首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steinernema spp. third-stage infective juveniles (IJs) play a key role in the symbiotic partnership between these entomopathogenic nematodes and Xenorhabdus bacteria. Recent studies suggest that Steinernema carpocapsae IJs contribute to the nutrition and growth of their symbionts in the colonization site (vesicle) [Martens, E.C. and Goodrich-Blair, H., 2005. The S. carpocapsae intestinal vesicle contains a sub-cellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cellular Microbiol. 7, 1723-1735.]. However, the morphological and physiological interactions between Xenorhabdus symbionts and Steinernema IJs are not understood in depth. This study was undertaken to assess the influence of culture conditions and IJ age on the structure, nutrition, and symbiont load (colonization level) of S. carpocapsae vesicles. Our observations indicate the vesicles of axenic IJs are shorter and wider than those of colonized IJs. Moreover, as colonized IJs age the vesicle becomes shorter and narrower and bacterial load declines. The colonization proficiency of several bacterial metabolic mutants was compared between two cultivation conditions: in vitro on lipid agar and in vivo in Galleria mellonella insects. Colonization defects were generally less severe in IJs cultivated in vivo versus those cultivated in vitro. However, IJs from both cultivation conditions exhibited similar declining bacterial load over time. These results suggest that although the vesicle forms in the absence of bacteria, the presence of symbionts within the vesicle may influence its fine structure. Moreover, these studies provide further evidence in support of the concept that the conditions under which steinernematid nematodes are cultivated and stored affect the nutritive content of the vesicle and the bacterial load, and therefore have an impact on the quality of the nematodes for their application as biological control agents.  相似文献   

2.
Entomopathogenic nematodes in Steinernema, together with their symbiont bacteria Xenorhabdus, are obligate and lethal parasites of insects that can provide effective biological control of some important lepidopteran, dipteran, and coleopteran pests of commercial crops. Phylogenetic relationships among 21 Steinernema species were estimated using 28S ribosomal DNA (rDNA) sequences and morphological characters. Sequences of the rDNA internal transcribed spacers were obtained to provide additional molecular characters to resolve relationships among Steinernema carpocapsae, Steinernema scapterisci, Steinernema siamkavai, and Steinernema monticolum. Four equally parsimonious trees resulted from combined analysis of 28S sequences and 22 morphological characters. Clades inferred from analyses of molecular sequences and combined datasets were primarily reliably supported as assessed by bootstrap resampling, whereas those inferred from morphological data alone were not. Although partially consistent with some traditional expectations and previous phylogenetic studies, the hypotheses inferred from molecular evidence, and those from combined analysis of morphological and molecular data, provide a new and comprehensive framework for evaluating character evolution of steinernematids. Interpretation of morphological character evolution on 6 trees inferred from sequence data and combined evidence suggests that many structural features of these nematodes are highly homoplastic, and that some structures previously used to hypothesize relationships represent ancestral character states.  相似文献   

3.
We present results from epifluorescence, differential interference contrast, and transmission electron microscopy showing that Xenorhabdus nematophila colonizes a receptacle in the anterior intestine of the infective juvenile (IJ) stage of Steinernema carpocapsae. This region is connected to the esophagus at the esophagointestinal junction. The process by which X. nematophila leaves this bacterial receptacle had not been analyzed previously. In this study we monitored the movement of green fluorescent protein-labeled bacteria during the release process. Our observations revealed that Xenorhabdus colonizes the distal region of the receptacle and that exposure to insect hemolymph stimulated forward movement of the bacteria to the esophagointestinal junction. Continued exposure to hemolymph caused a narrow passage in the distal receptacle to widen, allowing movement of Xenorhabdus down the intestine and out the anus. Efficient release of both the wild type and a nonmotile strain was evident in most of the IJs incubated in hemolymph, whereas only a few IJs incubated in nutrient-rich broth released bacterial cells. Incubation of IJs in hemolymph treated with agents that induce nematode paralysis dramatically inhibited the release process. These results suggest that bacterial motility is not required for movement out of the distal region of the receptacle and that hemolymph-induced esophageal pumping provides a force for the release of X. nematophila out of the receptacle and into the intestinal lumen.  相似文献   

