首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
2.
Osteoporosis is a metabolic disease that results from oxidative stress or inflammation in renal disorders. microRNAs (miRNAs) are recently implicated to participate in osteoporosis, but the mechanism remains largely unexplored. Herein, we aimed to explore the potential role of miR-15b in osteoblast differentiation and autophagy in osteoporosis. We established osteoporosis models through ovariectomy and determined that miR-15b was highly expressed whereas USP7 and KDM6B were poorly expressed in tissue of osteoporosis mice. Treatment of silenced miR-15b resulted in the elevation of decreased bone mineral density (BMD), the maximum elastic stress and the maximum load of osteoporosis mice. In osteoblasts, miR-15 overexpression decreased proliferation but suppressed the cell differentiation and autophagy, accompanied with decreased expression of USP7. Mechanistically, miR-15 bound and inhibited USP7 expression, while overexpression of USP7 promoted autophagy of osteoblasts. USP7, importantly, strengthened the stability of KDM6B and promoted KDM6B expression. MG132 protease inhibitor increased KDM6B and USP7 expression in osteoblasts. Silencing of KDM6B reversed the promoting effect on autophagy and proliferation induced by overexpression of USP7. Taken altogether, miR-15b inhibits osteoblast differentiation and autophagy to aggravate osteoporosis by targeting USP7 to regulate KDM6B expression.  相似文献   

3.
LncRNAs and microRNAs play critical roles in osteoblast differentiation and bone formation. However, their exact roles in osteoblasts under fluid shear stress (FSS) and the possible mechanisms remain unclear. The aim of this study was to explore whether and how miR-34a regulates osteoblast proliferation and apoptosis under FSS. In this study, FSS down-regulated miR-34a levels of MC3T3-E1 cells. MiR-34a up-regulation attenuated FSS-induced promotion of proliferation and suppression of apoptosis. Luciferase reporter assay revealed that miR-34a directly targeted FGFR1. Moreover, miR-34a regulated osteoblast proliferation and apoptosis via FGFR1. Further, we validated that lncRNA TUG1 acted as a competing endogenous RNA (ceRNA) to interact with miR-34a and up-regulate FGFR1 protein expression. Furthermore, lncRNA TUG1 could promote proliferation and inhibit apoptosis. Taken together, our study revealed the key role of the lncRNA TUG1/miR-34a/FGFR1 axis in FSS-regulated osteoblast proliferation and apoptosis and may provide potential therapeutic targets for osteoporosis.  相似文献   

4.
Although various microRNAs regulate cell differentiation and proliferation, no miRNA has been reported so far to play an important role in the regulation of osteoblast differentiation. Here we describe the role of miR-125b in osteoblastic differentiation in mouse mesenchymal stem cells, ST2, by regulating cell proliferation. The expression of miR-125b was time-dependently increased in ST2 cells, and the increase in miR-125b expression was attenuated in osteoblastic-differentiated ST2 cells induced by BMP-4. The transfection of exogenous miR-125b inhibited proliferation of ST2 cells and caused inhibition of osteoblastic differentiation. In contrast, when the endogenous miR-125b was blocked by transfection of its antisense RNA molecule, alkaline phosphatase activity after BMP-4 treatment was elevated. These results strongly suggest that miR-125b is involved in osteoblastic differentiation through the regulation of cell proliferation.  相似文献   

5.
Wnt signaling determines human stromal (mesenchymal) stem cell (hMSC) differentiation fate into the osteoblast or adipocyte lineage. microRNAs (miRNAs) are small RNA molecules of 21–25 nucleotides that regulate many aspects of osteoblast biology. Thus, we examined miRNAs regulated by Wnt signaling in hMSC. We identified miRNA (miR)-141-3p as a Wnt target which in turn inhibited Wnt signaling. Moreover, miR-141-3p inhibited hMSC proliferation by arresting cells at the G1 phase of the cell cycle. miR-141-3p inhibited osteoblast differentiation of hMSC as evidenced by reduced alkaline phosphatase activity, gene expression and in vitro mineralized matrix formation. Bioinformatic studies, Western blot analysis and 3’UTR reporter assay demonstrated that cell division cycle 25A (CDC25A) is a direct target of miR-141-3p. siRNA-mediated knock-down of CDC25A inhibited hMSC proliferation and osteoblast differentiation. In summary, miR-141-3p acts as a negative regulator of hMSC proliferation and osteoblast differentiation. Targeting miR-141-3p could be used as an anabolic therapy of low bone mass diseases, e.g. osteoporosis.  相似文献   

