首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the medial preoptic area (MPO) and medial amygdala (MEA), estradiol (E(2)) aromatized from testosterone (T) may act via either estrogen receptor (ER) α or ERβ to mediate mating in male rats. We tested the hypothesis that, in the MPO, ERα exclusively mediates sexual responses to E(2) by monitoring mating in four groups of castrated male rats administered dihydrotestosterone (DHT) subcutaneously and MPO implants delivering either: cholesterol, E(2), propyl pyrazole triol (PPT, ERα-agonist) or diarylpropionitrile (DPN, ER β-agonist); a fifth group of intact males served as DPN toxicity control, receiving DPN MPO implants. In a follow-up study, either 1-methyl-4-phenyl pyridinium (MPP, ERα-antagonist) or blank MPO cannulae were implanted in castrated male rats receiving T subcutaneously, whereas intact MPP toxicity controls received MPP MEA implants. PPT or E(2) MPO implants maintained mating, but cholesterol or DPN MPO implants did not. Moreover, MPP MPO implants interfered with T reinstatement of mating suggesting that, in the MPO, ERα is necessary and sufficient for mating in androgen-maintained male rats and ERβ is not sufficient. Because it is unknown which ER subtype(s) mediate sexual responses of the MEA to E(2), we examined mating following MEA implants of cholesterol, E(2), PPT or DPN in four groups of castrated male rats administered DHT subcutaneously. E(2) MEA implants maintained mounting but mating was significantly decreased in groups receiving PPT, DPN or cholesterol MEA implants suggesting that, unlike the MPO where ERα alone is essential, sexual responses of the MEA to E(2) require simultaneous interactions among multiple ER subtypes.  相似文献   

2.
Sex- and species-specific patterns of estrogen receptor (ER)-α expression are established early in development, which may contribute to sexual differentiation of behavior and determine male social organization. The current study investigated the effects of ERα and ERβ activation during the second postnatal week on subsequent alloparental behavior and ERα expression in juvenile prairie voles. Male and female pups were treated daily with 17β-estradiol (E2, ERα/ERβ agonist), PPT (selective ERα agonist), DPN (selective ERβ agonist), or the oil vehicle on postnatal days (PD) 8–14. Alloparental behavior and ERα expression were examined at PD21. PPT treatment inhibited prosocial motivation in males and increased pup-directed aggression in both sexes. E2 and DPN had no apparent effect on behavior in either sex. PPT-treated males had increased ERα expression in the medial preoptic area (MPN), medial amygdala (MEApd) and bed nucleus of the stria terminalis (BSTpr). DPN treatment also increased ERα expression in males, but only in the BSTpr. Female ERα expression was unaffected by treatment. These results support the hypothesis that ERα activation in early life is associated with less prosocial patterns of central ERα expression and alloparental behavior in males. The lack of an effect of E2 on behavior suggests that ERβ may antagonize the effects of ERα on alloparental behavior. The results in DPN-treated males suggest that ERα in the MEApd, and not the BSTpr, may be a primary determinant of alloparental behavior in males.  相似文献   

3.
Mating was studied in sexually experienced, gonadally intact male rats assigned to two surgical groups matched on the basis of mean mounting frequency during behavioral screening trials conducted prior to the study. Estradiol (E(2)) was delivered bilaterally into the medial preoptic area (MPO) of experimental males by means of hormone-coated implants, and fadrozole was given sc (0.25 mg/kg/day) via osmotic minipumps to block E(2) formation from testicular testosterone throughout the brain. Control males received blank bilateral implants in the MPO and sc fadrozole. After the completion of behavioral testing, immunocytochemical comparisons of the brains from experimental and control rats were made using the H222 antiestrogen receptor (ER) antibody, whose labeling is inhibited by the presence of E(2). The histology demonstrated that E(2) was confined exclusively to the MPO of experimental males but was absent throughout the brains of controls. In controls, mounting decreased significantly by the 7th day after surgery compared with presurgical levels and did not recover. In contrast, on all postsurgical days, the mounting frequency of the experimental group was significantly higher than that of controls. Although experimental males also showed an initial, significant postsurgical decline in mounting frequency, it recovered completely by the 28th postoperative day. Ejaculations declined significantly after surgery in both groups but, unlike in controls whose performance remained low, ejaculations in experimental males partially recovered and were significantly higher than in controls during the postoperative period. Results showed that ER-containing neurons in the MPO influence male rat copulatory behavior.  相似文献   

