首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Eugenol inhibited aflatoxin production by Aspergillus parasiticus NRRL 2999 in a dose-dependent manner up to a concentration of 0.75 mmol l-1 without inhibiting growth. When the mould was grown for 3 d in the presence of 0.45 mmol l-1 eugenol (concentration inhibiting aflatoxin production by 50%), in vivo activities of components of polysubstrate monooxygenase were decreased at idiophase, concomitant with decreased activities of enzymes involved in free radical scavenging, lipid peroxidation and maintenance of redox potential. These results indicate that antiaflatoxigenic actions of eugenol may be related to inhibition of the ternary steps of aflatoxin biosynthesis involving lipid peroxidation and oxygenation.  相似文献   

2.
In Salmonella typhimurium, the first five steps in purine biosynthesis also serve as the first steps in the biosynthesis of the pyrimidine moiety of thiamine (vitamin B1). Strains with null mutations of the first gene of purine-thiamine synthesis (purF) can, under some circumstances, grow without thiamine. This suggests the existence of an alternative pathway to thiamine that can function without the purF protein. To demonstrate the nature and map position of the purF mutations corrected, a fine-structure genetic map of the purF gene was made. The map allows identification of deletion mutations that remove virtually all of the purF gene, as defined by mutations. We describe conditions and mutations (panR) which allow B1 synthesis appears to require enzymes which act mutants lacking purF function. The alternative route of B1 synthesis appears to require enzymes which act subsequent to the purF enzyme in the purine pathway.  相似文献   

3.
Light-stimulated carotenoid biosynthesis associated with the transformation of etioplasts to chloroplasts was investigated after dark-grown maize (Zea mays) seedlings were transferred into light. These studies focused on the enzymes of the pathway to detect those enzyme activities that were stimulated in the light and thus that were responsible for increased biosynthesis of carotenoids. In preliminary experiments, norflurazon, an inhibitor of phytoene desaturase, was used to prevent phytoene being further metabolized to carotenoids. Light-dependent stimulation of phytoene accumulation indicated that the light-regulated steps are located in the pathway leading to phytoene synthesis. The use of the 14C- labeled precursors mevalonic acid, isopentenyl pyrophosphate, and farnesyl pyrophosphate pointed to increased activity of an enzyme involved in the biosynthetic steps between isopentenyl pyrophosphate and farnesyl pyrophosphate. Determination of the activities of all five enzymes of the pathway involved in the sequence from mevalonic acid to phytoene revealed that the only enzyme activity stimulated by light was isopentenyl pyrophosphate isomerase. Over a 3-h period of illumination, this enzyme activity, like carotenoid biosynthesis, was stimulated 2.8-fold.  相似文献   

4.
5.
Ferredoxin (Fd) is a small [2Fe‐2S] cluster‐containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2. In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell‐Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.  相似文献   

6.
7.
8.
Nickel enzymes, present in archaea, bacteria, plants, and primitive eukaryotes are divided into redox and nonredox enzymes and play key functions in diverse metabolic processes, such as energy metabolism and virulence. They catalyze various reactions by using active sites of diverse complexities, such as mononuclear nickel in Ni‐superoxide dismutase, glyoxylase I and acireductone dioxygenase, dinuclear nickel in urease, heteronuclear metalloclusters in [NiFe]‐carbon monoxide dehydrogenase, acetyl‐CoA decarbonylase/synthase and [NiFe]‐hydrogenase, and even more complex cofactors in methyl‐CoM reductase and lactate racemase. The presence of metalloenzymes in a cell necessitates a tight regulation of metal homeostasis, in order to maintain the appropriate intracellular concentration of nickel while avoiding its toxicity. As well, the biosynthesis and insertion of nickel active sites often require specific and elaborated maturation pathways, allowing the correct metal to be delivered and incorporated into the target enzyme. In this review, the phylogenetic distribution of nickel enzymes will be briefly described. Their tridimensional structures as well as the complexity of their active sites will be discussed. In view of the latest findings on these enzymes, a special focus will be put on the biosynthesis of their active sites and nickel activation of apo‐enzymes.  相似文献   

9.
In plants, chlorophylls (chlorophyll a and chlorophyll b) are the most abundant tetrapyrrole molecules and are essential for photosynthesis. The first committed step of chlorophyll biosynthesis is the insertion of Mg2+ into protoporphyrin IX, and thus subsequent steps of the biosynthesis are called the Mg branch. As the Mg branch in higher plants is complex, it was not until the last decade—after many years of intensive research—that most of the genes encoding the enzymes for the pathway were identified. Biochemical and molecular genetic analyses have certainly modified the classic metabolic map of tetrapyrrole biosynthesis, and only recently have the molecular mechanisms of regulatory pathways governing chlorophyll metabolism been elucidated. As a result, novel functions of tetrapyrroles and biosynthetic enzymes have been proposed. In this review, I summarize the recent findings on enzymes involved in the Mg branch, mainly in higher plants.  相似文献   