4.
We present results from epifluorescence, differential interference contrast, and transmission electron microscopy showing that Xenorhabdus nematophila colonizes a receptacle in the anterior intestine of the infective juvenile (IJ) stage of Steinernema carpocapsae. This region is connected to the esophagus at the esophagointestinal junction. The process by which X. nematophila leaves this bacterial receptacle had not been analyzed previously. In this study we monitored the movement of green fluorescent protein-labeled bacteria during the release process. Our observations revealed that Xenorhabdus colonizes the distal region of the receptacle and that exposure to insect hemolymph stimulated forward movement of the bacteria to the esophagointestinal junction. Continued exposure to hemolymph caused a narrow passage in the distal receptacle to widen, allowing movement of Xenorhabdus down the intestine and out the anus. Efficient release of both the wild type and a nonmotile strain was evident in most of the IJs incubated in hemolymph, whereas only a few IJs incubated in nutrient-rich broth released bacterial cells. Incubation of IJs in hemolymph treated with agents that induce nematode paralysis dramatically inhibited the release process. These results suggest that bacterial motility is not required for movement out of the distal region of the receptacle and that hemolymph-induced esophageal pumping provides a force for the release of X. nematophila out of the receptacle and into the intestinal lumen.  相似文献   

5.
Research on the soft coral genus Sarcophyton extends over a wide range of fields, including marine natural products and the isolation of a number of cembranoid diterpenes. However, it is still unknown how soft corals produce this diverse array of metabolites, and the relationship between soft coral diversity and cembranoid diterpene production is not clear. In order to understand this relationship, we examined Sarcophyton specimens from Okinawa, Japan, by utilizing three methods: morphological examination of sclerites, chemotype identification, and phylogenetic examination of both Sarcophyton (utilizing mitochondrial protein-coding genes MutS homolog: msh1) and their endosymbiotic Symbiodinium spp. (utilizing nuclear internal transcribed spacer of ribosomal DNA: ITS- rDNA). Chemotypes, molecular phylogenetic clades, and sclerites of Sarcophyton trocheliophorum specimens formed a clear and distinct group, but the relationships between chemotypes, molecular phylogenetic clade types and sclerites of the most common species, Sarcophyton glaucum, was not clear. S. glaucum was divided into four clades. A characteristic chemotype was observed within one phylogenetic clade of S. glaucum. Identities of symbiotic algae Symbiodinium spp. had no apparent relation to chemotypes of Sarcophyton spp. This study demonstrates that the complex results observed for S. glaucum are due to the incomplete and complex taxonomy of this species group. Our novel method of identification should help contribute to classification and taxonomic reassessment of this diverse soft coral genus.  相似文献   

6.
A new species of entomopathogenic nematode, herein described as Steinernema akhursti sp. n., was recovered from soil samples collected from Yunnan Province, the People's Republic of China. Both morphological and molecular data show congruently that S. akhursti sp. n. belongs to the Steinernema feltiae group. It can be separated from all described Steinernema species by the combined morphological and morphometrical characters of various stages of the nematodes. For the first generation male, the new species can be recognized by spicule length 90 +/- 4.6 microm, spicule tip blunt with an aperture on the ventral side, gubernaculum with a long and needle-shaped cuneus, and tail conoid with a prominent mucron on the tip and a concave on ventral side. For the infective juvenile, the combination of the following characters: body length 812 +/- 19 microm, distance from anterior end to excretory pore 59 +/- 1.5 microm, tail length 73 +/- 2.9 microm, E% 77 +/- 4.5, lateral field with six evenly distributed and identical ridges at the middle body portion, and tail with long and slightly constrict hyaline portion can be used to separate the new species from other nematodes. For the female, the new species is characterized by: tail conoid with a short mucron and slightly swelling anal portion and a symmetrical, slightly protruding vulva with conspicuous double-flapped epiptygma. The nematode can be separated from other described species of Steinernema by DNA sequences of either a partial 28S rDNA or the internal transcribed spacer regions of rDNA and from the closely related species S. feltiae and Steinernema oregonense by cross-breeding tests.  相似文献   

