首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Gamma‐aminobutyric acid type A receptors (GABAARs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABAARs determine their function and pharmacological profile. GABAARs are heteropentamers of subunits, and (α1)2(β3)2(γ2L)1 is a common subtype. Biochemical and biophysical studies of GABAARs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high‐level production of active human α1β3 GABAAR using tetracycline‐inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline‐inducible HEK293‐TetR cell line expressing human (N)–FLAG–α1β3γ2L–(C)–(GGS)3GK–1D4 GABAAR. These cells achieved expression levels of 70–90 pmol [3H]muscimol binding sites/15‐cm plate at a specific activity of 15–30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [3H]flunitrazepam to [3H]muscimol binding sites and sensitivity of GABA‐induced currents to benzodiazepines and zinc. The α1β3γ2L GABAARs were solubilized in dodecyl‐d ‐maltoside, purified by anti‐FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ~30%. Typical purifications yielded 1.0–1.5 nmoles of [3H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [3H]muscimol binding were maintained in the purified state.  相似文献   

2.
[35S]TBPS binding to the GABAA receptor ionophore binding site is anion dependent. Using autoradiography on rat brain sections, we show that permeabilities of anions through the receptor channel correlate with their efficiencies to promote basal [35S]TBPS binding. Phosphate made an exception as it induced more binding than expected from its permeability. Well-permeable anions (chloride, nitrate, formate) allowed [35S]TBPS binding to be effectively displaced by 1 mM GABA, whereas low-permeable anions (acetate, phosphate, propionate) markedly prevented this GABA effect, especially in the thalamus, the transition from the high to the low GABA effect being between formate and acetate. In the presence of phosphate, GABA enhanced [3H]flunitrazepam binding to benzodiazepine site of recombinant α1β2γ2 receptors with the same efficacy but lower potency as compared to the presence of chloride, whereas [35S]TBPS binding was abnormally modulated by GABA. These results suggest that inorganic phosphate affects coupling between agonist and ionophore sites in GABAA receptors. Special issue dedicated to Simo S. Oja  相似文献   

3.
Abstract

A GABA / benzodiazepine/barbiturate receptor complex has been purified from bovine cerebral cortex by affinity chromatography on a benzodiazepine column. Depending on the detergent present during the isolation of the receptor (deoxycholate/Triton X-100 or CHAPS/Asolectin), and during the binding assays (Triton X-100 or CHAPS), the receptor displays different binding properties for the GABAA agonist [3H]muscimol and for the chloride ion channel blocking agent [35S]t-butylbicyclophosphoro-thionate (TBPS), whereas the binding properties for the benzodiazepine [3H] flunitrazepam are independent of isolation and assay conditions. Both methods of isolation yield a protein complex consisting of the same two subunits of Mr 53000 and Mr 57000. Therefore the different binding properties reflect different conformations of the isolated receptor protein. [3H] flunitrazepam binding to the CHAPS-purified receptor is stimulated by GABA and the barbiturate pentobarbital in a dose-dependent manner. Photo-affinity labeling of the purified receptor with [3H] flunitrazepam leads to incorporation of radioactivity into both subunits, but predominantly into the Mr 53000 band, as shown by fluorography. Proteolytic degradation by trypsin of the isolated photo-affinity labeled receptor in detergent solution proceeds via a labeled Mr 48000 polypeptide. Proteolytic destruction of the reversible [3H]flunitrazepam and [3H]muscimol binding activities requires > 100 fold higher concentrations of trypsin than the decomposition of the receptor polypeptides into fragments < Mr 10000.  相似文献   

4.
We have measured the postnatal development and GABA modulation of benzodiazepine receptors in neuronal membranes from vitamin B-6 deficient and normal rats. In rats fed vitamin B-6 adequate and deficient diets there were age-dependent changes in [3H]flunitrazepam binding site affinity and in the number of binding sites. Vitamin B-6 deficiency produced a significant reduction in the potency of GABA to enhance [3H]flunitrazepam binding to cortical membranes prepared from 14 day old rats. These results suggests an uncoupling of the GABAa/benzodiazepine receptor at a developmental period when the animals are most susceptible to spontaneous seizures.  相似文献   

