首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neurons are critically dependent on mitochondrial integrity based on specific morphological, biochemical, and physiological features. They are characterized by high rates of metabolic activity and need to respond promptly to activity-dependent fluctuations in bioenergetic demand. The dimensions and polarity of neurons require efficient transport of mitochondria to hot spots of energy consumption, such as presynaptic and postsynaptic sites. Moreover, the postmitotic state of neurons in combination with their exposure to intrinsic and extrinsic neuronal stress factors call for a high fidelity of mitochondrial quality control systems. Consequently, it is not surprising that mitochondrial alterations can promote neuronal dysfunction and degeneration. In particular, mitochondrial dysfunction has long been implicated in the etiopathogenesis of Parkinson's disease (PD), based on the observation that mitochondrial toxins can cause parkinsonism in humans and animal models. Substantial progress towards understanding the role of mitochondria in the disease process has been made by the identification and characterization of genes causing familial variants of PD. Studies on the function and dysfunction of these genes revealed that various aspects of mitochondrial biology appear to be affected in PD, comprising mitochondrial biogenesis, bioenergetics, dynamics, transport, and quality control.  相似文献   

2.
Prion diseases are neurodegenerative disorders characterized by the accumulation of a disease-associated prion protein and apoptotic neuronal death. Previous studies indicated that the ubiquitous expression of c-Abl tyrosine kinase transduces a variety of extrinsic and intrinsic cellular signals. In this study, we demonstrated that a synthetic neurotoxic prion fragment (PrP106-126) activated c-Abl tyrosine kinase, which in turn triggered the upregulation of MST1 and BIM, suggesting the activation of the c-Abl-BIM signaling pathway. The peptide fragment was found to result in cell death via mitochondrial dysfunction in neuron cultures. Knockdown of c-Abl using small interfering RNA protected neuronal cells from PrP106-126-induced mitochondrial dysfunction, production of reactive oxygen species, and apoptotic events inducing translocation of Bax to the mitochondria, cytochrome c release into the cytosol, and activation of caspase-9 and caspase-3. Blocking the c-Abl tyrosine kinase also prevented neuronal cells from PrP106-126-induced apoptotic morphological changes. This is the first study reporting that c-Abl tyrosine kinase as a novel upstream activator of MST1 and BIM plays an important role in prion-induced neuron apoptosis via mitochondrial dysfunction. Our findings suggest that c-Abl tyrosine kinase is a potential therapeutic target for prion disease.  相似文献   

3.
Cisplatin (cisPt) is a chemotherapeutic drug used for several human malignancies. CisPt cytotoxicity is primarily mediated by its ability to cause DNA damage and subsequent apoptotic cell death. DNA is the primary target of cisPt; however, recent data have shown that cisPt may have important direct interactions with mitochondria, which can induce apoptosis and may account for a significant part of the clinical activity associated with this drug. We have previously demonstrated that in the rat neuronal cell line B50, at 20 h-treatment with cisPt activates apoptosis through an intrinsic pathway involving an alteration of mitochondrial membrane permeability and the release of cytochrome c. The present study investigates different death pathways induced in the same cell line by a prolonged treatment with 40 μM cisPt for 48 h. To address this issue, we focused on caspases-8 and -12, and on the mitochondrial apoptosis inducing factor (AIF), which translocates to the nucleus and induces cell death via caspase-independent pathway. We found that cisPt activates different forms of cell death, i.e. the receptor-mediated apoptotic extrinsic pathway and a death process mediated by endoplasmic reticulum stress. Moreover, we demonstrated that AIF-mediated death occurs, being characterized by the translocation of AIF from mitochondria to the nucleus. On the whole, we provided evidence that prolonged cisPt treatment is able to activate both caspase-dependent and caspase-independent apoptotic pathways in B50 rat neuronal cells.  相似文献   