4.
单配制和多配制动物社会行为有差异,这些差异可能与雌激素受体类型有关(ERs)。虽然多配制大鼠和小鼠中枢神经雌激素受体α(ERα)和β(ERβ)免疫反应在大脑的分布已有报道,单配制雄性草原田鼠中枢神经ERα的分布也有报道,但单配制田鼠ERα和(或)ERβ在雌性和雄性分布差异未见报道。本研究对雄性和雌性棕色田鼠前脑区域ERα和ERβ免疫反应(IR)细胞数量进行比较。研究结果表明:(1)免疫反应主要分布在细胞核中。 (2)ERα-IR和ERβ-IR细胞广泛分布于整个雌性和雄性前脑区域,在许多脑区表达有重叠。然而,不同受体在雌雄不同脑核中的分布数量是不同的。(3)ERα 和ERβ的分布存在性别差异。例如,雌性ERα在视前核中部(MPN),终纹床和(BNST)和杏仁内侧核(MeA)比雄性多,相反雄性ERβ在MPN和BNST比雌性多。这些研究结果可能为我们理解如何通过ERα和ERβ调节动物的社会行为,及雌性和雄性社会行为的差异提供一个重要的神经解剖学基础。  相似文献   

5.
应用行为观察、放射免疫分析和免疫组织化学相结合的方法,研究了雄性棕色田鼠在交配后血清中的雌二醇(E)、与交配行为有关的脑区E免疫阳性细胞数目(E-IRs)、雌激素β受体(ERβ)免疫阳性细胞数目(ERβ-IRs)的变化.将睾丸下降的成年雄性棕色出鼠分成3组:(1)对照组:嗅闻24h新鲜锯木.(2)暴露组:嗅闻24h动情期雌鼠底物.(3)交配组:与动情期雌鼠交配24h.放射免疫榆测血清中的E浓度,交配组比暴露组、对照组显著增高,暴露组和对照组无显著差异.通过免疫组化检测与性行为有关的脑区:弓状核(ARC)、终纹床核(BST)、隔外侧核(LS)、杏仁内侧核(ME)、内侧视前区(MPO)、下丘脑腹内侧核(VMH)E-IRs和ERβ-IRs,E-IRs在交配组比对照组和暴露组各区域都显著增多,暴露组比对照组在隔外侧核显著增多外,其他区域无显著差异.  相似文献   

6.
Reproductive aging in males is characterized by a diminution in sexual behavior beginning in middle age. We investigated the relationships among testosterone, androgen receptor (AR) and estrogen receptor alpha (ERα) cell numbers in the hypothalamus, and their relationship to sexual performance in male rats. Young (3 months) and middle-aged (12 months) rats were given sexual behavior tests, then castrated and implanted with vehicle or testosterone capsules. Rats were tested again for sexual behavior. Numbers of AR and ERα immunoreactive cells were counted in the anteroventral periventricular nucleus and the medial preoptic nucleus, and serum hormones were measured. Middle-aged intact rats had significant impairments of all sexual behavior measures compared to young males. After castration and testosterone implantation, sexual behaviors in middle-aged males were largely comparable to those in the young males. In the hypothalamus, AR cell density was significantly (5-fold) higher, and ERα cell density significantly (6-fold) lower, in testosterone- than vehicle-treated males, with no age differences. Thus, restoration of serum testosterone to comparable levels in young and middle-aged rats resulted in similar preoptic AR and ERα cell density concomitant with a reinstatement of most behaviors. These data suggest that age-related differences in sexual behavior cannot be due to absolute levels of testosterone, and further, the middle-aged brain retains the capacity to respond to exogenous testosterone with changes in hypothalamic AR and ERα expression. Our finding that testosterone replacement in aging males has profound effects on hypothalamic receptors and behavior has potential medical implications for the treatment of age-related hypogonadism in men.  相似文献   

