首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate cancer (PCa) is a malignant tumor with an extremely high prevalence. Doxorubicin is the first‐line clinical treatment for castration‐resistant PCa. Clinically, relapse is almost inevitable due to the cancer cells' increasing resistance to doxorubicin. Our previous studies have revealed that retinoic acid‐related orphan nuclear receptor γ (RORγ) is a key protein for cancer progression and a promising target for PCa therapy. Though, RORγ's role and mechanism in doxorubicin‐resistant PCa remain unclear. To study the mechanism of doxorubicin resistance, we generated a doxorubicin‐resistant PCa cell line C4‐2B (C4‐2B DoxR) in this study, by culturing cells in an increasing doxorubicin concentration. Here, we show that RORγ expression was upregulated in C4‐2B DoxR cells compared with that in normal C4‐2B cells. The RORγ‐stably‐overexpressing PCa cell line constructed by lentiviral transfection showed an obvious improvement in doxorubicin resistance and a trend toward castration resistance. Furthermore, RORγ‐specific small molecule inhibitors XY018, GSK805, and SR2211 can significantly inhibit the proliferation of C4‐2B DoxR cells and promote their apoptosis. Collectively, these results have demonstrated the correlation between the upregulation of RORγ and the development of PCa's doxorubicin resistance, thus providing new ideas for solving the problem of chemotherapy drug resistance in PCa.  相似文献   

2.

Background

eEF1A2 is a protein translation factor involved in protein synthesis, which possesses important function roles in cancer development. This study aims at investigating the expression pattern of eEF1A2 in prostate cancer and its potential role in prostate cancer development.

Methods

We examined the expression level of eEF1A2 in 30 pairs of prostate cancer tissues by using RT-PCR and immunohistochemical staining (IHC). Then we applied siRNA specifically targeting eEF1A2 to down-regulate its expression in DU-145 and PC-3 cells. Flow cytometer was used to explore apoptosis and Western-blot was used to detect the pathway proteins of apoptosis.

Results

Our results showed that the expression level of eEF1A2 in prostate cancer tissues was significantly higher compared to their corresponding normal tissues. Reduction of eEF1A2 expression in DU-145 and PC-3 cells led to a dramatic inhibition of proliferation accompanied with enhanced apoptosis rate. Western blot revealed that apoptosis pathway proteins (caspase3, BAD, BAX, PUMA) were significantly up-regulated after suppression of eEF1A2. More importantly, the levels of eEF1A2 and caspase3 were inversely correlated in prostate cancer tissues.

Conclusion

Our data suggests that eEF1A2 plays an important role in prostate cancer development, especially in inhibiting apoptosis. So eEF1A2 might serve as a potential therapeutic target in prostate cancer.  相似文献   

3.
4.
5.
6.
7.
It is growingly recognized that messenger RNAs (mRNAs) are important regulators of various cancers. However, there are few reporters about the function of E2F3 in retinoblastoma (RB), which needs more exploration. In addition, the circRNA circ-0075804 was derived from the E2F3 host gene. The purpose of the study is to figure out the role and molecular regulation mechanism of E2F3 and circ-0075804 in RB. The role of E2F3 in RB was determined through E2F3 silencing and loss of expression was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR), Western blot, CCK-8, colony formation, and 5-ethynyl-2′-deoxyuridine assays. The interactions between E2F3 and circ-0075804 were validated through loss and gain function of circ-0075804. Besides, the role of circ-0075804 in RB was determined by several functional assays. And the binding ability between heterogeneous nuclear ribonucleoprotein K and circ-0075804 was verified by RNA pull-down, Western blot, and RT-qPCR assays. The expression of E2F3 was upregulated in RB cell lines. Furthermore, knockdown of E2F3 inhibited cell proliferation and induced cell apoptosis in RB. And circ-0075804 positively regulated the expression of E2F3. Moreover, circ-0075804 facilitated cell proliferation and suppressed cell apoptosis. Besides, HNRNPK could bind with circ-0075804 in RB. Finally, knockdown of E2F3 partly rescued the promoting role of circ-0075804 overexpression in RB. Overall, circ-0075804 promotes the proliferation of RB via combining HNRNPK to improve the stability of E2F3, which brings new light for treating RB.  相似文献   