4.
Choi SA  Kim SJ  Chung KC 《FEBS letters》2006,580(22):5275-5282
Huntingtin interacting protein-1 (Hip1) is known to be associated with the N-terminal domain of huntingtin. Although Hip1 can induce apoptosis, the exact upstream signal transduction pathways have not been clarified yet. In the present study, we examined whether activation of intrinsic and/or extrinsic apoptotic pathways occurs during Hip1-mediated neuronal cell death. Overexpression of Hip1 induced cell death through caspase-3 activation in immortalized hippocampal neuroprogenitor cells. Interestingly, proteolytic processing of Hip1 into partial fragments was observed in response to Hip1 transfection and apoptosis-inducing drugs. Moreover, Hip1 was found to directly bind to and activate caspase-9. This promoted cytosolic release of cytochrome c and apoptosis-inducing factor via mitochondrial membrane perturbation. Furthermore, Hip1 could directly bind to Apaf-1, suggesting that the neurotoxic signals of Hip1 transmit through the intrinsic mitochondrial apoptotic pathways and the formation of apoptosome complex.  相似文献   

5.
It has been reported that extracts from Asian traditional/medical herbs possess therapeutic agents against cancers, metabolic diseases, inflammatory diseases, and other intractable diseases. In this study, we assessed the molecular mechanisms involved in the anticancer effects of A1E, the extract of Korean medicinal herbs. We examined the role of the cytotoxic and apoptotic pathways in the cancer chemopreventive activity in non-small-cell lung cancer (NSCLC) cell lines NCI-H460 and NCI-H1299. A1E inhibited the proliferation of NCI-H460 more efficiently than NCI-H1299 (p53?/?) cells. The apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blot, RT-PCR, and measurement of mitochondrial membrane potential. A1E induced cellular morphological changes and nuclear condensation at 24 h in a dose-dependent manner. A1E also perturbed cell cycle progression at the sub-G1 stage and altered cell cycle regulatory factors in NCI-H460 cells. Furthermore, A1E inhibited the PI3K/Akt and NF-κB survival pathways, and it activated apoptotic intrinsic and extrinsic pathways. A1E increased the expression levels of members of the extrinsic death receptor complex FasL and FADD. In addition, A1E treatment induced cleavage of caspase-8, caspase-9, caspase-3, and poly ADP-ribose polymerase (PARP), whereas the expression levels of Bcl-2 and Bcl-xl were downregulated. A1E induced mitochondrial membrane potential collapse and cytochrome C release. Our results suggest that A1E induces apoptosis via activation of both extrinsic and intrinsic pathways and inhibition of PI3K/Akt survival signaling pathways in NCI-H460 cells. In conclusion, these data demonstrate the potential of A1E as a novel chemotherapeutic agent in NSCLC.  相似文献   

6.
As a traditional Chinese medicine, the sea buckthorn (Hippophae rhamnoides L.) has a long history in the treatment of ischemic heart disease and circulatory disorders. However, the active compounds responsible for and the underlying mechanisms of these effects are not fully understood. In this article, isorhamnetin pretreatment counteracted H(2)O(2)-induced apoptotic damage in H9c2 cardiomyocytes. Isorhamnetin did not inhibit the death receptor-dependent or extrinsic apoptotic pathways, as characterized by its absence in both caspase-8 inactivation and tBid downregulation along with unchanged Fas and TNFR1 mRNA levels. Instead, isorhamnetin specifically suppressed the mitochondria-dependent or intrinsic apoptotic pathways, as characterized by inactivation of caspase-9 and -3, maintenance of the mitochondrial membrane potential (ΔΨm), and regulation of a series of Bcl-2 family genes upstream of ΔΨm. The anti-apoptotic effects of isorhamnetin were linked to decreased ROS generation. H(2)O(2) activated ERK and p53, whereas isorhamnetin inhibited their activation. ERK overexpression overrode the isorhamnetin-induced inhibition of the intrinsic apoptotic pathway in H9c2 cardiomyocytes, which indicated that an ERK-dependent pathway was involved. Furthermore, N-acetyl cysteine (a potent ROS scavenger) could attenuate the H(2)O(2)-induced apoptosis. However, PD98059 (an ERK-specific inhibitor) could not effectively antagonize ROS generation, which indicates that ROS may be an upstream inducer of ERK. In conclusion, isorhamnetin inhibits the H(2)O(2)-induced activation of the intrinsic apoptotic pathway via ROS scavenging and ERK inactivation. Therefore, isorhamnetin is a promising reagent for the treatment of ROS-induced cardiomyopathy.  相似文献   

