首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamin, the GTPase required for clathrin-mediated endocytosis, is recruited to clathrin-coated pits in two sequential phases. The first is associated with coated pit maturation; the second, with fission of the membrane neck of a coated pit. Using gene-edited cells that express dynamin2-EGFP instead of dynamin2 and live-cell TIRF imaging with single-molecule EGFP sensitivity and high temporal resolution, we detected the arrival of dynamin at coated pits and defined dynamin dimers as the preferred assembly unit. We also used live-cell spinning-disk confocal microscopy calibrated by single-molecule EGFP detection to determine the number of dynamins recruited to the coated pits. A large fraction of budding coated pits recruit between 26 and 40 dynamins (between 1 and 1.5 helical turns of a dynamin collar) during the recruitment phase associated with neck fission; 26 are enough for coated vesicle release in cells partially depleted of dynamin by RNA interference. We discuss how these results restrict models for the mechanism of dynamin-mediated membrane scission.  相似文献   

2.
Our current understanding of clathrin-mediated endocytosis proposes that the process is initiated at a specialized anatomical structure called a coated pit. Electron microscopy has been required for elucidation of the morphology of coated pits and the vesicles produced therein, and the presence of a bristle coat has been taken as suggestive of clathrin surrounding these vesicles. More recently, immunocytochemical methods have confirmed that endocytic vesicles are surrounded by clathrin and its adaptor proteins, but there is a need to identify precisely and to follow the fate of the cellular organelles seen by fluorescence microscopy. We used quantum immune-electron microscopy to localize clathrin in a human adrenal cortical cell line (SW-13). Clathrin was shown to associate with a variety of vesicle types including the classic clathrin-coated vesicles and pits used in receptor internalization, pentilaminar annular gap junction vesicles, and multivesicular bodies. The images obtained with quantum dot technology allow accurate and specific localization of clathrin and the clathrin adaptor protein, AP-2, with cellular organelles and suggest that some of the structures classified as typical coated vesicles by immunocytochemical light microscopic techniques actually may be membrane bound pits.  相似文献   

3.
The present study examines whether changes in P2X7 purinergic receptor density precede formation of the cytolytic pore characteristic of this receptor. We fused P2X7 receptors with enhanced green fluorescent protein (EGFP) at the amino or carboxy termini (EGFP-P2X7 and P2X7-EGFP). Electrophysiological characterization in Xenopus oocytes revealed wild-type responses to ATP for GFP-tagged receptors. However, differences in sensitivity to ATP were apparent with the P2X7-EGFP receptor displaying a threefold reduction in ATP sensitivity compared with control. Ethidium ion uptake was used to measure cytolytic pore formation. Comparison of tagged receptors with wild type in HEK-293 and COS-7 cells showed there was no significant difference in ethidium ion uptake, suggesting that fusions with EGFP did not interfere with cytolytic pore formation. Confocal microscopy confirmed that tagged receptors localized to the plasmalemma. Simultaneous monitoring of EGFP and ethidium ion fluorescence revealed that changes in receptor distribution do not precede pore formation. We conclude that it is unlikely that large scale changes in P2X7 receptor density precede pore formation.  相似文献   

4.
Clathrin/AP2-coated vesicles are the principal endocytic carriers originating at the plasma membrane. In the experiments reported here, we used spinning-disk confocal and lattice light-sheet microscopy to study the assembly dynamics of coated pits on the dorsal and ventral membranes of migrating U373 glioblastoma cells stably expressing AP2 tagged with enhanced green fluorescence (AP2-EGFP) and on lateral protrusions from immobile SUM159 breast carcinoma cells, gene-edited to express AP2-EGFP. On U373 cells, coated pits initiated on the dorsal membrane at the front of the lamellipodium and at the approximate boundary between the lamellipodium and lamella and continued to grow as they were swept back toward the cell body; coated pits were absent from the corresponding ventral membrane. We observed a similar dorsal/ventral asymmetry on membrane protrusions from SUM159 cells. Stationary coated pits formed and budded on the remainder of the dorsal and ventral surfaces of both types of cells. These observations support a previously proposed model that invokes net membrane deposition at the leading edge due to an imbalance between the endocytic and exocytic membrane flow at the front of a migrating cell.  相似文献   