7.
Estradiol (E2) is important in activation of male reproductive behaviors, and masculinizes morphology of associated brain regions in a number of mammalian and avian species. In contrast, it is testosterone, rather than its metabolites, that is the most potent activator of male sexual behavior in green anole lizards. As in other vertebrate groups, however, E2 is critical for receptivity in females of this species. Aromatase, the enzyme which converts testosterone to E2, is more active in the male than female green anole brain, and appears to be actively regulated on a seasonal basis, suggesting some role for E2 in males. This study was designed to enhance our understanding of potential E2 actions by localizing and quantifying relative levels of estrogen receptor-alpha (ERα) mRNA in forebrain regions involved in masculine and feminine behaviors in anoles. These areas include the preoptic area (POA), ventromedial amygdala (AMY) and ventromedial hypothalamus (VMH). In situ hybridization was conducted in adult males and females collected during both breeding and non-breeding seasons. ERα mRNA was expressed in each brain region across sexes and seasons. However, expression was up to 3 times greater in the VMH compared to the POA and AMY. In the POA and VMH, expression was higher in females compared to males, independent of season. The increased receptor expression in females is consistent with E2 playing a larger role in female than male reproductive behaviors.  相似文献   

8.
Testosterone is the main circulating steroid hormone in males, and acts to facilitate sexual behavior via both reduction to dihydrotestosterone (DHT) and aromatization to estradiol. The mPOA is a key site involved in mediating actions of androgens and estrogens in the control of masculine sexual behavior, but the respective roles of these hormones is not fully understood. As males age they show impairments in sexual function, and a decreased facilitation of behavior by steroid hormones compared to younger animals. We hypothesized that an anatomical substrate for these behavioral changes is a decline in expression and/or activation of hormone receptor-sensitive cells in the mPOA. We tested this by quantifying and comparing numbers of AR- and ERα-containing cells, and Fos as a marker of activated neurons, in the mPOA of mature (4–5 months) and aged (12–13 months) male rats, assessed one hour after copulation to one ejaculation. Numbers of AR- and ERα cells did not change with age or after sex, but the percentage of AR- and ERα-cells that co-expressed Fos were significantly up-regulated by sex, independent of age. Age effects were found for the percentage of Fos cells that co-expressed ERα (up-regulated in the central mPOA) and the percentage of Fos cells co-expressing AR in the posterior mPOA. Interestingly, serum estradiol concentrations positively correlated with intromission latency in aged but not mature animals. These data show that the aging male brain continues to have high expression and activation of both AR and ERα in the mPOA with copulation, raising the possibility that differences in relationships between hormones, behavior, and neural activation may underlie some age-related impairments.  相似文献   

9.
Around the time of birth, male rats express higher levels of progesterone receptors in the medial preoptic nucleus (MPN) than female rats, suggesting that the MPN may be differentially sensitive to maternal hormones in developing males and females. Preliminary evidence suggests that this sex difference depends on the activation of estrogen receptors around birth. To test whether estrogen receptor alpha (ERα) is involved, we compared progesterone receptor immunoreactivity (PRir) in the brains of male and female neonatal mice that lacked a functional ERα gene or were wild type for the disrupted gene. We demonstrate that males express much higher levels of PRir in the MPN and the ventromedial nucleus of the neonatal mouse brain than females, and that PRir expression is dependent on the expression of ERα in these regions. In contrast, PRir levels in neocortex are not altered by ERα gene disruption. The results of this study suggest that the induction of PR via ERα may render specific regions of the developing male brain more sensitive to progesterone than the developing female brain, and may thereby underlie sexual differentiation of these regions. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 176–182, 2001  相似文献   