6.
越来越多的研究表明microRNA广泛参与骨代谢的调控,调节骨髓间充质干细胞、成骨及破骨细胞的增殖及分化,调控骨形成与骨吸收之间的平衡,在维持骨代谢平衡中发挥重要作用。近年来有研究报道老年性骨质疏松、绝经后骨质疏松均与miR-214的高表达有关。miR-214通过靶向作用于Osterix、ATF-4、FGFR1、Pten以及LZTS1等基因调控骨髓间充质干细胞、成骨细胞以及破骨细胞等骨组织细胞的增殖及分化,进而抑制骨形成,促进骨吸收。本文主要综述了miR-214对骨髓间充质干细胞、成骨细胞以及破骨细胞分化的调控作用,旨在探讨miR-214对骨形成的抑制作用,为骨质疏松等骨疾病的诊断及治疗提供理论依据。  相似文献   

7.
8.
Ankylosing spondylitis (AS) refers to a type of arthritis manifested with chronic inflammation of spine joints. microRNAs (MiRNAs) have been identified as new therapeutic targets for inflammatory diseases. In this study, we evaluated the influence of microRNA-96 (miR-96) on osteoblast differentiation together with bone formation in a murine model of AS. The speculated relationship that miR-96 could bind to sclerostin (SOST) was verified by dual luciferase reporter assay. After successful model establishment, the mice with AS and osteoblasts isolated from mice with AS were treated with mimics or inhibitors of miR-96, or DKK-1 (a Wnt signaling inhibitor). The effects of gain- or loss-of-function of miR-96 on the inflammatory cytokine release (IL-6, IL-10, and TNF-α), alkaline phosphatase (ALP) activity, calcium nodule formation, along with the viability of osteoblasts were determined. It was observed that miR-96 might target and regulate SOST. Besides, miR-96 was expressed at a high level in AS mice while SOST expressed at a low level. TOP/FOP-Flash luciferase reporter assay confirmed that miR-96 activated the Wnt signaling pathway. Moreover, AS mice overexpressing miR-96 exhibited increased contents of IL-6, IL-10 and TNF-α, ALP activity, calcium nodule numbers, and viability of osteoblasts. In contrast, inhibition of miR-96 resulted in suppression of the osteoblast differentiation and bone formation. In conclusion, the study implicates that overexpressing miR-96 could improve osteoblast differentiation and bone formation in AS mice via Wnt signaling pathway activation, highlighting a potential new target for AS treatment.  相似文献   

9.
曹烨  孙志卫  梁拓  刘静 《生命科学》2012,(7):660-665
近年来的研究表明microRNAs表达异常直接或间接导致了多种亚型慢性淋巴细胞白血病(chronic lymphocytic leukemia,CLL)的发生。miR-34家族(包括miR-34a、miR-34b与miR-34c)是一个与细胞增殖、分化和癌变高度相关的microRNA家族。近年来,人们发现miR-34家族在p53调控网络和CLL发生中起着重要作用,并具有显著的临床应用价值。将对miR-34家族在慢性淋巴细胞白血病发生中的作用和机制做一综述。  相似文献   