7.
Steinernema carpocapsae infective juvenile (IJ) nematodes are intestinally colonized by mutualistic Xenorhabdus nematophila bacteria. During IJ development, a small number of ingested X. nematophila cells initiate colonization in an anterior region of the intestine termed the vesicle and subsequently multiply within this host niche. We hypothesize that efficient colonization of a high percentage of S. carpocapsae individuals (typically>85%) is facilitated by bacterial adherence to a site(s) in the nematode intestine. We provide evidence that the adherence site is a structure in the lumen of the IJ vesicle that we have termed the intravesicular structure (IVS). The IVS is an untethered cluster of anucleate spherical bodies that co-localizes with colonizing X. nematophila cells, but does not require X. nematophila for its formation. Colocalization with the IVS is readily apparent in IJs colonized by X. nematophila mutants that initiate intestinal colonization but fail to proliferate normally, suggesting that bacterial-IVS interaction occurs early in the colonization process. Treatment with insect haemolymph induces anal release of X. nematophila from colonized IJs and induces release of the IVS from uncolonized S. carpocapsae IJs. Released IVS were probed with several carbohydrate-specific lectins. One lectin, wheat-germ agglutinin, reacts strongly with a mucus-like substance that is present around individual spheres in the aggregate IVS. Potential roles for the IVS in mediating X. nematophila colonization of the nematode intestine are discussed.  相似文献   

8.
The specificity of a horizontally transmitted microbial symbiosis is often defined by molecular communication between host and microbe during initial engagement, which can occur in discrete stages. In the symbiosis between Steinernema nematodes and Xenorhabdus bacteria, previous investigations focused on bacterial colonization of the intestinal lumen (receptacle) of the nematode infective juvenile (IJ), as this was the only known persistent, intimate and species‐specific contact between the two. Here we show that bacteria colonize the anterior intestinal cells of other nematode developmental stages in a species‐specific manner. Also, we describe three processes that only occur in juveniles that are destined to become IJs. First, a few bacterial cells colonize the nematode pharyngeal‐intestinal valve (PIV) anterior to the intestinal epithelium. Second, the nematode intestine constricts while bacteria initially remain in the PIV. Third, anterior intestinal constriction relaxes and colonizing bacteria occupy the receptacle. At each stage, colonization requires X. nematophila symbiosis region 1 (SR1) genes and is species‐specific: X. szentirmaii, which naturally lacks SR1, does not colonize unless SR1 is ectopically expressed. These findings reveal new aspects of Xenorhabdus bacteria interactions with and transmission by theirSteinernema nematode hosts, and demonstrate that bacterial SR1 genes aid in colonizing nematode epithelial surfaces.  相似文献   

9.
Infection of Galleria mellonella larvae with the entomopathogenic nematodes Steinernema feltiae (A21 and R strains) and Steinernema glaseri (Dongrae) resulted in several species of bacteria, including the respective bacterial symbiont, Xenorhabdus spp., growing in the infected insect cadavers. These other bacteria were Enterococcus in all three nematode infections studied and Acinetobacter in the S. feltiae infections. The respective populations of these bacteria changed with time. Following infection of G. mellonella larvae with any one of the Steinernema sp., only Enterococcus bacteria were detected initially in the dead larvae. Between 30 and 50h post-infection Xenorhabdus bacteria were detected and concurrent with this Enterococcus population declined to zero. This was probably due to secondary metabolites with antibacterial properties that were produced by Xenorhabdus. In the S. feltiae (both R and A21 strains) infections a third bacterium, Acinetobacter, appeared at about 130h (in S. feltiae A21 infections) or 100h (in S. feltiae R infections) and increased in population size to approximately that of Xenorhabdus. It was demonstrated that Enterococcus, orginating from the G. mellonella digestive tract, was sensitive to the organically soluble antimicrobials produced by Xenorhabdus but Acinetobacter, which was carried by the nematode, was not.  相似文献   