5.
多聚精氨酸融合增强型绿色荧光蛋白制备方法及穿膜效果   总被引:1,自引:0,他引:1  
为了方便细胞穿膜肽R9融合蛋白的可溶性表达及功能上的研究,构建了pSUMO (小分子泛素样修饰蛋白) -R9-EGFP (增强型绿色荧光蛋白) 原核表达载体。分别纯化EGFP及R9-EGFP蛋白后,作用于HepG2,细胞经流式细胞仪及激光共聚焦检测R9细胞穿膜肽的作用效果。实验结果显示在SUMO分子伴侣的作用下,R9-EGFP融合蛋白获得可溶性表达。经流式细胞仪检测,R9细胞穿膜肽可以快速有效的携带目的蛋白进入细胞内部且呈时间、剂量依赖性,大约1.5 h以后荧光强度进入平台期。共聚焦显微镜检测结果表明R9细胞穿膜肽可以有效携带EGFP进入HepG2细胞,并显示主要聚集在细胞浆内。同时体外经肝素抑制实验显示,肝素抑制R9-EGFP穿膜的效率达到50%。这些结果表明,可以利用pSUMO-R9/Ni-NTA表达纯化系统,快速、有效地表达出可溶性多聚精氨酸融合蛋白,同时R9细胞穿膜肽可以有效地携带目的蛋白进入细胞内,为进一步研究多聚精氨酸的穿膜机制提供了基础。  相似文献   

6.
We studied whether regulated exocytosis affects the glutamate transporter density in cultured astrocytes, in which the expression of a fluorescently labeled excitatory amino acid transporter 2 (EAAT2-EGFP) predominantly labeled the plasma membrane. The addition of ionomycin that elevates cytosolic Ca(2+) strongly increased the fluorescence of FM 4-64 membrane area dye, confirming the presence of regulated exocytosis in transfected astrocytes. However, concomitant with Ca(2+)-dependent FM 4-64 fluorescence increase, ionomycin induced a significant steady-state decrease in EAAT2-EGFP fluorescence. This is likely due to a secondary inner filter effect since,(i) in the absence of FM 4-64, ionomycin stimulation was ineffective in changing the EAAT2-EGFP fluorescence, and (ii) fluorescence changes in FM 4-64 and EAAT2-EGFP were inversely correlated. To test whether subcellular EAAT2-EGFP structures are translocated from the cytoplasm to the plasma membrane during ionomycin stimulation, EAAT2-EGFP fluorescence was monitored locally at the plasma membrane and a few microns away in the adjacent cytoplasm. Measurements revealed sites with an increase in EAAT2-EGFP plasma membrane fluorescence correlated with a fluorescence decrease beneath the plasma membrane, and sites with plasma membrane fluorescence decrease correlated with fluorescence increase within the adjacent cytoplasm. The sites of rapid translocation/retrieval of EAAT2-EGFP structures to/from the plasma membrane appeared to be distributed in a punctuate pattern around the cell perimeter. The density of EAAT2-EGFP was regulated in a Ca(2+)-dependent manner, since in the absence of extracellular Ca(2+) local translocation/retrieval events were absent, revealing rapid surface density regulation of EAAT2 in astrocytes by regulated exo/endocytosis.  相似文献   