10.
Two experiments in house mice (Mus domesticus) examined the neural sites at which steroid hormones activate the following male-typical behaviors: 70 kHz ultrasonic mating vocalizations in response to stimulus females or their urine, urinary marking in response to stimulus males or stimulus females, mounting of estrous females, and intermale aggression. In the first experiment, four groups of castrated males received bilateral intracranial implants of testosterone (T) into either the septum (SEPTUM), medial preoptic area (MPO), anterior hypothalamus (AHA), or ventromedial hypothalamus (VMH). Two control groups received subcutaneous silastic capsules of T (TSIL) or empty silastic capsules (BSIL). The TSIL males performed all behaviors at male-typical levels while the BSIL males were unresponsive. MPO males emitted ultrasonic mating vocalizations at high levels while few vocalizations were seen in males of the other brain implant groups. The VMH, AHA, and MPO males urine marked at higher levels than the BSIL males but did not exhibit the high levels of the TSIL males. Mounting was observed only in MPO and TSIL males. Aggression was rare in males from any of the brain implant groups. In the second experiment, the hormone activity of the implants was increased by using testosterone propionate (TP) or a 50% mixture of estradiol (E2) and cholesterol. The six groups were SEPTUMTP, SEPTUME2, MPOTP, MPOE2, TPSIL, and BSIL. The TPSIL males performed all behaviors at male-typical levels while the BSIL males were unresponsive. TP was effective at restoring vocalizations and urine marking only when placed in the MPO; however, E2 was effective at both sites. Again aggression and mounting were less evident in the brain implanted males. In conclusion, implants of T or TP were effective in restoring ultrasonic mating vocalization when placed into the MPO. MPO implants of T and TP were also effective in stimulating urine marking, although VMH and AHA implants also showed some effectiveness. The restorative effects of E2 were not localized which is probably related to the greater hormonal activity of this treatment. Comparisons of the properties of the various brain implants to restore more than one behavior were discussed.  相似文献   

11.
In monogamous mammals paternal care plays an important role in the neural and behavioral development of offspring. However, the neuroendocrine mechanisms underlying paternal behavior remain poorly understood. Here, we investigate the association between natural variation in paternal responsiveness and central levels of oxytocin (OT) and estrogen receptor alpha (ERα). We used the frequency of licking and grooming behavior to distinguish low paternal responsiveness and high paternal responsiveness in virgin mandarin voles (Microtus mandarinus). Males that engaged in high paternal behavior had elevated levels of OT immunoreactive neurons in the paraventricular nuclei of the hypothalamus and supraoptic nuclei of the hypothalamus compared with males that displayed low paternal behavior. Likewise, males of high paternal responsiveness had more ERα immunoreactive neurons in the medial preoptic area, bed nucleus of the stria terminalis, arcuate nucleus of the hypothalamus and medial amygdaloid nucleus compared to low responsive males. The level of ERα immunoreactive neurons in the ventromedial hypothalamic nucleus was lower in highly paternal males compared to less paternal males. These results suggest that natural variation in paternal responsiveness may be directly related to variation in central OT and ERα.  相似文献   

