首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The heterotrophic bacterial community of the Eastern Mediterranean Sea is believed to be limited by phosphorus (P) availability. This observation assumes that all bacterial groups are equally limited, something that has not been hitherto examined. To test this hypothesis, we performed nutrient addition experiments and investigated the response of probe-identified groups using microautoradiography combined with catalyzed reporter deposition fluorescence in situ hybridization. Our results show contrasting responses between the bacterial groups, with Gammaproteobacteria being the group more affected by P availability. The Roseobacter clade was likely colimited by P and nitrogen (N), whereas Bacteroidetes by P, N and organic carbon (C). In contrast, SAR11 cells were active regardless of the nutrient concentration. These results indicate that there is high heterogeneity in the nutrient limitation of the different components of the bacterioplankton community.  相似文献   

2.
The contribution of major phylogenetic groups to heterotrophic bacteria assimilating sulfur from dissolved dimethylsulfoniopropionate (DMSP) and assimilating leucine was analysed in surface seawaters from Blanes Bay (NW Mediterranean) over an annual study between March 2003 and April 2004. The percentage of bacteria assimilating DMSP-S showed a strong seasonal pattern, with a steady increase from winter (8 +/- 5%) to summer (23 +/- 3%). The same seasonal pattern was observed for the rate of DMSP-S assimilation. The annual average percentage of DMSP-S-assimilating bacteria (16 +/- 8%) was lower than the corresponding percentage of leucine-assimilating cells (35 +/- 16%), suggesting that not all bacteria synthesizing protein incorporated DMSP-S. Smaller differences between both percentages were recorded in summer. Members of the Alphaproteobacteria (Roseobacter and SAR11) and Gammaproteobacteria groups accounted for most of bacterial DMSP-S-assimilating cells over the year. All major bacterial groups showed an increase of the percentage of cells assimilating DMSP-S during summer, and contributed to the increase of the DMSP-S assimilation rate in this period. In these primarily P-limited waters, enrichment with P + DMSP resulted in a stimulation of bacterial heterotrophic production comparable to, or higher than, that with P + glucose in summer, while during the rest of the year P + glucose induced a stronger response. This suggested that DMSP was more important a S and C source for bacteria in the warm stratified season. Overall, our results suggest that DMSP-S assimilation is controlled by the contribution of DMSP to S (and C) sources rather than by the phylogenetic composition of the bacterioplankton.  相似文献   

3.
Cuatro Ciénegas Basin (CCB) is a desert ecosystem that hosts a large diversity of water bodies. Many surface waters in this basin have imbalanced nitrogen (N) to phosphorus (P) stoichiometry (total N:P > 100 by atoms), where P is likely to be a limiting nutrient. To investigate the effects of nutrient stoichiometry on planktonic and sediment ecosystem components and processes, we conducted a replicated in situ mesocosm experiment in Lagunita, a shallow pond located in the southwest region of the basin. Inorganic N and P were periodically added to mesocosms under three different N:P regimes (P only, N:P = 16 and N:P = 75) while the control mesocosms were left unamended. After three weeks of fertilization, more than two thirds of the applied P was immobilized into seston or sediment. The rapid uptake of P significantly decreased biomass C:P and N:P ratios, supporting the hypothesis that Lagunita is P-limited. Meanwhile, simultaneous N and P enrichment significantly enhanced planktonic growth, increasing total planktonic biomass by more than 2-fold compared to the unenriched control. With up to 76% of added N sequestered into the seston, it is suspected that the Lagunita microbial community also experienced strong N-limitation. However, when N and P were applied at N:P = 75, the microbes remained in a P-limitation state as in the untreated control. Two weeks after the last fertilizer application, seston C:P and N:P ratios returned to initial levels but chlorophyll a and seston C concentrations remained elevated. Additionally, no P release from the sediment was observed in the fertilized mesocosms. Overall, this study provides evidence that Lagunita is highly sensitive to nutrient perturbation because the biota is primarily P-limited and experiences a secondary N-limitation despite its high TN:TP ratio. This study serves as a strong basis to justify the need for protection of CCB ecosystems and other low-nutrient microbe-dominated systems from anthropogenic inputs of both N and P.  相似文献   