10.
A hypothesis-based framework was used to test if 3 genetic strains of Mesocestoides (clades A, B, and C) are distinct evolutionary lineages, thereby supporting their delimitation as species. For comparative purposes, 3 established cestode species, Taenia pisiformis, Taenia serialis, and Taenia crassiceps were assessed using the same methods. Sequence data from mitochondrial rDNA (12S) and the second internal transcribed spacer of nuclear rDNA (ITS-2) revealed derived (autapomorphic) characters for lineages representing clade A (n = 6 autapomorphies), clade B (n = 4), and clade C (n = 9) as well as T. pisiformis (n = 15) and T. serialis (n = 12). Furthermore, multivariate analysis of morphological data revealed significant differences among the 3 genetic strains of Mesocestoides and between T. pisiformis and T. serialis. The level of phenotypic variation within evolutionary lineages of Mesocestoides and Taenia spp. tapeworms was similar. Results from this study support recognizing Mesocestoides clades A, B, and C as separate species, and provide evidence that clade B and Mesocestoides vogae are conspecific.  相似文献   

11.
Entomopathogenic nematodes of the genus Steinernema are lethal parasites of insects that are used as biological control agents of several lepidopteran, dipteran and coleopteran pests. Phylogenetic relationships among 25 Steinernema species were estimated using nucleotide sequences from three genes and 22 morphological characters. Parsimony analysis of 28S (LSU) sequences yielded a well-resolved phylogenetic hypothesis with reliable bootstrap support for 13 clades. Parsimony analysis of mitochondrial DNA sequences (12S rDNA and cox 1 genes) yielded phylogenetic trees with a lower consistency index than for LSU sequences, and with fewer reliably supported clades. Combined phylogenetic analysis of the 3-gene dataset by parsimony and Bayesian methods yielded well-resolved and highly similar trees. Bayesian posterior probabilities were high for most clades; bootstrap (parsimony) support was reliable for approximately half of the internal nodes. Parsimony analysis of the morphological dataset yielded a poorly resolved tree, whereas total evidence analysis (molecular plus morphological data) yielded a phylogenetic hypothesis consistent with, but less resolved than trees inferred from combined molecular data. Parsimony mapping of morphological characters on the 3-gene trees showed that most structural features of steinernematids are highly homoplastic. The distribution of nematode foraging strategies on these trees predicts that S. hermaphroditum, S. diaprepesi and S. longicaudum (US isolate) have cruise forager behaviours.  相似文献   

12.
Scinax (Anura: Hylidae) is a species-rich genus of amphibians (113 spp.), divided into five species groups by morphological features. Cladistic analyses however revealed only two monophyletic clades in these groups: Scinax catharinae and Scinax ruber. Most species from the S. catharinae clade are found in Atlantic rainforest, except for Scinax canastrensis,S. centralis, S. luizotavioi, S. machadoi,S. pombali and S. skaios. In the present work, specimens of Scinax collected in Chapada dos Guimarães, central Brazil, were morphologically compatible with species from theS. catharinae group. On the other hand, genetic analysis based on mitochondrial (16S and 12S) and nuclear (rhodopsin) sequences revealed a nucleotide divergence of 6 to 20% between Scinax sp. and other congeners from the Brazilian savannah (Cerrado). Accordingly, Bayesian inference placed Scinax sp. in the S. catharinae clade with high support values. Hence, these findings strongly indicate the presence of a new species in the S. catharinae clade from the southwestern portion of the Brazilian savannah. To be properly validated as a novel species, detailed comparative morphological and bioacustic studies with other taxa from Brazil such asS. canastrensis, S. centralis, S. luizotavioi, S. machadoi, S. pombali and S. skaios are required.  相似文献   