7.
We studied whether regulated exocytosis affects the glutamate transporter density in cultured astrocytes, in which the expression of a fluorescently labeled excitatory amino acid transporter 2 (EAAT2-EGFP) predominantly labeled the plasma membrane. The addition of ionomycin that elevates cytosolic Ca2+ strongly increased the fluorescence of FM 4-64 membrane area dye, confirming the presence of regulated exocytosis in transfected astrocytes. However, concomitant with Ca2+-dependent FM 4-64 fluorescence increase, ionomycin induced a significant steady-state decrease in EAAT2-EGFP fluorescence. This is likely due to a secondary inner filter effect since,(i) in the absence of FM 4-64, ionomycin stimulation was ineffective in changing the EAAT2-EGFP fluorescence, and (ii) fluorescence changes in FM 4-64 and EAAT2-EGFP were inversely correlated. To test whether subcellular EAAT2-EGFP structures are translocated from the cytoplasm to the plasma membrane during ionomycin stimulation, EAAT2-EGFP fluorescence was monitored locally at the plasma membrane and a few microns away in the adjacent cytoplasm. Measurements revealed sites with an increase in EAAT2-EGFP plasma membrane fluorescence correlated with a fluorescence decrease beneath the plasma membrane, and sites with plasma membrane fluorescence decrease correlated with fluorescence increase within the adjacent cytoplasm. The sites of rapid translocation/retrieval of EAAT2-EGFP structures to/from the plasma membrane appeared to be distributed in a punctuate pattern around the cell perimeter. The density of EAAT2-EGFP was regulated in a Ca2+-dependent manner, since in the absence of extracellular Ca2+ local translocation/retrieval events were absent, revealing rapid surface density regulation of EAAT2 in astrocytes by regulated exo/endocytosis.  相似文献   

8.
The temperature-sensitive Drosophila mutant, shibirets1 (shi), has been shown to exhibit a reversible block in synaptic transmission at 30 degrees C. Various synaptic terminals (neuromuscular, sensory, central) of this mutant were observed by electron microscopy. At 19 degrees C, all terminals of shi showed essentially the same structural features as those of wild-type (Oregon-R) flies, while at 30 degrees C (5 or 10 min of exposure) shi terminals exhibited various structural changes not seen in the wild type. The major structural change observed in all of the various types of terminals was the accumulation of many pitlike structures on the plasma membrane near presynaptic sites. These structures consisted of a spherical head portion, about 50-100 nm in diameter, and a cylindrical neck portion, about 20 nm long and 20-25 nm in diameter. The neck portion was surrounded by a kind of cytoplasmic dense material, about 10 nm thick, reminiscent of a "collar." Thus, these pits are referred to as "collared pits." Similar kinds of pits were observed, although very rarely, in wild-type flies at 19 and 30 degrees C and in shi flies at 19 degrees C. In addition, various degrees of vesicle depletion, and an increase in membranous structures (infoldings and cisternalike or tubulelike structures) often accompanied pit formation. The possibility that these pits are the result of a blocked step in the endocytotic process, which in turn causes vesicle depletion as exocytosis proceeds, is discussed.  相似文献   

9.
Wood is composed of various types of cells and each type of cell has different structural and functional properties. However, the temporal and spatial diversities of cell wall components in the cell wall between different cell types are rarely understood. To extend our understanding of distributional diversities of cell wall components among cells, we investigated the immunolabeling of mannans (O-acetyl-galactoglucomannans, GGMs) and xylans (arabino-4-O-methylglucuronoxylans, AGXs) in ray cells and pits. The labeling of GGMs and AGXs was temporally different in ray cells. GGM labeling began to be detected in ray cells at early stages of S1 formation in tracheids, whereas AGX labeling began to be detected in ray cells at the S2 formation stage in tracheids. The occurrence of GGM and AGX labeling in ray cells was also temporally different from that of tracheids. AGX labeling began to be detected much later in ray cells than in tracheids. GGM labeling also began to be detected in ray cells either slightly earlier or later than in tracheids. In pits, GGM labeling was detected in bordered and cross-field pit membranes at early stages of pit formation, but not observed in mature pits, indicating that enzymes capable of GGM degradation may be involved in pit membrane formation. In contrast to GGMs, AGXs were not detected in pit membranes during the entire developmental process of bordered and cross-field pits. AGXs showed structural and depositional variations in pit borders depending on the developmental stage of bordered and cross-field pits.  相似文献   