4.
We carried out enclosure experiments in an unproductive lake in northern Sweden and studied the effects of enrichment with different dissolved organic carbon (glucose)/inorganic phosphorous (DOC/Pi) ratios on bacterioplankton production (BP), growth efficiency (BGE), nutrient use efficiency (BNUE), growth rate, and specific respiration. We found considerable variation in BP, BGE, and BNUE along the tested DOC/Pi gradient. BGE varied between 0.87 and 0.24, with the highest values at low DOC/Pi ratios. BNUE varied between 40 and 9 g C g P−1, with high values at high DOC/Pi ratios. More DOC was thus allocated to growth when bacteria tended to be C-limited, and to respiration when bacteria were P-limited. Specific respiration was positively correlated with bacterial growth rate throughout the gradient. It is therefore possible that respiration was used to support growth in P-limited bacteria. The results indicated that BP can be limited by Pi when BNUE is at its maximum, by organic C when BGE is at its maximum, and by dual organic C and Pi limitation when BNUE and BGE have suboptimal values.  相似文献   

5.
We investigated the abundance and assemblage variability of bacteria in 10 spatially distinct freshwater pools on Appledore Island, Gulf of Maine. Assemblages were strongly heterogeneous between pools separated by even short distances. To gain insight into factors that may lead to the establishment of novel assemblages, we conducted an ecosystem-open choromophoric dissolved organic matter (CDOM) enrichment experiment within mesocosms inoculated with a standardized microbial community and observed patterns of their composition over time. Assemblages were strongly divergent from each other in composition after only 3?days of incubation. Divergence among mesocosms was significantly higher with increasing levels of CDOM. CDOM addition initially had a strong positive impact on bacterial operation taxonomic unit (OTU) richness and negative impact on bacterial OTU evenness, but no impact on total bacterial abundance, suggesting that factors controlling abundance are decoupled from those influencing overall composition.  相似文献   

6.
Microbial successions were studied in experimental mesocosms of marine water in the presence of additional organic carbon (glucose), phosphorus (P) or both. P addition lead to pronounced blooms of phytoplankton and to significantly enhanced bacterial production. Characteristic succession patterns were observed for two phylogenetic groups of bacteria that both transiently formed > 50% of total cells. An initial bloom of bacteria affiliated to the Alteromonadaceae could not be assigned to any specific treatment and was interpreted as a response to the manipulations during mesocosm set-up. These bacteria rapidly declined with the appearance of heterotrophic nanoflagellates, suggesting a negative effect of selective grazing. The persistence of Alteromonadaceae in the microbial assemblages was significantly favored by the presence of additional glucose. During the second half of the experiment, bacteria affiliated to Rhodobacteriaceae formed a dominant component of the experimental assemblages in treatments with addition of P. The community contribution of Rhodobacteriaceae was significantly correlated with chlorophyll a concentrations only in the P-amended mesocosms (r(2) = 0.58). This was more pronounced in the absence of glucose (r(2) = 0.85). The phylogenetic and morphological diversity among Rhodobacteriaceae was high, and treatment-specific temporal successions of genotypes related to Rhodobacteriaceae were observed. We suggest that the observed succession patterns reflect different niche preferences: Alteromonadaceae rapidly responded to disturbance and profited from allochthonous glucose input, whereas Rhodobacteriaceae benefited from the phytoplankton bloom.  相似文献   

7.
Qin L  Zhao J  Tian J  Chen L  Sun Z  Guo Y  Lu X  Gu M  Xu G  Liao H 《Plant physiology》2012,159(4):1634-1643
Legume biological nitrogen (N) fixation is the most important N source in agroecosystems, but it is also a process requiring a considerable amount of phosphorus (P). Therefore, developing legume varieties with effective N(2) fixation under P-limited conditions could have profound significance for improving agricultural sustainability. We show here that inoculation with effective rhizobial strains enhanced soybean (Glycine max) N(2) fixation and P nutrition in the field as well as in hydroponics. Furthermore, we identified and characterized a nodule high-affinity phosphate (Pi) transporter gene, GmPT5, whose expression was elevated in response to low P. Yeast heterologous expression verified that GmPT5 was indeed a high-affinity Pi transporter. Localization of GmPT5 expression based on β-glucuronidase staining in soybean composite plants with transgenic roots and nodules showed that GmPT5 expression occurred principally in the junction area between roots and young nodules and in the nodule vascular bundles for juvenile and mature nodules, implying that GmPT5 might function in transporting Pi from the root vascular system into nodules. Overexpression or knockdown of GmPT5 in transgenic composite soybean plants altered nodulation and plant growth performance, which was partially dependent on P supply. Through both in situ and in vitro (33)P uptake assays using transgenic soybean roots and nodules, we demonstrated that GmPT5 mainly functions in transporting Pi from roots to nodules, especially under P-limited conditions. We conclude that the high-affinity Pi transporter, GmPT5, controls Pi entry from roots to nodules, is critical for maintaining Pi homeostasis in nodules, and subsequently regulates soybean nodulation and growth performance.  相似文献   