8.
Elevated endogenous JNK activity and resistance to Fas receptor-mediated apoptosis have recently been implicated in progression of prostate cancer and can promote resistance to apoptosis in response to chemotherapeutic drugs. In addition, JNK has been demonstrated to promote transformation of epithelial cells by increasing both proliferation and survival. Although numerous studies have reported a role for JNK in promoting Fas receptor-mediated apoptosis, there is a paucity in the literature studying the antiapoptotic function of JNK during Fas receptor-mediated apoptosis. Consequently, we have used the recently described specific JNK inhibitor SP600125 and RNA interference to inhibit endogenous JNK activity in the prostate carcinoma cell line DU 145. We demonstrated that endogenous JNK activity increased the expression of a kinase, HIPK3, that has previously been implicated in multidrug resistance in a number of tumors. HIPK3 has also been reported to phosphorylate FADD. The interaction between FADD and caspase-8 was inhibited, but abrogation of JNK activity or HIPK3 expression was found to restore this interaction and increased the sensitivity of DU 145 cells to Fas receptor-mediated apoptosis. In conclusion, we present novel evidence that JNK regulates the expression of HIPK3 in prostate cancer cells, and this contributes to increased resistance to Fas receptor-mediated apoptosis by reducing the interaction between FADD and caspase-8.  相似文献   

9.
An active medicinal component of plant origin with an ability to overcome autophagy by inducing apoptosis should be considered a therapeutically active lead pharmacophore to control malignancies. In this report, we studied the effect of concentration-dependent 3-AWA (3-azido withaferin A) sensitization to androgen-independent prostate cancer (CaP) cells which resulted in a distinct switching of 2 interrelated conserved biological processes, i.e. autophagy and apoptosis. We have observed 3 distinct parameters which are hallmarks of autophagy in our studies. First, a subtoxic concentration of 3-AWA resulted in an autophagic phenotype with an elevation of autophagy markers in prostate cancer cells. This led to a massive accumulation of MAP1LC3B and EGFP-LC3B puncta coupled with gradual degradation of SQSTM1. Second, higher toxic concentrations of 3-AWA stimulated ER stress in CaP cells to turn on apoptosis within 12 h by elevating the expression of the proapoptotic protein PAWR, which in turn suppressed the autophagy-related proteins BCL2 and BECN1. This inhibition of BECN1 in CaP cells, leading to the disruption of the BCL2-BECN1 interaction by overexpressed PAWR has not been reported so far. Third, we provide evidence that pawr-KO MEFs exhibited abundant autophagy signs even at toxic concentrations of 3-AWA underscoring the relevance of PAWR in switching of autophagy to apoptosis. Last but not least, overexpression of EGFP-LC3B and DS-Red-BECN1 revealed a delayed apoptosis turnover at a higher concentration of 3-AWA in CaP cells. In summary, this study provides evidence that 3-AWA is a strong anticancer candidate to abrogate protective autophagy. It also enhanced chemosensitivity by sensitizing prostate cancer cells to apoptosis through induction of PAWR endorsing its therapeutic potential.  相似文献   

10.
11.
12.
Advanced prostate cancers are known to acquire not only invasive capabilities but also significant resistance to chemotherapy-induced apoptosis. To understand how microRNAs (miRNAs) may contribute to prostate cancer resistance to apoptosis, we compared microRNA expression profiles of a benign prostate cancer cell line WPE1-NA22 and a highly malignant WPE1-NB26 cell line (derived from a common lineage). We found that miR-205 and miR-31 are significantly downregulated in WPE1-NB26 cells, as well as in other cell lines representing advanced-stage prostate cancers. Antiapoptotic genes BCL2L2 (encoding Bcl-w) and E2F6 are identified as the targets of miR-205 and miR-31, respectively. By downregulating Bcl-w and E2F6, miR-205 and miR-31 promote chemotherapeutic agents-induced apoptosis in prostate cancer cells. The promoter region of the miR-205 gene was cloned and was found to be hypermethylated in cell lines derived from advanced prostate cancers, contributing to the downregulation of the gene. Treatment with DNA methylation inhibitor 5-aza-2′-deoxycytidine induced miR-205 expression, downregulated Bcl-w, and sensitized prostate cancer cells to chemotherapy-induced apoptosis. Thus, downregulation of miR-205 and miR-31 has an important role in apoptosis resistance in advanced prostate cancer.  相似文献   

13.
14.
Vasoactive intestinal peptide (VIP) is a neurotransmitter with anorectic effect that acts in the hypothalamus to regulate food intake. Oxytocin is a neuropeptide produced in the hypothalamus that controls energy homeostasis and has an inhibitory role on food intake. Thus, the present study aims at verifying the role of oxytocin as a mediator of VIP on energy homeostasis. For this purpose, intracerebroventricular microinjection of oxytocin receptor antagonist (vasotocin, OVT) or vehicle (NaCl 0.9%) was carried out in male rats, and after 15 min, VIP or saline was microinjected. After 15 min of the second microinjection, food intake was evaluated or euthanasia was undertaken for blood collection. There was a reduction on food intake after VIP microinjection and the pretreatment with OVT partially reversed this effect. Hyperglycemia was observed after VIP microinjection, and pretreatment with OVT partially blocked this effect. Plasma corticosterone concentration was significantly increased after VIP or OVT. Plasma levels of free fatty acids were decreased by VIP, but not when VIP was microinjected after OVT. Thus, OVT partially reversed VIP-induced hypophagia and changes on plasma metabolic parameters, suggesting a role for oxytocin as a mediator of VIP effects on energy homeostasis.  相似文献   