10.
One of the most exciting recent advances in cell biology is the possibility to use the green fluorescent protein and its various mutated forms as reporter proteins in studies carried out in vitro and in vivo. In the present study, several detection techniques for the enhanced green fluorescent protein (EGFP) were compared in transgenic mice, using fluorescence and confocal microscopy. In addition, different tissue preparation techniques (squash preparations, vibratome sections, frozen sections) were evaluated. As a model we used transgenic mice expressing EGFP under the control of a 5.0-kb fragment of the glutathione peroxidase isoenzyme 5 protein promoter (GPX5-EGFP) or under a 3.8-kb fragment of the cysteine rich protein-1 promoter (CRISP1-EGFP). In the GPX5-EGFP mice, expression of EGFP was observed in the distal part of the caput epididymis, while the CRISP1 promoter directed EGFP expression in the tubular compartment of the testis. Among the various tissue preparation procedures tested, the best morphological and histological preservation, and reproducibility in EGFP detection, were obtained using frozen sections after a slow tissue-freezing protocol developed in the present study. After slow tissue freezing, specimens of testis and epididymis could be stored at -70 degrees C for at least six weeks without any affect on EGFP fluorescence. Hence, the method developed offers the possibility to analyze EGFP fluorescence in tissues several weeks after specimen collection. The sensitivity achieved was equal to that found in immunohistochemistry, applying biotin-streptavidin-FITC detection. Confocal microscopy is known to have the advantage that fluorescence can be detected from cells in different layers. This was found to be important as regards detecting EGFP fluorescence because the fluorescence was destroyed at the cut surfaces of sections produced by either vibratome or cryomicrotome.  相似文献   

11.
中国裸子植物木材具缘纹孔构造类型的研究   总被引:4,自引:0,他引:4  
根据100种中国裸子植物木材(隶属4纲、8目、11科,42属)具缘纹孔构造的研究,提出8种不同具缘纹孔类型:1.苏铁型;2.南洋杉 A 型;3.南洋杉 B 型;4.落羽杉 A 型;5.落羽杉 B 型;6.松木 A 型;7.松木 B 型;8.买麻藤型。A 型是指纹孔室内瘤状层缺乏或罕见,B型则具明显的瘤状层。并对具缘纹孔在系统发育中的变化进行了讨论。  相似文献   

12.
Complex conformational changes influence and regulate the dynamics of ion channels. Such conformational changes are stochastic and often inhomogeneous, which makes it extremely difficult, if not impossible, to characterize them by ensemble-averaged experiments or by single-channel recordings of the electric current that report the open-closed events but do not specifically probe the associated conformational changes. Here, we report our studies on ion channel conformational changes using a new approach, patch-clamp fluorescence microscopy, which simultaneously combines single-molecule fluorescence spectroscopy and single-channel current recordings to probe the open-closed transitions and the conformational dynamics of individual ion channels. We demonstrate patch-clamp fluorescence microscopy by measuring gramicidin ion channel conformational changes in a lipid bilayer formed at a patch-clamp micropipette tip under a buffer solution. By measuring single-pair fluorescence resonance energy transfer and fluorescence self-quenching from dye-labeled gramicidin channels, we observed that the efficiency of single-pair fluorescence resonance energy transfer and self-quenching is widely distributed, which reflects a broad distribution of conformations. Our results strongly suggest a hitherto undetectable correlation between the multiple conformational states of the gramicidin channel and its closed and open states in a lipid bilayer.  相似文献   