12.
Two subtypes of estrogen receptors (ER), ERα and ERβ, have been identified in humans and numerous vertebrates, including the Japanese quail. We investigated in this species the specific role(s) of each receptor in the activation of male sexual behavior and the underlying estrogen-dependent neural plasticity. Castrated male Japanese quail received empty (CX) or testosterone-filled (T) implants or were daily injected with the ER general agonist diethylstilbestrol (DES), the ERα-specific agonist PPT, the ERβ-specific agonist DPN or the vehicle, propylene glycol. Three days after receiving the first treatment, subjects were alternatively tested for appetitive (rhythmic cloacal sphincter movements, RCSM) and consummatory aspects (copulatory behavior) of male sexual behavior. 24 hours after the last behavioral testing, brains were collected and analyzed for aromatase expression and vasotocinergic innervation in the medial preoptic nucleus. The expression of RCSM was activated by T and to a lesser extent by DES and PPT but not by the ERβagonist DPN. In parallel, T fully restored the complete sequence of copulation, DES was partially active and the specific activation of ERα or ERβ only resulted in a very low frequency of mount attempts in few subjects. T increased the volume of the medial preoptic nucleus as measured by the dense cluster of aromatase-immunoreactive cells and the density of the vasotocinergic innervation within this nucleus. DES had only a weak action on vasotocinergic fibers and the two specific ER agonists did not affect these neural responses. Simultaneous activation of both receptors or treatments with higher doses may be required to fully activate sexual behavior and the associated neurochemical events.  相似文献   

13.
Masculinization of the altricial rodent brain is driven by estrogen signaling during a perinatal critical period. Genetic deletion of estrogen receptor alpha (Esr1/ERα) results in altered hypothalamic-pituitary-gonadal (HPG) axis signaling and a dramatic reduction of male sexual and territorial behaviors. However, the role of ERα in masculinizing distinct classes of neurons remains unexplored. We deleted ERα in excitatory or inhibitory neurons using either a Vglut2 or Vgat driver and assessed male behaviors. We find that Vglut2-Cre;Esr1lox/lox mutant males lack ERα in the ventrolateral region of the ventromedial hypothalamus (VMHvl) and posterior ventral portion of the medial amygdala (MePV). These mutants recapitulate the increased serum testosterone levels seen with constitutive ERα deletion, but have none of the behavioral deficits. In contrast, Vgat-Cre;Esr1lox/lox males with substantial ERα deletion in inhibitory neurons, including those of the principal nucleus of the bed nucleus of the stria terminalis (BNSTpr), posterior dorsal MeA (MePD), and medial preoptic area (MPOA) have normal testosterone levels, but display alterations in mating and territorial behaviors. These mutants also show dysmasculinized expression of androgen receptor (AR) and estrogen receptor beta (Esr2). Our results demonstrate that ERα masculinizes GABAergic neurons that gate the display of male-typical behaviors.  相似文献   

14.
15.
The epididymis in the male reproductive tract allows the survival, viability, and storage of spermatozoa from the testis. In the lizard Podarcis sicula, the epididymis can be regionalized to an initial segment called the caput that comprises the efferent ductules, followed by the middle and terminal segments, respectively termed the corpus and cauda. By means of in situ hybridization and immunocytochemistry, we analyzed the expression of the estrogen receptors of the alpha and beta type (ERα and ERβ) in Podarcis to test the responsiveness of the epididymal regions to estrogen in the annual reproductive cycle of this seasonal breeder. The results show that the efferent ductules and the cauda always express both ERα and ERβ throughout the year. In the corpus, the expression of ERα takes place only at the end of the mating period and continues in the non-reproductive season whereas ERβ is expressed in all phases of the cycle. During the mating season, the cells of the corpus are engaged in massive secretory activity and do not express ERα. Experimental administration of E(2) during this season does not change the expression of ERβ, nor does it affect the efferent ductules and cauda; instead, it inhibits the secretory activity in the corpus and induces the expression of ERα. Taken together, our findings suggest that in the epididymis of Podarcis, the expression of ERα may act as a switch for the secretory activity of the epididymal corpus.  相似文献   