15.
16.
The present study aims to investigate the roles of TCF4 and its underlying mechanism in colorectal cancer (CRC). Doxorubicin-resistant DLD-1 (DLD1 DR), TCF4 overexpression, and TCF4 knockdown cell lines were constructed. A flow cytometer was used to analyze frequencies of CD133+ cell in the DLD1 and DLD1 DR cells. Quantitative real-time PCR (qPCR) was used to determine the expressions of cancer stem cell (CSC) makers. Stemness of CRC cells were determined using tumorsphere formation assay. The correlation between TCF4 and ZEB1/ZEB2 were determined using public data from The Cancer Genome Atlas (TCGA) datasets. ZEB1/ZEB2 overexpression cell lines were constructed and cell viabilities were then determined using MTT and colony formation assays. TCF4 overexpression promoted proliferation of CRC cell lines and relative expressions of TCF4 were significantly increased in the DLD1 DR cells. TCF4 overexpression promoted CRC cell doxorubicin resistance, whereas TCF4 knockdown significantly decreased doxorubicin resistance. Additionally, TCF4 overexpression also significantly increased frequencies of CSC cells, expressions of CSC markers, and CRC ability to form tumorsphere. Furthermore, TCF4 promoted ZEB1 and ZEB2 expression, leading to CRC proliferation and doxorubicin resistance. TCF4 promoted CRC doxorubicin resistance and stemness by regulating expressions of ZEB1 and ZEB2.  相似文献   

17.
18.
BRCA2 is a tumor suppressor gene that when mutated confers an increased susceptibility to developing breast and prostate carcinoma. Besides its role in mediating DNA repair, new evidence suggests that BRCA2 may also play a role in suppressing cancer cell growth. Because altered interactions between neoplastic cells and the surrounding extracellular matrix (ECM) play a pivotal role in unchecked cancer cell proliferation and metastatic progression, we hypothesized that the ECM may have an effect in BRCA2 expression. By using normal and prostate carcinoma cell lines, we demonstrated that although normal cells transiently increase BRCA2 protein levels when adhering to the ECM protein collagen type I (COL1), carcinoma cells exhibit a significant reduction in BRCA2 protein. This aberrant effect is independent from de novo protein synthesis and results from COL1-beta(1) integrin signaling through phosphatidylinositol (PI) 3-kinase leading to BRCA2 ubiquitination and degradation in the proteasome. BRCA2 protein depletion after cancer cell adhesion to COL1 or in small RNA interference assays triggers new DNA synthesis, a trophic effect that is abrogated by recombinant BRCA2 expression. Blocking or inhibiting beta(1) integrin, PI 3-kinase, or proteasome activity all have a negative effect on COL1-mediated DNA synthesis in cancer cells. In normal cells, the transient increase in BRCA2 expression is independent from beta(1) integrin or PI 3-kinase and has no effect in cell proliferation. In summary, these results unravel a novel mechanism whereby prostate carcinoma cell proliferation is enhanced by the down-regulation of BRCA2 expression when interacting with COL1, a major component of the ECM at osseous metastatic sites.  相似文献   

19.
20.
CircPRTM5 is associated with cell proliferation and migration in many kinds of malignancies. However, the functions and mechanisms of CircPRTM5 in CRC progression remain unclear. We explored the role and the mechanisms of CircPRTM5 in the development of CRC. Tissues of CRC patients and matched adjacent non-tumour tissues were collected to evaluate the expression of CircPRTM5. The expression of CircPRTM5 in CRC tissues was significantly higher than that in adjacent tissues. The biological functions of CircPRTM5 in CRC were determined by overexpression and down-regulation of CircPRTM5 in CRC cells in vitro and in vivo. The results indicate that knockdown of CircPRTM5 can significantly inhibit the proliferation of CRC cells. The potential mechanisms of CircPRTM5 in CRC development were identified by RT-qPCR, Western blotting analysis and luciferase reporter assay. CircPRTM5 competitively regulates the expression of E2F3 by capillary adsorption of miR-377. CircPRMT5 regulates CRC proliferation by regulating the expression of E2F3, which affects the expression of the cell cycle-associated proteins cyclinD1 and CDK2. CircPRTM5 exerts critical regulatory role in CRC progression by sponging miR-377 to induce E2F3 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号