13.
We redescribe Orchispirium heterovitellatum based on the holotype and 3 original voucher specimens collected from the mesenteric blood vessels of scaly whiprays Himantura imbricata (Bloch and Schneider, 1801) (as Dasyatis imbricatus) captured in the western Bay of Bengal off Waltair, India. We emend the diagnosis of Orchispirium to include anterior sucker present, testis looping, cirrus sac enveloping large internal seminal vesicle, oviducal seminal receptacle present, and metraterm short and thin-walled. We describe Myliobaticola richardheardi n. gen., n. sp. based on live observations, light microscopy, and scanning electron microscopy of adult specimens collected from between the cardiac trabeculae of Atlantic stingrays Dasyatis sabina (Lesueur, 1824) captured in Mississippi Sound (type locality), Mississippi, and Apalachicola Bay, Florida. The new species has a minute, aspinous body lacking lateral tubercles; an aspinous and eversible anterior sucker lacking a peduncle; a posterior esophageal swelling; an inverse U-shaped intestine; smooth ceca terminating in the anterior body half; a looping testis lacking lobes; a cirrus sac enveloping a large internal seminal vesicle; a medial and primarily post-testicular ovary; an oviducal seminal receptacle; a postgonadal uterus flanking the internal seminal vesicle; a short and thin-walled metraterm; and a common genital pore. It lacks a pharynx and Laurer's canal. No other named aporocotylids infect a member of cohort Batoidea or have the combination of an aspinous body, an aspinous anterior sucker, a posterior esophageal swelling, an inverse U-shaped intestine, a looping testis, a cirrus sac enveloping a large internal seminal vesicle, and a common genital pore; these observations indicate that O. heterovitellatum and M. richardheardi are closely related. The discovery of a second species representing a second genus of Aporocotylidae in diamond stingrays (Dasyatidae) suggests that Batoidea is an undersampled host group for aporocotylid infections.  相似文献   

14.
Here we report a novel clade of secondary endosymbionts associated with insects and other arthropods. Seed bugs of the genus Nysius (Hemiptera: Lygaeidae) harbor the primary gammaproteobacterial symbiont Schneideria nysicola within a pair of bacteriomes in the abdomen. Our survey of Nysius species for their facultative bacterial associates consistently yielded a novel type of alphaproteobacterial 16S rRNA gene sequence in addition to those of Wolbachia. Diagnostic PCR survey of 343 individuals representing 24 populations of four Nysius species revealed overall detection rates of the alphaproteobacteria at 77.6% in Nysius plebeius, 87.7% in Nysius sp. 1, 81.0% in Nysius sp. 2, and 100% in Nysius expressus. Further survey of diverse stinkbugs representing 24 families, 191 species, and 582 individuals detected the alphaproteobacteria from an additional 12 species representing six families. Molecular phylogenetic analysis showed that the alphaproteobacteria from the stinkbugs form a distinct and coherent monophyletic group in the order Rickettsiales together with several uncharacterized endosymbionts from fleas and ticks. The alphaproteobacterial symbiont clade was allied to bacterial clades such as the endosymbionts of acanthamoebae, the endosymbionts of cnidarians, and Midichloria spp., the mitochondrion-associated endosymbionts of ticks. In situ hybridization and electron microscopy identified small filamentous bacterial cells in various tissues of N. plebeius, including the bacteriome and ovary. The concentrated localization of the symbiont cells at the anterior pole of oocytes indicated its vertical transmission route through host insect generations. The designation "Candidatus Lariskella arthropodarum" is proposed for the endosymbiont clade.  相似文献   