5.
In the internal granular layer of the cerebellar cortex the polysynaptic complexes called glomeruli consist mainly of homogeneous populations of glutamatergic and GABAergic synapses, both located on granule cell dendrites. A subcellular fraction enriched in glomeruli was prepared from rat cerebellum, and the distribution of GABAA and of benzodiazepine binding sites between membranes derived from this fraction (fraction G) and from a total cerebellar homogenate (fraction T) was studied. The benzodiazepine and GABA binding sites were measured by the binding of agonists [3H]flunitrazepam and [3H]muscimol, respectively. The results indicate that both binding sites are present, but only slightly enriched, in the glomerular synapses. We found a muscimol/flunitrazepam binding site ratio of two, which is consistent with the enrichement of muscimol binding sites in the granular layer shown by both autoradiographic with radioactive glutamatergic ligands and in situ hybridization experiments respectively.  相似文献   

6.
Chronic treatment of male Wistar rats with ethanol by inhalation did not affect the binding of [3H]flunitrazepam, [3H]GABA or [3H]muscimol to extensively washed synaptic membranes. Neither the affinity (Kd) nor the number of binding sites (Bmax) for these ligands was changed. However, GABA enhancement of [3H]flunitrazepam binding was significantly decreased by approx. 40% in ethanol-treated animals (172% compared to 215%). Acute treatment with ethanol did not produce changes in the binding of [3H]flunitrazepam or [3H]muscimol. These findings suggest that chronic ethanol treatment leads to uncoupling of the various receptor sites on the GABA—benzodiazepine receptor ionophore-complex in the brain.  相似文献   

7.
Abstract

The GABAA receptor of mammalian brain is a ligand-gated channel protein with allosteric binding sites for the benzodiazepines and barbiturate drugs. The receptor is an acidic oligomeric membrane glycoprotein and it has been purified to homogeneity from bovine cerebral cortex, bovine cerebellum and rat cerebral cortex by benzodiazepine affinity chromatography. In each case, extraction and purification with the zwitterionic detergent CHAPS and exogenous phospholipid has demonstrated the coexistence of GABA, benzodiazepine and cage convulsant ligand binding sites on a single protein complex; in addition the allosteric interactions between these sites are preserved in the isolated protein. The receptor has a heterologous structure that is conserved at the subunit level between the aforementioned mammalian species and brain regions. SDS-PAGE has shown that the receptor consists of two subunits, α (Mr 53000) and β (Mr 57000) present in equal stoichiometry. A model consistent with the determination of the molecular weight of the native protein, i.e., Mr 230,000, is that of a tetramer α2β2. [3H] Flunitrazepam and [3H]muscimol have been employed as photoaffinity labels to map the benzodiazepine and GABA binding polypeptides respectively. Polyclonal and monoclonal antibodies have been raised to the native bovine GABAA receptor and these have been employed for the further characterisation of the receptor protein.  相似文献   

8.
Abstract: An analogue of colchicine,β-lumicolchicine, does not bind tubulin or disrupt microtubules. However, this compound is not pharmacologically completely inactive. β-Lumicolchicine was found to competitively inhibit [3H]flunitrazepam binding and to enhance muscimol-stimulated 36Cr-uptake in mouse cerebral cortical microsacs. It also markedly potentiated GABA responses in Xenopusoocytes expressing human α1β2γ2S, but not α1β2, GABAA receptor subunits; this potentiation was reversed by the benzodiazepine receptor antagonist flumazenil. These results strongly suggest a direct effect of β-Lumicolchicine on the GABAA receptor/chloride channel complex and caution that it possesses pharmacological effects, despite its inability to disrupt microtubules. Furthermore, β-Lumicolchicine is structurally unrelated to benzodiazepines or quinolines and may provide a novel approach to the synthesis of ligands for this receptor.  相似文献   