10.
In various kinds of carcinomas, the special AT-rich sequence-binding protein 2 (SATB2) with its atypical expression promotes the metastasis and progression of the tumor, though in the oral squamous cell carcinoma (OSCC) its inherent mechanism and the status of SATB2 remain unclear. The role played by the SATB2 expression in the OSCC cell lines and tissue samples in the target of miR-34a downstream is the intended endeavor of this study. In te OSCCs the miR-34a expression was determined by quantitative real-time polymerase chain reaction (q-PCR), while the SATB2 expression in the cell lines and tissue samples in OSCC was analyzed with the q-PCR and the western blot. Studies in both in vitro and in vivo of the effects of miR-34a on the initiation of OSCC were conducted. As a direct target of the miR-34a the SATB2 was verified with the luciferase reporter assay. In cases where the miR-34a levels were low, the SATB2 in OSCCs seemed to be overexpressed. Besides, both in the in vitro and in vivo a suppression of migration, invasion, and cell growth was caused by miR-34a by down regulating the SATB2 expression. The SATB2 being a direct target of miR-34a was confirmed by the cotransfection of miR-34a mimics specifically the decrease in the expression of luciferase of SATB2–3′UTR-wt reporter. As a whole, our study confirmed the inhibition of miR-34a in the invasion, proliferation, and migration of the OSCCs, playing a potential tumor suppressor role with SATB2 as its downstream target.  相似文献   

11.
Mutations in fibroblast growth factor receptors (Fgfrs) 1-3 cause skeletal disease syndromes in humans. Although these Fgfrs are expressed at various stages of chondrocyte and osteoblast development, their function in specific skeletal cell types is poorly understood. Using conditional inactivation of Fgfr1 in osteo-chondrocyte progenitor cells and in differentiated osteoblasts, we provide evidence that FGFR1 signaling is important for different stages of osteoblast maturation. Examination of osteogenic markers showed that inactivation of FGFR1 in osteo-chondro-progenitor cells delayed osteoblast differentiation, but that inactivation of FGFR1 in differentiated osteoblasts accelerated differentiation. In vitro osteoblast cultures recapitulated the in vivo effect of FGFR1 on stage-specific osteoblast maturation. In immature osteoblasts, FGFR1 deficiency increased proliferation and delayed differentiation and matrix mineralization, whereas in differentiated osteoblasts, FGFR1 deficiency enhanced mineralization. Furthermore, FGFR1 deficiency in differentiated osteoblasts resulted in increased expression of Fgfr3, a molecule that regulates the activity of differentiated osteoblasts. Mice lacking Fgfr1, either in progenitor cells or in differentiated osteoblasts, showed increased bone mass as adults. These data demonstrate that signaling through FGFR1 in osteoblasts is necessary to maintain the balance between bone formation and remodeling through a direct effect on osteoblast maturation.  相似文献   

12.
Loss of function mutations of Perk (eukaryotic translation initiation factor 2 alpha kinase 3) in humans and mice cause severe neonatal developmental defects, including diabetes, growth retardation and multiple skeletal dysplasias. Comprehensive analyses on bone tissue, at the cellular and molecular level in PERK-deficient mice demonstrated that neonatal Perk-/- mice are severely osteopenic, which is caused by a deficiency in the number of mature osteoblasts, impaired osteoblast differentiation, and reduced type I collagen secretion. Impaired differentiation of osteoblasts in Perk KO mice was associated with decreased expression of Runx2 and Osterix, key regulators of osteoblast development. Reduced cell proliferation and reduced expression of key cell cycle factors including cyclin D, cyclin E, cyclin A, Cdc2, and CDK2 occur in parallel with the differentiation defect in mutant osteoblasts. In addition, the trafficking and secretion of type I collagen is compromised as manifested by abnormal retention of procollagen I in the endoplasmic reticulum, and reduced mature collagen production and mineralization. Taken together, these studies identify PERK as a novel regulator of skeletal development and osteoblast biology.  相似文献   