15.
The phylogenetic relationships among populations of seaperch, Helicolenus spp., in the south-west Pacific were examined with mtDNA markers. Parts of the cytochrome b gene [459 base pair (bp)] and the control region (448 bp) were sequenced in 58 specimens from the south-west Pacific and four specimens of Helicolenus lengerichi from Chile. Only one clade was recognized in New Zealand coastal waters, despite a wide range of colour morphs. This clade also occurred in the mid Tasman Sea on the Norfolk Ridge and around Tasmania and Victoria. A second sympatric clade was identified around Tasmania and Victoria and to the west of New Zealand. A third allopatric clade was identified to the north of New Zealand and in deep water on the Chatham Rise and a fourth clade on the Foundation Seamounts and the Louisville Ridge. Helicolenus lengerichi from Chile formed a fifth clade. Assuming a molecular clock, the clades were estimated to have diverged c. 0·7–2·6 million years ago. Only two clades, around Tasmania and Victoria, were separated using morphology, colour (in live) and dorsal-fin soft ray counts and were confirmed as Helicolenus percoides and Helicolenus barathri . Two characters, orbit diameter and colour variation, previously used to identify two species in New Zealand waters were unreliable characters for species discrimination. Principle component analyses of 11 morphological measures from 67 individuals did not delineate the clades. A canonical discriminant analysis was able to separate four of the five clades, but mean discriminate probabilities were low (77·6%), except for the five Chilean specimens of H. lengerichi (100%).  相似文献   

16.
Bacteria of the genus Xenorhabdus are mutually associated with entomopathogenic nematodes of the genus Steinernema and are pathogenic to a broad spectrum of insects. The nematodes act as vectors, transmitting the bacteria to insect larvae, which die within a few days of infection. We characterized the early stages of bacterial infection in the insects by constructing a constitutive green fluorescent protein (GFP)-labeled Xenorhabdus nematophila strain. We injected the GFP-labeled bacteria into insects and monitored infection. We found that the bacteria had an extracellular life cycle in the hemolymph and rapidly colonized the anterior midgut region in Spodoptera littoralis larvae. Electron microscopy showed that the bacteria occupied the extracellular matrix of connective tissues within the muscle layers of the Spodoptera midgut. We confirmed the existence of such a specific infection site in the natural route of infection by infesting Spodoptera littoralis larvae with nematodes harboring GFP-labeled Xenorhabdus. When the infective juvenile (IJ) nematodes reached the insect gut, the bacterial cells were rapidly released from the intestinal vesicle into the nematode intestine. Xenorhabdus began to escape from the anus of the nematodes when IJs were wedged in the insect intestinal wall toward the insect hemolymph. Following their release into the insect hemocoel, GFP-labeled bacteria were found only in the anterior midgut region and hemolymph of Spodoptera larvae. Comparative infection assays conducted with another insect, Locusta migratoria, also showed early bacterial colonization of connective tissues. This work shows that the extracellular matrix acts as a particular colonization site for X. nematophila within insects.  相似文献   

17.
The sex of encysted and excysted intestine-infecting T. spiralis larvae can be distinguished by the following morphological characteristics: the male larva has a long (approx 50 μm) rectum, and the anterior part of the testis is curved posteriorly. The female larva has a shorter rectum (approx 25 μm), a telogonic ovary, coiled uterine and seminal receptacle primordia, and a vaginal primordium. In paraffin sections males can be recognized by the spermatocytes which are of the same size. The oocytes vary in size: the smallest are located in the ventral portion, the largest on the dorsal portion of the ovary. Sex of the larvae can be differentiated by the length of the rectum as early as the tenth day, by the curvature of the anterior part of the testis and by the uterine primordium by the eleventh day, and by the presence of the vaginal primordium by the thirteenth day of intramuscular development. Farre's Organ is believed to be the primordium of the seminal receptacle.  相似文献   

