. Here, AFLP bulk segregant analysis using H. melpomene crosses identified genetic markers tightly linked to two red wing-patterning loci. These markers were used to screen a H. melpomene BAC library and a tile path was assembled spanning one locus completely and part of the second. Concurrently, a similar strategy was used to identify a BAC clone tightly linked to the locus controlling the mimetic red wing phenotypes in H. erato. A methionine rich storage protein (MRSP) gene was identified within this BAC clone, and comparative genetic mapping shows red wing color loci are in homologous regions of the genome of H. erato and H. melpomene. Subtle differences in these convergent phenotypes imply they evolved independently using somewhat different developmental routes, but are nonetheless regulated by the same switch locus. Genetic mapping of MRSP in a third related species, the “tiger” patterned H. numata, has no association with wing patterning and shows no evidence for genomic translocation of wing-patterning loci.  相似文献   

20.
Summary The concerted action of two flavone-skeleton modifying genes, P and Me, and the alleles of three independently segregating loci g, gl and fg involved in flavone-glycosylation lead to the 33 different flavones so far identified in Silene. The alleles of the different loci involved in flavone-glycosylation control enzymes which differ in substrate specificity, a phenomenon not often described in higher organisms. The alleles of the different loci are variously distributed over the different species. The possible evolutionary implications of these distributions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号