13.
14.
15.
Bone mass is controlled through a delicate balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. We show here that RNA editing enzyme adenosine deaminase acting on RNA 1 (ADAR1) is critical for proper control of bone mass. Postnatal conditional knockout of Adar1 (the gene encoding ADAR1) resulted in a severe osteopenic phenotype. Ablation of the Adar1 gene significantly suppressed osteoblast differentiation without affecting osteoclast differentiation in bone. In vitro deletion of the Adar1 gene decreased expression of osteoblast-specific osteocalcin and bone sialoprotein genes, alkaline phosphatase activity, and mineralization, suggesting a direct intrinsic role of ADAR1 in osteoblasts. ADAR1 regulates osteoblast differentiation by, at least in part, modulation of osterix expression, which is essential for bone formation. Further, ablation of the Adar1 gene decreased the proliferation and survival of bone marrow stromal cells and inhibited the differentiation of mesenchymal stem cells towards osteoblast lineage. Finally, shRNA knockdown of the Adar1 gene in MC-4 pre-osteoblasts reduced cyclin D1 and cyclin A1 expression and cell growth. Our results identify ADAR1 as a new key regulator of bone mass and suggest that ADAR1 functions in this process mainly through modulation of the intrinsic properties of osteoblasts (i.e., proliferation, survival and differentiation).  相似文献   

16.
17.
18.
A majority of people suffering from bone fractures fail to heal and develop a nonunion, which is a challenging orthopedic complication requiring complex and expensive treatment. Previous data showed the inhibition of some microRNAs (miRNAs or miRs) can enhance fracture healing. The objective of the present study is to explore effects of miR-367 on the osteoblasts growth and proliferation of mouse during fracture via the Wnt/β-catenin pathway by targeting PANX3. Primarily, the femur fracture model was successfully established in 66 (C57BL/6) 6-week–old male mice. To verify whether miR-367 target PANX3, we used the target prediction program and performed luciferase activity determination. Subsequently, to figure out the underlying regulatory roles of miR-367 in fracture, osteoblasts were elucidated by treatment with miR-367 mimic, miR-367 inhibitor, or siRNA against PANX3 to determine the expression of miR-367, siPANX3, β-catenin, and Wnt5b as well as cell proliferation and apoptosis. The results demonstrated that PANX3 was verified as a target gene of miR-367. MiR-367 was found to highly expressed but PANX3, β-catenin, and Wnt5b were observed poorly expressed in fracture mice. downregulated miR-367 increased the mRNA and protein expression of PANX3, β-catenin, and Wnt5b, increased cell growth, proliferation, and migration, while decreased cell apoptosis in osteoblasts. Altogether, our study demonstrates that the downregulation of miR-367 may promote osteoblasts growth and proliferation in fracture through the activation of the PANX3-dependent Wnt/β-catenin pathway.  相似文献   

19.
20.
Osteocytes are thought to orchestrate bone remodeling, but it is unclear exactly how osteocytes influence neighboring bone cells. Here, we tested whether osteocytes, osteoblasts, and periosteal fibroblasts subjected to pulsating fluid flow (PFF) produce soluble factors that modulate the proliferation and differentiation of cultured osteoblasts and periosteal fibroblasts. We found that osteocyte PFF conditioned medium (CM) inhibited bone cell proliferation, and osteocytes produced the strongest inhibition of proliferation compared to osteoblasts and periosteal fibroblasts. The nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) attenuated the inhibitory effects of osteocyte PFF CM, suggesting that a change in NO release is at least partially responsible for the inhibitory effects of osteocyte PFF CM. Furthermore, osteocyte PFF CM stimulated osteoblast differentiation measured as increased alkaline phosphatase activity, and l-NAME decreased the stimulatory effects of osteocyte PFF CM on osteoblast differentiation. We conclude that osteocytes subjected to PFF inhibit proliferation but stimulate differentiation of osteoblasts in vitro via soluble factors and that the release of these soluble factors was at least partially dependent on the activation of a NO pathway in osteocytes in response to PFF. Thus, the osteocyte appears to be more responsive to PFF than the osteoblast or periosteal fibroblast with respect to the production of soluble signaling molecules affecting osteoblast proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号