8.
The bacterioplankton community composition in two Finnish forest lakes with different content of humic substances was studied by denaturing gradient gel electrophoresis (DGGE) and sequencing of the major bands. The same dominant bacterial phylotypes were detected in the bacterioplankton communities of clear-water Lake Ahvenlammi and humic Lake Sammalisto. For 4 years, in every water layer, Actinobacteria was the dominant and Verrucomicrobia the second most common phylum. In the hypolimnion, other dominant phyla were also found. We set up a mesocosm experiment to assess the effect of a sudden load of allochthonous humus extract to the bacterioplankton community composition. Changes in the bacterial communities were followed in four control and four humus extract-added mesocosms for 50 days. In the humic mesocosms the phylotypes of allochthonous Proteobacteria arriving with the humus extract were initially prevalent but disappeared during the first weeks. After this the Actinobacteria-dominated communities resembled the bacterioplankton communities of the control mesocosms and Lake Ahvenlammi. Towards the end of the experiment the community patterns in all the mesocosms started to change slightly because of erratic occurrence of new proteobacterial phylotypes. Thus the effects of a sudden load of allochthonous humic material and bacteria to the bacterioplankton community composition were transient.  相似文献   

9.
Cells of Bradyrhizobium japonicum were grown in media containing either 1.0 mM or 0.5 μM phosphorus. In growth pouch experiments, infection of the primary root of soybean (Glycine max (L.) Merr.) by B. japonicum USDA 31, 110, and 142 was significantly delayed when P-limited cells were applied to the root. In a greenhouse experiment, B. japonicum USDA 31, 110, 122, and 142 grown with sufficient and limiting P were used to inoculate soybeans which were grown with either 5 μM or 1 mM P nutrient solution. P-limited cells of USDA 31 and 110 formed significantly fewer nodules than did P-sufficient cells, but P-limited cells of USDA 122 and 142 formed more nodules than P-sufficient cells. The increase in nodule number by P-limited cells of USDA 142 resulted in significant increases in both nodule mass and shoot total N. In plants grown with 1 mM P, inoculation with P-limited cells of USDA 110 resulted in lower total and specific nitrogenase activities than did inoculation with P-sufficient cells. Nodule numbers, shoot dry weights, and total N and P were all higher in plants grown with 1 mM P, and plants inoculated with USDA 31 grew poorly relative to plants receiving strains USDA 110, 122, and 142. Although the effects of soybean P nutrition were more obvious than those of B. japonicum P nutrition, we feel that it is important to develop an awareness of the behavior of the bacterial symbiont under conditions of nutrient limitation similar to those found in many soils.  相似文献   

10.
We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.  相似文献   

11.
? Responses to simulated nitrogen (N) deposition with or without added phosphorus (P) were investigated for three contrasting lichen species - the N-sensitive Alectoria sarmentosa, the more N-tolerant Platismatia glauca and the N(2) -fixing Lobaria pulmonaria- in a field experiment. ? To examine whether nutrient limitation differed between the photobiont and the mycobiont within the lichen, the biomass responses of the respective bionts were estimated. ? The lichenized algal cells were generally N-limited, because N-stimulated algal growth in all three species. The mycobiont was P-limited in one species (A. sarmentosa), but the growth response of the mycobionts was complex, as fungal growth is also dependent on a reliable carbon export from the photobiont, which may have been the reason for the decrease of the mycobiont with N addition in P. glauca. ? Our findings showed that P availability was an important factor when studying effects of N deposition, as P supply can both mitigate and intensify the negative effects of N on epiphytic lichens.  相似文献   

12.
We examined the ability of different freshwater bacterial groups to take up leucine and thymidine in two lakes. Utilization of both substrates by freshwater bacteria was examined at the community level by looking at bulk incorporation rates and at the single-cell level by combining fluorescent in situ hybridization and signal amplification by catalysed reporter deposition with microautoradiography. Our results showed that leucine was taken up by 70–80% of Bacteria -positive cells, whereas only 15–43% of Bacteria -positive cells were able to take up thymidine. When a saturating substrate concentration in combination with a short incubation was used, 80–90% of Betaproteobacteria and 67–79% of Actinobacteria were positive for leucine uptake, whereas thymidine was taken up by < 10% of Betaproteobacteria and by < 1% of the R-BT subgroup that dominated this bacterial group. Bacterial abundance was a good predictor of the relative contribution of bacterial groups to leucine uptake, whereas when thymidine was used Actinobacteria represented the large majority (> 80%) of the cells taking up this substrate. Increasing the substrate concentration to 100 nM did not affect the percentage of R-BT cells taking up leucine (> 90% even at low concentrations), but moderately increased the fraction of thymidine-positive R-BT cells to a maximum of 35% of the hybridized cells. Our results show that even at very high concentrations, thymidine is not taken up by all, otherwise active, bacterial cells.  相似文献   