9.
Extracts of Valeriana officinalis have been used in folkloric medicine for its sedative, hypnotic, tranquilizer and anticonvulsant effects, and may interact with -aminobutyric acid (GABA) and/or benzodiazepine sites. At low concentrations, valerian extracts enhance [3H]flunitrazepam binding (EC50 4.13 × 10–10 mg/ml). However, this increased [3H]flunitrazepam binding is replaced by an inhibition at higher concentrations (IC50 of 4.82 × 10–1 mg/ml). These results are consistent with the presence of at least two different biological activities interacting with [3H]flunitrazepam binding sites. Valerian extracts also potentiate K+ or veratridine-stimulated release of radioactivity from hippocampal slices preloaded with [3H]GABA. Finally, inhibition of synaptosomal [3H]GABA uptake by valerian extracts also displays a biphasic interaction with guvacine. The results confirm that valerian extracts have effects on GABAA receptors, but can also interact at other presynaptic components of GABAergic neurons.  相似文献   

10.
R W Johnson  H I Yamamura 《Life sciences》1979,25(18):1613-1620
Clonazepam, nitrazepam and flunitrazepam were found to engage in an irreversible interaction with benzodiazepine binding sites in bovine cerebral cortex homogenates upon irradiation with ultraviolet light. Photoaffinity labeling with [3H]flunitrazepam could be substantially (approx. 85%) inhibited by a number of different benzodiazepines, including clonazepam, lorazepam, Ro5-3027, and non-radioactive flunitrazepam. Spiroperidol, atropine, naltrexone, propranolol and GABA had no effect on irreversible [3H]flunitrazepam binding, indicating that this binding is to the benzodiazepine receptor as defined in previous studies.  相似文献   

11.
The characteristics of [3H]flunitrazepam binding to brain specific benzodiazepine receptors were determined at varying temperatures. The rates at which [3H]flunitrazepam associated with and dissociated from benzodiazepine receptors increased with increasing temperatures. The dissociation constant (KD) also increased with increases in temperature. The (KD) determined by Scatchard analyses of saturation isotherms showed a similar change with changes in temperature. The maximal binding capacity (Bmax) did not change with changes in temperature. The inhibitory constants of several benzodiazepines to inhibit [3H]flunitrazepam binding to brain were also higher at 37°C than at 0°C, suggesting that the binding affinity of all benzodiazepines to brain benzodiazepine receptors is lower at 37°C than at 0°C. Van't Hoff analysis of [3H]flunitrazepam binding to brain at different temperatures reveals two linear components to this relationship.  相似文献   

12.
Abstract: Heterogeneity of binding affinities for a variety of ligands was observed for γ-aminobutyric acid type A (GABAA) receptors in the rat CNS, at both GABA and ben-zodiazepine recognition sites. Photoaffinity labeling by [3H]flunitrazepam and [3H]muscimol to affinity column-purified receptor proteins was examined by gel electropho-resis in sodium dodecyl sulfate. Anesthetic barbiturates (pentobarbital) and steroids (alphaxalone) both differentially stimulated the incorporation of [3H]flunitrazepam more so into the 51-kDa α1 subunit than into the 53-kDa aL2 polypeptide, and incorporation of [3H]muscimol into the 55-kDa β2 subunit more so than the 58-kDaβ3 polypeptide. Binding to these polypeptides was also affected differentially by other allosteric modulators and competitive inhibitors, including the benzodiazepine “type 1” selective ligand CL218.872. Heterogeneity in affinity of this drug for the single 51-kDa α1 polypeptide strongly suggests that type I receptors, like type II, are heterogeneous. In brain sections, the extent of enhancement of [3H]muscimol binding showed significant regional variation, similar for both steroids and barbiturates, and the GABA analogues THlP and taurine inhibited muscimol binding with regional variations in affinity that were almost opposites of each other. Modulation of [3H]flunitrazepam binding by steroids, barbiturates, and THlP significantly varied with regions. Taken together, ligand binding heterogeneity exhibited by photoaffinity labeling and autoradiography demonstrate the existence of multiple pharmacological-binding subtypes resulting from the combination of multiple polypeptide gene products into several oligomeric isoreceptors. Comparison of the regional distribution of binding subtypes with that of different subunit gene products allows the following conclusions about possible subunit compositions of native pharmacological receptor subtypes present in the brain: Benzodiazepine pharmacology of the oligomeric receptor isofotms is dependent on the nature of α and subunits other than α, GABA-benzodiazepine coupling is dependent on the nature of the α subunits, GABA site pharmacology is dependent on the nature of the β sub-units, and several subunits including α and β contribute to the degree of sensitivity to steroids and barbiturates. Finally, the presence of discrete subunits may be necessary but is not sufficient to postulate a defined pharmacological property.  相似文献   