10.
When intracelluar pathogens enter the host macrophages where in addition to oxidative and antibiotic mechanisms of antimicrobial activity, nutrients are deprived. Human pathogen Mycobacterium tuberculosis is one of macrophage parasitisms, which can replicate and persist for decades in dormancy state in virulent environments. It is very successful in escaping the killing mechanisms of macrophage. Molybdenum (Mo) enzymes involve in the global carbon, sulfur, and nitrogen cycles by catalyzing important redox reactions. There are several Mo enzymes in mycobacteria and they exert several important physiological functions, such as dormancy regulation, the metabolism of energy sources, and nitrogen source. Pterin-based Mo cofactor (Moco) is the common cofactor of the Mo enzymes in mycobacteria but the cofactor biosynthesis is nearly an untapped area. The present article discusses the physiological function of Mo enzymes and the structural feature of the genes coding for Moco biosynthesis enzymes in mycobacteria.  相似文献   

11.
Coenzyme A (CoA) holds a central position in cellular metabolism and therefore can be assumed to be an ancient molecule. Starting from the known E. coli and human enzymes required for the biosynthesis of CoA, phylogenetic profiles and chromosomal proximity methods enabled an almost complete reconstruction of archaeal CoA biosynthesis. This includes the identification of strong candidates for archaeal pantothenate synthetase and pantothenate kinase, which are unrelated to the corresponding bacterial or eukaryotic enzymes. According to this reconstruction, the topology of CoA synthesis from common precursors is essentially conserved across the three domains of life. The CoA pathway is conserved to varying degrees in eukaryotic pathogens like Giardia lamblia or Plasmodium falciparum, indicating that these pathogens have individual uptake-mechanisms for different CoA precursors. Phylogenetic analysis and phyletic distribution of the CoA biosynthetic enzymes suggest that the enzymes required for the synthesis of phosphopantothenate were recruited independently in the bacterial and archaeal lineages by convergent evolution, and that eukaryotes inherited the genes for the synthesis of pantothenate (vitamin B5) from bacteria. Homologues to bacterial enzymes involved in pantothenate biosynthesis are present in a subset of archaeal genomes. The phylogenies of these enzymes indicate that they were acquired from bacterial thermophiles through horizontal gene transfer. Monophyly can be inferred for each of the enzymes catalyzing the four ultimate steps of CoA synthesis, the conversion of phosphopantothenate into CoA. The results support the notion that CoA was initially synthesized from a prebiotic precursor, most likely pantothenate or a related compound.  相似文献   

12.
During the evolution of plants, chloroplasts have lost the exclusive genetic control over redox regulation and antioxidant gene expression. Together with many other genes, all genes encoding antioxidant enzymes and enzymes involved in the biosynthesis of low molecular weight antioxidants were transferred to the nucleus. On the other hand, photosynthesis bears a high risk for photo-oxidative damage. Concomitantly, an intricate network for mutual regulation by anthero- and retrograde signals has emerged to co-ordinate the activities of the different genetic and metabolic compartments. A major focus of recent research in chloroplast regulation addressed the mechanisms of redox sensing and signal transmission, the identification of regulatory targets, and the understanding of adaptation mechanisms. In addition to redox signals communicated through signalling cascades also used in pathogen and wounding responses, specific chloroplast signals control nuclear gene expression. Signalling pathways are triggered by the redox state of the plastoquinone pool, the thioredoxin system, and the acceptor availability at photosystem I, in addition to control by oxolipins, tetrapyrroles, carbohydrates, and abscisic acid. The signalling function is discussed in the context of regulatory circuitries that control the expression of antioxidant enzymes and redox modulators, demonstrating the principal role of chloroplasts as the source and target of redox regulation.  相似文献   

13.
多杀菌素的生物合成   总被引:11,自引:1,他引:10  
多杀菌素是一种新颖大环内酯类杀虫剂,具有对害虫高效、对环境安全、对哺乳动物低毒的优异特点。介绍了多杀菌素生物合成的步骤,及参与这些合成步骤的有关酶系统和基因簇。通过对刺糖多孢菌中多杀菌素合成基因的克隆鉴定与分析,已基本了解多杀菌素生物合成的限速步骤及相关控制基因,从而可通过遗传工程的办法改造刺糖多孢菌,提高多杀菌素的产量 。  相似文献   