13.
We present an improved monomeric form of the red fluorescent protein, mRFP1, as the acceptor in biological fluorescence resonance energy transfer (FRET) experiments using the enhanced green fluorescent protein as donor. We find particular advantage in using this fluorophore pair for quantitative measurements of FRET using multiphoton fluorescence lifetime imaging microscopy (FLIM). The technique was exploited to demonstrate a novel receptor-kinase interaction between the chemokine receptor (CXCR4) and protein kinase C (PKC) alpha in carcinoma cells for both live- and fixed-cell experiments. The CXCR4-EGFP: PKCalpha-mRFP1 complex was found to be localized precisely to intracellular vesicles and cell protrusions when imaged by multiphoton fluorescence-FLIM. A comparison of the FRET efficiencies obtained using mRFP1-tagged regulatory domain or full-length PKCalpha as the acceptor revealed that PKCalpha, in the closed (inactive) form, is restrained from associating with the cytoplasmic portion of CXCR4. Live-cell FLIM experiments show that the assembly of this receptor:kinase complex is concomitant with the endocytosis process. This is confirmed by experimental evidence suggesting that the recycling of the CXCR4 receptor is increased on stimulation with phorbol ester and blocked on inhibition of PKC by bisindolylmaleimide. The EGFP-mRFP1 couple should be widely applicable, particularly to live-cell quantitative FRET assays.  相似文献   

14.
为了比较不同锚钩蛋白基序结合活性,构建新型的鼠李糖乳杆菌颗粒表面展示系统。首先,用热酸处理法制备鼠李糖乳杆菌GEM(Gram-positive enhancer matrix,GEM)颗粒,并通过电镜观察、RT-PCR检测和SDS-PAGE检测鉴定其处理效果;同时,利用大肠杆菌表达了锚定蛋白PA3-EGFP和P60-EGFP并将其与GEM颗粒共同孵育结合;最后,使用免疫印迹、电镜观察、荧光显微镜观察和荧光分光光度法评价鼠李糖乳杆菌GEM颗粒与锚定蛋白的结合效率。结果表明,使用10%的TCA处理鼠李糖乳杆菌得到了灭活的肽聚糖骨架(GEM颗粒),经鉴定其大小形态均一,绝大部分无蛋白残留,3.8×10~6个GEM颗粒样品中的DNA拷贝数仅为32;免疫印迹和荧光显微镜观察均可检测到融合蛋白PA3-EGFP和P60-EGFP锚定在GEM颗粒上,且结合在GEM颗粒表面的锚定蛋白呈絮状。荧光分光光度计法检测结果显示锚定蛋白PA3-EGFP结合GEM的效率稍高于P60-EGFP,但差异不显著(P0.05)。以上结果表明由鼠李糖乳杆菌制得的GEM颗粒与锚定蛋白PA3、P60的结合效率良好,可用于构建新型的外源蛋白表面展示系统,进而为后续的细菌样颗粒疫苗的研究与应用奠定基础。  相似文献   

15.

Background and Aims

Imperforate tracheary elements (ITEs) in wood of vessel-bearing angiosperms may or may not transport water. Despite the significance of hydraulic transport for defining ITE types, the combination of cell structure with water transport visualization in planta has received little attention. This study provides a quantitative analysis of structural features associated with the conductive vs. non-conductive nature of ITEs.

Methods

Visualization of water transport was studied in 15 angiosperm species by dye injection and cryo-scanning electron microscopy. Structural features of ITEs were examined using light and electron microscopy.

Key Results

ITEs connected to each other by pit pairs with complete pit membranes contributed to water transport, while cells showing pit membranes with perforations up to 2 µm were hydraulically not functional. A close relationship was found between pit diameter and pit density, with both characters significantly higher in conductive than in non-conductive cells. In species with both conductive and non-conductive ITEs, a larger diameter was characteristic of the conductive cells. Water transport showed no apparent relationship with the length of ITEs and vessel grouping.