7.
A single episode of ethanol intoxication triggers widespread apoptotic neurodegeneration in the infant rat or mouse brain. The cell death process occurs over a 6-16 h period following ethanol administration, is accompanied by a robust display of caspase-3 enzyme activation, and meets ultrastructural criteria for apoptosis. Two apoptotic pathways (intrinsic and extrinsic) have been described, either of which may culminate in the activation of caspase-3. The intrinsic pathway is regulated by Bax and Bcl-XL and involves Bax-induced mitochondrial dysfunction and release of cytochrome c as antecedent events leading to caspase-3 activation. Activation of caspase-8 is a key event preceding caspase-3 activation in the extrinsic pathway. In the present study, following ethanol administration to infant mice, we found no change in activated caspase-8, which suggests that the extrinsic pathway is not involved in ethanol-induced apoptosis. We also found that ethanol triggers robust caspase-3 activation and apoptotic neurodegeneration in C57BL/6 wildtype mice, but induces neither phenomenon in homozygous Bax-deficient mice. Therefore, it appears that ethanol-induced neuroapoptosis is an intrinsic pathway-mediated phenomenon involving Bax-induced disruption of mitochondrial membranes and cytochrome c release as early events leading to caspase-3 activation.  相似文献   

8.

Background  

A key physiological mechanism employed by multicellular organisms is apoptosis, or programmed cell death. Apoptosis is triggered by the activation of caspases in response to both extracellular (extrinsic) and intracellular (intrinsic) signals. The extrinsic and intrinsic pathways are characterized by the formation of the death-inducing signaling complex (DISC) and the apoptosome, respectively; both the DISC and the apoptosome are oligomers with complex formation dynamics. Additionally, the extrinsic and intrinsic pathways are coupled through the mitochondrial apoptosis-induced channel via the Bcl-2 family of proteins.  相似文献   

9.
Exogenous ribonucleases are known to inhibit tumor growth via apoptosis induction in tumor cells, allowing to consider them as promising anticancer drugs for clinical application. In this work the antitumor potential of binase was evaluated in vivo and the mechanism of cytotoxic effect of binase on tumor cells was comprehensively studied in vitro. We investigated tumoricidal activity of binase using three murine tumor models of Lewis lung carcinoma (LLC), lymphosarcoma RLS40 and melanoma B-16. We show for the first time that intraperitoneal injection of binase at a dose range 0.1–5 mg/kg results in retardation of primary tumor growth up to 45% in LLC and RLS40 and inhibits metastasis up to 50% in LLC and RLS40 and up to 70% in B-16 melanoma. Binase does not exhibit overall toxic effect and displays a general systemic and immunomodulatory effects. Treatment of RLS40-bearing animals with binase together with polychemotherapy revealed that binase decreases the hepatotoxicity of polychemotherapy while maintaining its antitumor effect. It was demonstrated that the cytotoxic effect of binase is realized via the induction of the intrinsic and extrinsic apoptotic pathways. Activation of intrinsic apoptotic pathway is manifested by a drop of mitochondrial potential, increase in calcium concentration and inhibition of respiratory activity. Subsequent synthesis of TNF-α in the cells under the action of binase triggers extrinsic apoptotic pathway through the binding of TNF with cell-death receptors and activation of caspase 8. Thus binase is a potential anticancer therapeutics inducing apoptosis in cancer cells.  相似文献   

10.
11.
12.
It is well known that mild hypothermia prevents neuronal cell death following cerebral ischemia, although it can also cause apoptosis in other cell types. Thus, incubation at room temperature (RT) has been shown to induce apoptosis in hematopoietic cells, including Jurkat T leukemia cells. To further understand the apoptotic events that can be activated at RT, we compared the induction of apoptosis by several apoptotic insults in Jurkat cells stimulated at 37°C or RT. Retinoid-related molecules, which induce apoptosis via the intrinsic pathway, failed to induce apoptosis when cells were treated at RT, as determined by various apoptotic parameters including cytochrome c release and activation of caspase 3. In contrast, most apoptotic events were enhanced by lower temperatures when cells were stimulated with anti-Fas antibody via the extrinsic pathway. Ultraviolet radiation produced partial effects at RT, correlating with its capacity to activate both pathways. Our results indicate that the core caspase machinery is operational under mild hypothermia conditions. Experiments using purified recombinant caspases and cell-free assays confirmed that caspases are fully functional at RT. Other hallmark events of apoptosis, such as phosphatidylserine externalization and formation of apoptotic bodies were variably affected by RT in a stimulus-dependent manner, suggesting the existence of critical steps that are sensitive to temperature. Thus, analysis of apoptosis at RT might be useful to (i) discriminate between the extrinsic and intrinsic pathways in Jurkat cells treated with prospective stimuli, and (ii) to unravel temperature-sensitive steps of apoptotic signaling cascades.  相似文献   