14.
The heme biosynthesis pathway in the yeast Saccharomyces cerevisiae is a highly regulated system, but the mechanisms accounting for this regulation remain unknown. In an attempt to identify rate-limiting steps in heme synthesis, which may constitute potential regulatory points, we constructed yeast strains overproducing two enzymes of the pathway: the porphobilinogen synthase (PBG-S) and deaminase (PBG-D). Biochemical analysis of the enzyme-overproducing strains revealed intracellular porphobilinogen and porphyrin accumulation. These results indicate that both enzymes play a rate-limiting role in yeast heme biosynthesis.  相似文献   

15.
Chlorophyll captures and redirects light-energy and is thus essential for photosynthetic organisms. The demand for chlorophyll differs throughout the day and night and in response to changing light conditions. Moreover, the chlorophyll biosynthesis pathway is up to certain points shared between the different tetrapyrroles; chlorophyll, heme, siroheme and phytochromobilin, for which the cell has different requirements at different time points. Combined with the phototoxic properties of tetrapyrroles which, if not properly protected, can lead to formation of reactive oxygen species (ROS), the need for a strict regulation of the chlorophyll biosynthetic pathway is obvious. Here we describe the current knowledge on regulation of chlorophyll biosynthesis in plants by the chloroplast redox state with emphasis on the Mg-chelatase situated at the branch point between the heme and the chlorophyll pathway. We discuss the proposed role of the Mg-chelatase as a key regulator of the tetrapyrrole pathway by its effect on enzymes both up- and downstream in the pathway and we specifically describe how redox state might regulate the Mg-branch. Finally, we propose that a recently identified NADPH-dependent thioredoxin reductase (NTRC) could be involved in redox regulation or protection of chlorophyll biosynthetic enzymes and describe the possible modes of action by this enzyme.  相似文献   

16.
In all genome-sequencing projects completed to date, a considerable number of 'gaps' have been found in the biochemical pathways of the respective species. In many instances, missing enzymes are displaced by analogs, functionally equivalent proteins that have evolved independently and lack sequence and structural similarity. Here we fill such gaps by analyzing anticorrelating occurrences of genes across species. Our approach, applied to the thiamin biosynthesis pathway comprising approximately 15 catalytic steps, predicts seven instances in which known enzymes have been displaced by analogous proteins. So far we have verified four predictions by genetic complementation, including three proteins for which there was no previous experimental evidence of a role in the thiamin biosynthesis pathway. For one hypothetical protein, biochemical characterization confirmed the predicted thiamin phosphate synthase (ThiE) activity. The results demonstrate the ability of our computational approach to predict specific functions without taking into account sequence similarity.  相似文献   

17.
Collagen is a macromolecule that has versatile roles in physiology, ranging from structural support to mediating cell signaling. Formation of mature collagen fibrils out of procollagen α-chains requires a variety of enzymes and chaperones in a complex process spanning both intracellular and extracellular post-translational modifications. These processes include modifications of amino acids, folding of procollagen α-chains into a triple-helical configuration and subsequent stabilization, facilitation of transportation out of the cell, cleavage of propeptides, aggregation, cross-link formation, and finally the formation of mature fibrils. Disruption of any of the proteins involved in these biosynthesis steps potentially result in a variety of connective tissue diseases because of a destabilized extracellular matrix. In this review, we give a revised overview of the enzymes and chaperones currently known to be relevant to the conversion of lysine and proline into hydroxyproline and hydroxylysine, respectively, and the O-glycosylation of hydroxylysine and give insights into the consequences when these steps are disrupted.  相似文献   

18.
Eukaryotic fatty acid synthases (FASs) are huge multifunctional enzymes that carry out all enzymatic steps essential for fatty acid biosynthesis. Recent crystallographic studies provide new insights into the architecture of the two distinct eukaryotic FAS systems, the 2.6 MDa heterododecameric fungal and the 540 kDa dimeric animal FAS. In this review, we compare the fundamentally different organization of these two megasynthases and discuss the structural principles of enzyme integration and substrate shuttling in FAS multienzymes.  相似文献   

19.
20.
紫杉醇生物合成途径中相关酶的研究进展   总被引:4,自引:0,他引:4  
抗癌新药紫杉醇是具有萜类环状结构的一种重要次生代谢产物 ,研究紫杉醇的生物合成对于通过基因工程手段提高紫杉醇的产量 ,解决目前资源紧缺造成的巨大供求矛盾具有重要意义 ,这就需要对紫杉醇生物合成途径中催化各步反应 (尤其是关键步骤 )的酶以及编码这些酶的基因有个全面的了解。对近年来紫杉醇生物合成途径中相关酶的研究进行了综述 ,大部分酶及相关基因已被分离、克隆 ,但还有一些酶及相关基因没有发现 ,有待继续深入研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号