Conclusions

The structure and density of pits between ITEs represent the main anatomical characters determining water transport. The pit membrane structure of ITEs provides a reliable, but practically challenging, criterion to determine their conductive status. It is suggested that the term tracheids should strictly be used for conductive ITEs, while fibre-tracheids and libriform fibres are non-conductive.  相似文献   

16.
A variety of receptors are known to aggregate in specialized cell surface structures called coated pits, prior to being internalized when the coated pits close off. At 37 degrees C on human fibroblasts, as well as on other cell types, a recycling process maintains a constant number of coated pits on the cell surface. In this paper, we explore implications for receptor aggregation and internalization of the two types of recycling models that have been proposed for the maintenance of the coated pit concentration. In one model, coated pits alternate between accessible and inaccessible states at fixed locations on the cell surface, while in the other model, coated pits recycle to random locations on the cell surface. We consider receptors that are randomly inserted in the membrane, move by pure diffusion with diffusion coefficient D, and are instantly and irreversibly trapped when they reach a coated pit boundary (the diffusion limit). For such receptors, we calculate for each of the two models: the mean time tau to reach a coated pit, the forward rate constant k+ for the interaction of a receptor with a coated pit, and the fraction phi of receptors aggregated in coated pits. We show that for the parameters that characterize coated pits on human fibroblasts, the way in which coated pits return to the surface has a negligible effect on the values of tau, k+, and phi for mobile receptors, D greater than or equal to 1.0 X 10(-11) cm2/s, but has a substantial effect for "immobile" receptors, D much less than 1 X 10(-11) cm2/s. We present numerical examples to show that it may be possible to distinguish between these models if one can monitor slowly diffusing receptors (D less than 1 X 10(-11) cm2/s) on cells whose coated pits have relatively short lifetimes (less than or equal to 1 min). Finally, we show that for the low-density lipoprotein (LDL) receptor on human fibroblasts (D = 4.5 X 10(-11) cm2/s), the predicted and observed values of K+ and phi are in close agreement. Therefore, even for slowly diffusing LDL receptor, unaided diffusion as the transport mechanism of receptors to coated pits is consistent with measured rates of LDL internalization.  相似文献   

17.
The micromorphology of pits in tracheary elements was examined in 35 species representing 29 genera of Rosaceae and related families to evaluate the assumption that angiosperm pits are largely invariant. In most Rosaceae, pit membranes between fibers and tracheids frequently appear to have amorphous thickenings with an irregular distribution. Although these structures are torus-like under the light microscope, observations by electron microscopy illustrate that they represent "pseudotori" or plasmodesmata-associated thickenings. These thickenings frequently extend from the periphery of the pit membrane and form a cap-like, hollow structure. Pseudotori are occasionally found in few Elaeagnaceae and Rhamnaceae and appear to be related to species with fiber-tracheids and/or tracheids. True tori are strongly associated with round to oval pit apertures and are consistently present in narrow tracheary elements of Cercocarpus (Rosaceae), Planera (Ulmaceae), and ring-porous species of Ulmus and Zelkova (Ulmaceae). Vestured pits with homogenous pit membranes are reported for Hemiptelea (Ulmaceae). The homoplastic nature of pit membrane characteristics may be related to functional adaptations in terms of safety and efficiency of water transport or may reflect different developmental processes of xylem elements. These observations illustrate that there is more variation in angiosperm pits than previously thought.  相似文献   

18.
Intervessel pits act as safety valves that prevent the spread of xylem embolism. Pectin-calcium crosslinks within the pit membrane have been proposed to affect xylem vulnerability to cavitation. However, as the chemical composition of pit membranes is poorly understood, this hypothesis has not been verified. Using electron microscopy, immunolabeling, an antimonate precipitation technique, and ruthenium red staining, we studied the distribution of selected polysaccharides and calcium in the pit membranes of four angiosperm tree species. We tested whether shifts in xylem vulnerability resulting from perfusion of stems with a calcium chelating agent corresponded with the distribution of pectic homogalacturonans (HG) and/or calcium within interconduit pit membranes. No HG were detected in the main part of intervessel pit membranes, but were consistently found in the marginal membrane region known as the annulus. Calcium colocalized with HG in the annulus. In contrast to intervessel pits, the membrane of vessel-ray pits showed a high pectin content. The presence of two distinct chemical domains, the annulus and the actual pit membrane, can have substantial implications for pit membrane functioning. We propose that the annulus could affect the observed shift in xylem vulnerability after calcium removal by allowing increased pit membrane deflection.  相似文献   

19.