13.
Proapoptotic receptor agonists cause cellular demise through the activation of the extrinsic and intrinsic apoptotic pathways. Inhibitor of apoptosis (IAP) proteins block apoptosis induced by diverse stimuli. Here, we demonstrate that IAP antagonists in combination with Fas ligand (FasL) or the death receptor 5 (DR5) agonist antibody synergistically stimulate death in cancer cells and inhibit tumor growth. Single-agent activity of IAP antagonists relies on tumor necrosis factor-α signaling. By contrast, blockade of tumor necrosis factor-α does not affect the synergistic activity of IAP antagonists with FasL or DR5 agonist antibody. In most cancer cells, proapoptotic receptor agonist-induced cell death depends on amplifying the apoptotic signal via caspase-8-mediated activation of Bid and subsequent activation of the caspase-9-dependent mitochondrial apoptotic pathway. In the investigated cancer cell lines, induction of apoptosis by FasL or DR5 agonist antibody can be inhibited by knockdown of Bid. However, knockdown of X chromosome-linked IAP (XIAP) or antagonism of XIAP allows FasL or DR5 agonist antibody to induce activation of effector caspases efficiently without the need for mitochondrial amplification of the apoptotic signal and thus rescues the effect of Bid knockdown in these cells.  相似文献   

14.

Introduction  

Synovial hyperplasia is a main feature of rheumatoid arthritis pathology that leads to cartilage and bone damage in the inflamed joints. Impaired apoptosis of resident synoviocytes is pivotal in this process. Apoptosis resistance seems to involve defects in the extrinsic and intrinsic apoptotic pathways. The aim of this study was to investigate the association of PI3Kinase/Akt and the mitochondrial apoptotic pathway in the resistance of rheumatoid arthritis (RA) fibroblast like synovial cells (FLS) to Fas-mediated apoptosis.  相似文献   

15.
Protection by mild hypothermia has previously been associated with better mitochondrial preservation and suppression of the intrinsic apoptotic pathway. It is also known that the brain may undergo apoptotic death via extrinsic, or receptor-mediated pathways, such as that triggered by Fas/FasL. Male Sprague-Dawley rats subjected to 2 h middle cerebral artery occlusion with 2 h intraischemic mild hypothermia (33°C) were assayed for Fas, FasL and caspase-8 expression. Ischemia increased Fas, but decreased FasL by ∼ 50–60% at 6 and 24 h post-insult. Mild hypothermia significantly reduced expression of Fas and processed caspase-8 both by ∼ 50%, but prevented ischemia-induced FasL decreases. Fractionation revealed that soluble/shed FasL (sFasL) was decreased by hypothermia, while membrane-bound FasL (mFasL) increased. To more directly assess the significance of the Fas/FasL pathway in ischemic stroke, primary neuron cultures were exposed to oxygen glucose deprivation. Since FasL is cleaved by matrix metalloproteinases (MMPs), and mild hypothermia decreases MMP expression, treatment with a pan-MMP inhibitor also decreased sFasL. Thus, mild hypothermia is associated with reduced Fas expression and caspase-8 activation. Hypothermia prevented total FasL decreases, and most of it remained membrane-bound. These findings reveal new observations regarding the effect of mild hypothermia on the Fas/FasL and MMP systems.  相似文献   