16.
During mating in hamsters, both tactile and nontactile sensory stimulation experienced by the female affect sexual behavior and progestational neuroendocrine reflexes. To test the interactions of these types of mating stimulation, c-Fos immunohistochemistry measured brain cellular activity during sexual behavior under conditions that included combinations of tactile and nontactile mating stimulation. Test groups received: (1) mating stimulation from a male, females being either fully mated or mated while wearing a vaginal mask, or (2) experimenter applied manual vaginocervical stimulation (VCS)-with or without males present, or (3) handling similar to VCS but without insertions-with or without males present. Numbers of c-Fos immunoreactive cells were counted in specific subdivisions of the posterior medial amygdala (MeP) and ventromedial hypothalamus (VMH). The medial amygdala dorsal and ventral subdivisions responded differentially to components of mating stimulation. The posterodorsal Me (MePD) cellular activation was greatest during mating conditions that included VCS and/or males present. However, the posteroventral Me (MePV) was sensitive to male exposure and not to VCS. Also, MePV and VMH shell responses mirrored each other, both being primarily sensitive to male exposure. In separate tests, manual VCS induced pseudopregnancy, though the procedure was most effective with additional nontactile stimulation from males present. In summary, contextual cues provided by nontactile male stimulation enhance the effect of vaginocervical and other tactile stimulation on reproductive processes. Furthermore, c-Fos expression in the female hamster medial amygdala is region and context dependent.  相似文献   

17.
18.
Estrogenic actions are closely related to cardiovascular disease. Ritonavir (RTV), a human immunodeficiency virus (HIV) protease inhibitor, induces atherosclerosis in an estrogen-related manner. However, how RTV induce pathological phenotypes through estrogen pathway remains unclear. In this study, we found that RTV increases thickness of coronary artery walls of Sprague Dawley rats and plasma free fatty acids (FFA) levels. In addition, RTV could induce foam cell formation, downregulate both estrogen receptor α (ERα) and ERβ expression, upregulate G protein-coupled estrogen receptor (GPER) expression, and all of them could be partially blocked by 17β-estradiol (E2), suggesting RTV acts as an antagonist for E2. Computational modeling shows a similar interaction with ERα between RTV and 2-aryl indoles, which are highly subtype-selective ligands for ERα. We also found that RTV directly bound to ERα and selectively inhibited the nuclear localization of ERα, and residue Leu536 in the hydrophobic core of ligand binding domain (LBD) was essential for the interaction with RTV. In addition, RTV did not change the secondary structure of ERα-LBD like E2, which explained how ERα lost the capacity of nuclear translocation under the treatment of RTV. All of the evidences suggest that ritonavir acts as an antagonist for 17β-estradiol in regulating α subtype estrogen receptor function and early events of atherosclerosis.  相似文献   

19.
Mating-induced Fos-immunoreactive (-ir) cells are colocalized with androgen receptors (AR), estrogen receptors (ER), or both in limbic and hypothalamic areas known to mediate male rat mating behavior. A steroid-responsive neural network might govern copulatory behavior in male laboratory rats that is analogous to the network described in female rats that governs the lordosis response. This hypothesized network in males may synchronize and coordinate sexual behavioral responses with physiological responses of the genitals and the internal organs of reproduction. Therefore, the pseudorabies virus (PRV; Bartha strain), a transneuronal, viral retrograde tract tracer, was microinjected into the prostate gland to label this network. After 7 days, brains from infected animals were processed for immunohistochemical labeling of AR, ER, and PRV. The majority of PRV-ir cells exhibited either AR or ER immunoreactivity in the medial preoptic area, median preoptic nucleus, bed nucleus of stria terminalis, hypothalamic paraventricular nucleus, and zona incerta, areas known to play roles in male rat mating behavior. Other structures such as the central tegmental field/subparafascicular nucleus of the thalamus, central nucleus of the amygdala, and medial amygdala, also important in the display of male copulatory behavior, were less reliably labeled. Collectively, a steroid receptor-containing neuronal circuit, largely contained in the diencephalon, was revealed that likely is involved in the autonomic control of the prostate gland and the consummatory aspects of male rat mating behavior.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号