18.
The intestinal vesicle is a modification of the ventricular portion of the intestine of infective larvae of nematodes of the family Steinernematidae. This structure, which normally houses the bacterium Xenorhabdus nematophilus in Steinernema species, was examined in a number of species either in the living state using differential interference contrast optics or in sections under the electron microscope. In Steinernema bibionis and S. kraussei the vesicle was found to be a thick walled, tapered structure packed with bacteria. In S. glaseri the wall of the vesicle was more irregular in thickness and the bacteria were not so tightly packed, whilst in S. feltiae the wall was thinner still. Development of the vesicle is not dependent on the presence of bacteria; a similar but empty structure was produced in axenically grown infective larvae of S. bibionis. The vesicle of an undescribed steinernematid designated Q1 was found to differ substantially from those mentioned above in that it had distinct microvilli. The lumen of this structure was filled with an amophorus matrix in which bacteria were embedded some distance apart from each other. There appears to be considerable variation in the morphology of the intestinal vesicle in the infective larvae of different steinernematids.  相似文献   

19.
A new species of entomopathogenic nematode, Steinernema aciari sp. n. was described. It was recovered from a soil sample collected from Haimen town, Shantou district in the eastern coast of Guangdong province, the People's Republic of China during a survey for entomopathogenic nematodes. S. aciari sp. n. belongs to the Steinernema glaseri group. It can be separated from all described Steinernema species by the combined morphological and morphometrical characters of various stages of the nematodes. For male, the new species can be recognized by spicule length (86+/-6.3 microm); spicule tip blunt with a hook-like structure; gubernaculum with a short and Y-shaped cuneus and corpus well-separated posteriorly. For infective juvenile, the combination of the following characters: body length (1113+/-68 microm), distance from anterior end to excretory pore (95+/-3.7 microm), tail length (78+/-5.2 microm), and E % (123+/-7) can be used to differentiate the new species from other nematodes. For female, the tail (conoid with a long mamillate terminus and a distinct postanal swelling) and vulva (slightly protruding from body surface with conspicuous double flapped epiptygma) shapes can be used as diagnostic characters for the new species. The new species can also be distinguished from other Steinernema species by DNA sequences of either a partial 28S rDNA or the internal transcribed spacer regions of rDNA, and from the close related species S. glaseri, Steinernema longicaudum CWL05, and Steinernema guangdongense by cross-breeding test.  相似文献   

20.
Galleria mellonella L. larvae were infected with three species (seven strains) of Steinernema spp. or three species (three strains) of Heterorhabditis spp. Infected larvae were incubated at 22, 27, and 32 degrees C. Larvae were dorsally dissected every 6h over a 48-h period. Hemolymph was collected and streaked on tryptic soy agar plates. Several non-symbiotic bacterial species were identified from infected insect cadavers: Enterobacter gergoviae, Vibrio spp., Pseudomonas fluorescens type C, Serratia marcescens, Citrobacter freundii, and Serratia proteomaculans. At 18-24 h incubation, the nematode-associated symbiont occurred almost exclusively. Bacterial associates generally appeared outside the 18-24 h window. Infective juveniles of Steinernema feltiae (Filipjev) (27), Steinernema riobrave Cabanillas, Poinar, and Raulston (Oscar), or Steinernema carpocapsae (Weiser) (Kapow) were left untreated, or surface sterilized using thimerosal, then pipetted under sterile conditions onto tryptic soy agar plates. Several additional species of associated bacteria were identified using this method compared with the less extensive range of species isolated from infected G. mellonella. There was no difference in bacterial species identified from non-sterile or surface sterilized nematodes, suggesting that the bacteria identified originated from either inside the nematode or between second and third stage juvenile cuticles. Infective juveniles of S. feltiae (Cowles), S. carpocapsae (Cowles), and H. bacteriophora Poinar (Cowles) were isolated from field samples. Nematodes were surface-sterilized using sodium hypochlorite, mixed with G. mellonella hemolymph, and pipetted onto Biolog BUG (with blood) agar. Only the relevant symbionts were isolated from the limited number of samples available. The nematodes were then cultured in the laboratory for 14 months (sub-cultured in G. mellonella 7-times). Other Enterobacteriaceae could then be isolated from the steinernematid nematodes including S. marcescens, Salmonella sp., and E. gergoviae, indicating the ability of the nematodes to associate with other bacteria in laboratory culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号