16.
Stable rhythmic neural activity depends on the well-coordinated interplay of synaptic and cell-intrinsic conductances. Since all biophysical processes are temperature dependent, this interplay is challenged during temperature fluctuations. How the nervous system remains functional during temperature perturbations remains mostly unknown. We present a hitherto unknown mechanism of how temperature-induced changes in neural networks are compensated by changing their neuromodulatory state: activation of neuromodulatory pathways establishes a dynamic coregulation of synaptic and intrinsic conductances with opposing effects on neuronal activity when temperature changes, hence rescuing neuronal activity. Using the well-studied gastric mill pattern generator of the crab, we show that modest temperature increase can abolish rhythmic activity in isolated neural circuits due to increased leak currents in rhythm-generating neurons. Dynamic clamp-mediated addition of leak currents was sufficient to stop neuronal oscillations at low temperatures, and subtraction of additional leak currents at elevated temperatures was sufficient to rescue the rhythm. Despite the apparent sensitivity of the isolated nervous system to temperature fluctuations, the rhythm could be stabilized by activating extrinsic neuromodulatory inputs from descending projection neurons, a strategy that we indeed found to be implemented in intact animals. In the isolated nervous system, temperature compensation was achieved by stronger extrinsic neuromodulatory input from projection neurons or by augmenting projection neuron influence via bath application of the peptide cotransmitter Cancer borealis tachykinin-related peptide Ia (CabTRP Ia). CabTRP Ia activates the modulator-induced current IMI (a nonlinear voltage-gated inward current) that effectively acted as a negative leak current and counterbalanced the temperature-induced leak to rescue neuronal oscillations. Computational modelling revealed the ability of IMI to reduce detrimental leak-current influences on neuronal networks over a broad conductance range and indicated that leak and IMI are closely coregulated in the biological system to enable stable motor patterns. In conclusion, these results show that temperature compensation does not need to be implemented within the network itself but can be conditionally provided by extrinsic neuromodulatory input that counterbalances temperature-induced modifications of circuit-intrinsic properties.  相似文献   

17.
18.
Based on our recent findings that resveratrol, a natural plant polyphenol found in red grape skins as well as other food products, induces apoptosis via a caspase-independent intrinsic pathway in human lung adenocarcinoma cells, this study is designed to explore whether SB203580, a p38 inhibitor, potentiates the resveratrol-induced apoptosis of human lung adenocarcinoma (A549) cells. We found that pretreatment with SB203580 enhanced the resveratrol-induced apoptosis by accelerating the intrinsic apoptotic pathway including Bax activation, loss of mitochondrial membrane potential, and activation of both caspase-9 and -3. Although treatment with resveratrol alone did not induce caspase-8 activation, cotreatment with both SB203580 and resveratrol not only enhanced FasL cleavage but also activated caspase-8, indicating that the extrinsic apoptotic pathway may be involved in the synergistic effect. Collectively, we for the first time demonstrate that SB203580 synergistically enhances the resveratrol-induced apoptosis by accelerating Bax-mediated intrinsic pathway and initiating extrinsic pathway, suggesting a possible alternative therapeutic strategy for human lung cancer.  相似文献   

19.
Prostaglandin F(2alpha) (PGF(2alpha)) acting via a G protein-coupled receptor has been shown to induce apoptosis in the corpus luteum of many species. Studies were carried out to characterize changes in the apoptotic signaling cascade(s) culminating in luteal tissue apoptosis during PGF(2alpha)-induced luteolysis in the bovine species in which initiation of apoptosis was demonstrable at 18 h after exogenous PGF(2alpha) treatment. An analysis of intrinsic arm of apoptotic signaling cascade elements revealed that PGF(2alpha) injection triggered increased ratio of Bax to Bcl-2 in the luteal tissue as early as 4 h posttreatment that remained elevated until 18 h. This increase was associated with the elevation in the active caspase-9 and -3 protein levels and activity (p < 0.05) at 4-12 h, but a spurt in the activity was seen only at 18 h posttreatment that could not be accounted for by the changes in the Bax/Bcl-2 ratio or changes in translocation of Bax to mitochondria. Examination of luteal tissue for FasL/Fas death receptor cascade revealed increased expression of FasL and Fas at 18 h accompanied by a significant (p < 0.05) induction in the caspase-8 activity and truncated Bid levels. Furthermore, intrabursal administration of specific caspase inhibitors, downstream to the extrinsic and intrinsic apoptotic signaling cascades, in a pseudopregnant rat model revealed a greater importance of extrinsic apoptotic signaling cascade in mediating luteal tissue apoptosis during PGF(2alpha) treatment. The DNase responsible for PGF(2alpha)-induced apoptotic DNA fragmentation was found to be Ca(2+)/Mg(2+)-dependent, temperature-sensitive DNase, and optimally active at neutral pH conditions. This putative DNase was inhibited by the recombinant inhibitor of caspase-activated DNase, and immunodepletion of caspase-activated DNase from luteal lysates abolished the observed DNA fragmentation activity. Together, these data demonstrate for the first time temporal and spatial changes in the apoptotic signaling cascades during PGF(2alpha)-in-duced apoptosis in the corpus luteum.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号