13.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

14.
Abstract: The alcohol-sensitive (ANT) rat line, developed for high behavioral sensitivity to ethanol, also exhibits enhanced sensitivity to benzodiazepines, such as diazepam. The rat line carries a point mutation in the cerebellum-specific γ-aminobutyric acid type A (GABAA) receptor subunit α6, making their diazepam-insensitive (DIS) receptors sensitive to diazepam. We now report that phenotypes of individual ANT and alcohol-insensitive rats, classified on diazepam sensitivity of cerebellar [3H]Ro 15-4513 binding, correlated well with homozygous wild-type, homozygous mutant, and heterozygous genotypes, although some heterozygotes were biased toward the parental phenotypes. GABA down-modulated DIS [3H]Ro 15-4513 binding in mutant homozygotes but tended to up-modulate it in heterozygotes and wild-type homozygotes. Slopes for GABA inhibition of cerebellar t-butylbicyclophosphoro[35S]thionate binding were larger in mutant than in wild-type homozygotes, with heterozygotes being intermediate. Diazepam displacement of [3H]Ro 15-4513 binding in heterozygotes revealed three components, with their affinities indistinguishable from those in combined wild-type and mutant homozygotes. This lack of interaction in DIS binding between wild-type and mutant α6 subunits was substantiated by experiments on recombinant receptors. The data suggest that the α6 subunit-containing GABAA receptors in the heterozygotes are formed from individual mutant and wild-type subunits with their relative expression differing from animal to animal.  相似文献   

15.
Tien LT  Ma T  Fan LW  Loh HH  Ho IK 《Neurochemical research》2007,32(11):1891-1897
Anatomical evidence indicates that γ-aminobutyric acid (GABA)-ergic and opioidergic systems are closely linked and act on the same neurons. However, the regulatory mechanisms between GABAergic and opioidergic system have not been well characterized. In the present study, we investigated whether there are changes in GABAA receptors in mice lacking μ-opioid receptor gene. The GABAA receptor binding was carried out by autoradiography using [3H]-muscimol (GABAA), [3H]-flunitrazepam (FNZ, native type 1 benzodiazepine) and [35S]-t-butylbicyclophosphorothionate (TBPS, binding to GABAA-gated chloride channels) in brain slices of wild type and μ-opioid receptor knockout mice. The binding of [3H]-FNZ in μ-opioid receptor knockout mice was significantly higher than that of the wild type controls in most of the cortex and hippocampal CA1 and CA2 formations. μ-Opioid receptor knockout mice show significantly lower binding of [35S]-TBPS than that of the wild type mice in few of the cortical areas including ectorhinal cortex layers I, III, and V, but not in the hippocampus. There was no significant difference in binding of [3H]-muscimol between μ-opioid receptor knockout and wild type mice in the cortex and hippocampus. These data indicate that there are specific regional changes in GABAA receptor binding sites in μ-opioid receptor knockout mice. These data also suggest that there are compensatory up-regulation of benzodiazepine binding site of GABAA receptors in the cortex and hippocampus and down-regulation of GABA-gated chloride channel binding site of GABAA receptors in the cortex of the μ-opioid receptor knockout mice.  相似文献   