13.
Changes in bacterioplankton community composition were followed in mesocosms set up in the littoral of Lake Vesijärvi, southern Finland, over two summers. Increasing nitrogen and phosphorus concentrations in the mesocosms represented different trophic states, from mesotrophic to hypertrophic. In 1998, the mesocosms were in a turbid state with a high biomass of phytoplankton, whereas in 1999, macrophytes proliferated and a clear-water state prevailed. The bacterial communities in the mesocosms also developed differently, as shown by denaturing gradient gel electrophoresis profiling of partial 16S rRNA gene fragments and by nonmetric multidimensional scaling analysis. In 1998, nutrient treatments affected the diversity and clustering of bacterial communities strongly, but in 1999, the bacterial communities were less diversified and not clearly affected by treatments. Canonical correspondence analysis indicated that bacterioplankton communities in the mesocosms were influenced by environmental physicochemical variables linked to the increasing level of eutrophication. Nitrogen concentration correlated directly with the bacterioplankton composition. In addition, the high nutrient levels had indirect effects through changes in the biomass and composition of phyto- and zooplankton. Sequencing analysis showed that the dominant bacterial divisions remained the same, but the dominant phylotypes changed during the 2-year period. The occurrence of Verrucomicrobia correlated with more eutrophic conditions, whereas the occurrence of Actinobacteria correlated with less eutrophic conditions.  相似文献   

14.
Phosphorus (P) is an essential nutrient for marine phytoplankton and indeed all life forms. Current data show that P availability is growth‐limiting in certain marine systems and can impact algal species composition. Available P occurs in marine waters as dissolved inorganic phosphate (primarily orthophosphate [Pi]) or as a myriad of dissolved organic phosphorus (DOP) compounds. Despite numerous studies on P physiology and ecology and increasing research on genomics in marine phytoplankton, there have been few attempts to synthesize information from these different disciplines. This paper is aimed to integrate the physiological and molecular information on the acquisition, utilization, and storage of P in marine phytoplankton and the strategies used by these organisms to acclimate and adapt to variations in P availability. Where applicable, we attempt to identify gaps in our current knowledge that warrant further research and examine possible metabolic pathways that might occur in phytoplankton from well‐studied bacterial models. Physical and chemical limitations governing cellular P uptake are explored along with physiological and molecular mechanisms to adapt and acclimate to temporally and spatially varying P nutrient regimes. Topics covered include cellular Pi uptake and feedback regulation of uptake systems, enzymatic utilization of DOP, P acquisition by phagotrophy, P‐limitation of phytoplankton growth in oceanic and coastal waters, and the role of P‐limitation in regulating cell size and toxin levels in phytoplankton. Finally, we examine the role of P and other nutrients in the transition of phytoplankton communities from early succession species (diatoms) to late succession ones (e.g., dinoflagellates and haptophytes).  相似文献   

15.
sn-Glycerol-3-phosphate (G3P) or glyceryl phosphoryl phosphodiesters, the substrates of the phoB-dependent Ugp transport system, when transported exclusively through this system, can serve as a sole source of phosphate but not as a sole source of carbon (H. Schweizer, M. Argast, and W. Boos, J. Bacteriol. 150:1154-1163, 1982). In order to explain this phenomenon, we tested two possibilities: repression of the pho regulon by Ugp-mediated transport and feedback inhibition by internal G3P or its degradation product Pi. Using an ugp-lacZ fusion, we found that the expression of ugp does not decline upon exposure to G3P, in contrast to the repressing effect of transport of Pi via the Pst system. This indicated that the Ugp system becomes inhibited after the uptake and metabolism of G3P. Using 32P-labeled G3P, we observed that little Pi is released by cells taking up G3P via the Ugp system but large amounts of Pi are released when the cells are taking up G3P via the GlpT system. Using a glpD mutant that could not oxidize G3P but which could still phosphorylate exogenous glycerol to G3P after GlpF-mediated transport of glycerol, we could not find trans inhibition of Ugp-mediated uptake of exogenous 14C-G3P. However, when allowing uptake of Pi via Pst, we observed a time-dependent inhibition of 14C-G3P taken up by the Ugp transport system. Inhibition was half maximal after 2 min and could be elicited by Pi concentrations below 0.5 mM. Cells had to be starved for Pi in order to observe this inhibition. We conclude that the activity of the Ugp transport system is controlled by the level of internal phosphate.  相似文献   