Premise of the Study

Xylem sap in angiosperms moves under negative pressure in conduits and cell wall pores that are nanometers to micrometers in diameter, so sap is always very close to surfaces. Surfaces matter for water transport because hydrophobic ones favor nucleation of bubbles, and surface chemistry can have strong effects on flow. Vessel walls contain cellulose, hemicellulose, lignin, pectins, proteins, and possibly lipids, but what is the nature of the inner, lumen‐facing surface that is in contact with sap?

Methods

Vessel lumen surfaces of five angiosperms from different lineages were examined via transmission electron microscopy and confocal and fluorescence microscopy, using fluorophores and autofluorescence to detect cell wall components. Elemental composition was studied by energy‐dispersive X‐ray spectroscopy, and treatments with phospholipase C (PLC) were used to test for phospholipids.

Key Results

Vessel surfaces consisted mainly of lignin, with strong cellulose signals confined to pit membranes. Proteins were found mainly in inter‐vessel pits and pectins only on outer rims of pit membranes and in vessel‐parenchyma pits. Continuous layers of lipids were detected on most vessel surfaces and on most pit membranes and were shown by PLC treatment to consist at least partly of phospholipids.

Conclusions

Vessel surfaces appear to be wettable because lignin is not strongly hydrophobic and a coating with amphiphilic lipids would render any surface hydrophilic. New questions arise about these lipids and their possible origins from living xylem cells, especially about their effects on surface tension, surface bubble nucleation, and pit membrane function.  相似文献   

20.
Neuronal network formation depends on properly timed and localized generation of presynaptic as well as postsynaptic structures. Although of utmost importance for understanding development and plasticity of the nervous system and neurodegenerative diseases, the molecular mechanisms that ensure the fine-control needed for coordinated establishment of pre- and postsynapses are still largely unknown. We show that the F-actin-binding protein Abp1 is prominently expressed in the Drosophila nervous system and reveal that Abp1 is an important regulator in shaping glutamatergic neuromuscular junctions (NMJs) of flies. STED microscopy shows that Abp1 accumulations can be found in close proximity of synaptic vesicles and at the cell cortex in nerve terminals. Abp1 knock-out larvae have locomotion defects and underdeveloped NMJs that are characterized by a reduced number of both type Ib synaptic boutons and branches of motornerve terminals. Abp1 is able to indirectly trigger Arp2/3 complex-mediated actin nucleation and interacts with both WASP and Scar. Consistently, Arp2 and Arp3 loss-of-function also resulted in impairments of bouton formation and arborization at NMJs, i.e. fully phenocopied abp1 knock-out. Interestingly, neuron- and muscle-specific rescue experiments revealed that synaptic bouton formation critically depends on presynaptic Abp1, whereas the NMJ branching defects can be compensated for by restoring Abp1 functions at either side. In line with this presynaptic importance of Abp1, also presynaptic Arp2 and Arp3 are crucial for the formation of type Ib synaptic boutons. Interestingly, presynaptic Abp1 functions in NMJ formation were fully dependent on the Arp2/3 complex, as revealed by suppression of Abp1-induced synaptic bouton formation and branching of axon terminals upon presynaptic Arp2 RNAi. These data reveal that Abp1 and Arp2/3 complex-mediated actin cytoskeletal dynamics drive both synaptic bouton formation and NMJ branching. Our data furthermore shed light on an intense bidirectional functional crosstalk between pre- and postsynapses during the development of synaptic contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号