16.
The contribution of Chloroflexi-type SAR202 cells to total picoplankton and bacterial abundance and uptake of D- and L-aspartic acids (Asp) was determined in the different meso- and bathypelagic water masses of the (sub)tropical Atlantic (from 35 degrees N to 5 degrees S). Fluorescence in situ hybridization (FISH) revealed that the overall abundance of SAR202 was < or = 1 x 10(3) cells ml(-1) in subsurface waters (100 m layer), increasing in the mesopelagic zone to 3 x 10(3) cells ml(-1) and remaining fairly constant down to 4000 m depth. Overall, the percentage of total picoplankton identified as SAR202 increased from < 1% in subsurface waters to 10-20% in the bathypelagic waters. On average, members of the SAR202 cluster accounted for about 30% of the Bacteria in the bathypelagic waters, whereas in the mesopelagic and subsurface waters, SAR202 cells contributed < 5% to total bacterial abundance. The ratio of D-Asp : L-Asp uptake by the bulk picoplankton community increased from the subsurface layer (D-Asp : L-Asp uptake ratio approximately 0.03) to the deeper layers reaching a ratio of approximately 1 at 4000 m depth. Combining FISH with microautoradiography to determine the proportion of SAR202 cells taking up D-Asp versus L-Asp, we found that approximately 30% of the SAR202 cells were taking up L-Asp throughout the water column while D-Asp was essentially not taken up by SAR202. This D-Asp : L-Asp uptake pattern of SAR202 cells is in contrast to that of the bulk bacterial and crenarchaeal community in the bathypelagic ocean, both sustaining a higher fraction of D-Asp-positive cells than L-Asp-positive cells. Thus, although the Chloroflexi-type SAR202 constitutes a major bathypelagic bacterial cluster, it does not contribute to the large fraction of d-Asp utilizing prokaryotic community in the meso- and bathypelagic waters of the North Atlantic, but rather utilizes preferentially L-amino acids.  相似文献   

17.
The extremophilic microalga Chlamydomonas acidophila inhabits very acidic waters (pH 2-3.5), where its growth is often limited by phosphorus (P) or colimited by P and inorganic carbon (CO(2)). Because this alga is a major food source for predators in acidic habitats, we studied its fatty acid content, which reflects their quality as food, grown under a combination of P-limited and different carbon conditions (either mixotrophically with light + glucose or at high or low CO(2), both without glucose). The fatty acid composition largely depended on the cellular P content: stringent P-limited cells had a higher total fatty acid concentration and had a lower percentage of polyunsaturated fatty acids. An additional limitation for CO(2) inhibited this decrease, especially reflected in enhanced concentrations of 18:3(9,12,15) and 16:4(3,7,10,13), resulting in cells relatively rich in polyunsaturated fatty acids under colimiting growth conditions. The percentage of polyunsaturated to total fatty acid content was positively related with maximum photosynthesis under all conditions applied. The two factors, P and CO(2), thus interact in their effect on the fatty acid composition in C. acidophila, and colimited cells P-limited algae can be considered a superior food source for herbivores because of the high total fatty acid content and relative richness in polyunsaturated fatty acids.  相似文献   

18.
Zooplankton community response to the combined effects of nutrients and fish (hereafter N + F) at contrasting temperatures was studied in a long-term experiment conducted in 24 shallow lake mesocosms with low and high nutrient levels. We found a positive effect of N + F on zooplankton biomass, chlorophyll-a and turbidity. In contrast, zooplankton species and size diversity decreased with added N + F, as did submerged macrophyte plant volume inhabited (PVI). The community composition of zooplankton in high N + F mesocosms was related to chlorophyll-a and turbidity and to macrophyte PVI in the low N + F mesocosms. Macrophytes can protect zooplankton from fish predation. Compared to N + F effects, temperature appeared to have little effect on the zooplankton community. Yet analysis of community heterogeneity among treatments indicated a significant temperature effect at high N + F levels. The results indicate an indirect temperature effect at high N + F levels that can be attributed to temperature-dependent variation in fish density and/or chlorophyll-a concentration.  相似文献   

19.
Bacteriology of preserved stallion semen and antibiotics in semen extenders   总被引:7,自引:0,他引:7  
Three experiments were conducted to evaluate the effects of different antibiotics in a milk-glucose semen extender on motility of equine sperm and elimination of bacteria following storage of extended semen in vitro. In Experiment 1, 7 antibiotics were compared: amikacin, gentamicin, streptomycin, potassium penicillin, sodium penicillin, ticarcillin, and polymixin B. In Experiment 2, 3 antibiotic treatments were compared: potassium penicillin G, amikacin, or a combination of potassium penicillin G and amikacin. In Experiment 3, 3 antibiotic treatments were compared: potassium penicillin G-amikacin, ceptiofur, and a combination of ticarcillin and clavulanic acid (Timentin). Control treatments (antibiotic-free extender) were included in each experiment. Six motility variables were evaluated: percentage of motile sperm; percentage of progressively-motile sperm; percentage of rapidly-motile sperm; mean curvilinear velocity; mean average path velocity; and mean straight-line velocity. In Experiment 1, mean percentages of motile, progressively motile and rapidly motile sperm were lower (P < 0.05) in semen exposed to polymixin B then in other treatments. Mean average-path velocity of sperm in extender containing polymixin B was lower (P < 0.05) than that of all other treatments, with exception of control or ticarcillin. Mean straight-line velocity of sperm in extender containing polymixin B was lower (P < 0.05) than that of all other treatments, with exception of control, streptomycin or ticarcillin. Semen samples containing gentamicin, amikacin, streptomycin, or potassium penicillin were more effective (P < 0.05) at eliminating bacterial growth than those samples containing polymixin B. Semen samples containing gentamicin were also more effective (P < 0.05) at eliminating bacterial growth than those samples containing ticarcillin or sodium penicillin. In Experiment 2, mean percentage of rapidly-motile sperm, and mean curvilinear, average-path, and straight-line velocities were greater (P < 0.05) for potassium penicillin-amikacin than values for all other treatments. In 2 of 3 stallions, an effect of treatment on percentage of motile sperm was detected (P < 0.05). For one stallion, mean motility of potassium penicillin-amikacin was greater (P < 0.05) than that of all other treatment groups. For another stallion, mean motility of the control was lower (P < 0.05) than that of the other treatments. Following storage, potassium penicillin (16/18 [89%]) or potassium penicillin-amikacin (17/19 [94%]) were more effective (P < 0.05) at controlling aerobic and anaerobic bacterial isolates in semen specimens than was amikacin (10/18 [56%]). In Experiment 3, a difference among treatment groups for motility variables was not detected (P < 0.05). No bacterial growth was recovered in antibiotic-treated semen, with exception of Micrococcus sp. (2 colonies) which were isolated from one semen specimen treated with ceptiofur.  相似文献   

20.
In order to better understand the ecology of microorganisms responsible for secondary production in the Southern Ocean the activity of Flavobacteria communities on diatom detritus in seawater mesocosms was investigated. Seawater was collected from different parts of the Southern Ocean including the Polar Front Zone (PFZ), ice-edge area of the Antarctic Zone (AZ), and a site in the AZ ice pack. Detritus from the cosmopolitan marine diatom Nitzschia closterium Ehrenberg was resuspended in mesocosms containing seawater filtered to remove particulate organic matter, including particle-associated bacteria and most eukaryotes, but retaining native planktonic bacterial assemblages. Mesocosms were incubated at 2 degrees C and samples analysed for changes in community composition using denaturing gradient gel electrophoresis (DGGE), real-time PCR and fluorescent in-situ hybridization (FISH). DGGE banding patterns and FISH images demonstrated rapid bacterial colonization of the detritus, dominated by members of class gamma-Proteobacteria, alpha-Proteobacteria and Flavobacteria. Real-time PCR data indicated members of class Flavobacteria were involved in initial colonization of detrital aggregate, however relative abundance stayed at similar levels found for the original native particle-associated populations. 16S rRNA gene DGGE banding patterns and sequence analysis demonstrated significant variation in Flavobacteria community structure occurred in the first 20 days of the experiment before community stabilization occurred. The community structures between the three mesocosms also markedly differed and major colonizers were primarily derived from detectable members of the initial particle-associated Flavobacteria community, however the abundant uncultured Flavobacteria agg58 clone-related and DE cluster 2 clades, previously identified in Southern Ocean seawater were not observed to colonize the detritus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号