16.
We evaluated the effects of 6-methoxyflavanone and 6-methoxyflavone on wild-type α1/α2β2γ2L GABAA and ρ1 GABAC receptors and on mutant ρ1I307S, ρ1W328 M, ρ1I307S/W328 M GABAC receptors expressed in Xenopus oocytes using two-electrode voltage clamp and radioligand binding. 6-Methoxyflavanone and 6-methoxyflavone act as a flumazenil-insensitive positive allosteric modulator of GABA responses at human recombinant α1β2γ2L and α2β2γ2L GABAA receptors. However, unlike 6-methoxyflavone, 6-methoxyflavanone was relatively inactive at α1β2 GABAA receptors. 6-Methoxyflavanone inhibited [3H]-flunitrazepam binding to rat brain membranes. Both flavonoids were found to be inactive as modulators at ρ1, ρ1I307S and ρ1W328 M GABA receptors but acted as positive allosteric modulators of GABA at the benzodiazepine sensitive ρ1I307S/W328 M GABA receptors. This double mutant retains ρ1 properties of being insensitive to bicuculline and antagonised by TPMPA and THIP. Additionally, 6-methoxyflavanone was also a partial agonist at ρ1W328 M GABA receptors. The relative inactivity of 6-methoxyflavanone at α1β2 GABAA receptors and it’s partial agonist action at ρ1W328 M GABA receptors suggest that it exhibits a unique profile not matched by other flavonoids.  相似文献   

17.
Abstract

The pharmacology of native and recombinant GABA-A receptors containing either γ1, γ2 or γ3 subunits has been investigated. The pharmacology of native receptors has been investigated by immunoprecipitating receptors from solubilised preparations of rat brain with antisera specific for individual γ-subunits and analysing their radioligand binding characteristics. Receptors containing a γ1-subunit do not bind benzodiazepine radioligands with high affinity. Those containing either a γ2 or γ3 subunit bind [3H]flumazenil with high affinity. Some compounds compete for these binding sites with multiple affinities, reflecting the presence of populations of receptors containing several different types of α-subunit. Photoaffinity-labelling of GABA-A receptors from a cell line stably expressing GABA-A receptors of composition α1β3γ2 followed by immunoprecipitation of individual subunits revealed that the α and γ but not the β-subunit could be irreversibly labelled by [3H]flunitrazepam.

The properties of recombinant receptors have been investigated in oocytes expressing γ1, γ2, or γ3 subunits in combination with an α and a β-subunit. Some compounds such as zolpidem, DMCM and flunitrazepam show selectivity for receptors containing different γ-subunits. Others such as CL 218,872 show no selectivity between receptors containing different γ-subunits but exhibit selectivity for receptors containing different α-subunits. These data taken together suggest that the benzodiazepine site of the GABA-A receptor is formed with contributions from both the α and γ-subunits.  相似文献   

18.
Previously we have reported the presence of endogenous ligands that are involved in the regulation of the binding of muscimol to the GABA binding site of the GABAA receptors. Here, we report the presence of multiple forms of endogenous ligands in the brain which modulate the binding of flunitrazepam (FNZP) to the benzodiazepine (BZ) binding site of the GABAA receptor. Furthermore, one of the endogenous ligands for the BZ receptors, referred to as EBZ, has been identified as inosine based on the following observations: (1) standard inosine and the EBZ have identical NMR and UV spectra; (2) the elution profile of inosine and the EBZ from a HPLC column are indistinguishable, and (3) inosine and the EBZ show identical activity in inhibiting [3H]FNZP binding.  相似文献   

19.
GABA receptor binding to mammalian neuronal membranes has been classified into at least 2 subtypes—GABAA and GABAB binding sites. In catfish brain GABAA receptor sites have previously been demonstrated. Evidence is now presented that under appropriate conditions which rule out GABAA receptor binding, [3H]GABA binds to membranes prepared from catfish brain. This binding is bicuculline-insensitive but differs enough from mammalian GABAB binding to cast some doubt on the idea that GABAB receptors exist in catfish brain. Specific binding was detected that was saturable and exhibited a dissociation constant of 4μM. (±)Baclofen, a potent inhibitor in rat brain, was a weak inhibitor, producing a maximum of 43% inhibition. This inhibitory effect could be enhanced, however, in the presence of 320 μM isoguvacine. [3H]GABA binding was unaffected by bicuculline. Thus bicuculline-insensitive GABA binding sites exist in catfish brain but they differ in a number of ways from the GABAB receptor site found in mammals. Furthermore, a third [3H]GABA binding site appears to exist that is both baclofen- and bicuculline-insensitive, yet is inhibited by high concentrations of isoguvacine, a known GABAA agonist.  相似文献   

20.
The biochemical and pharmacological properties of nuclear [3H]flunitrazepam in brain tissues were studied. Nuclear [3Hflunitrazepam binding is saturable for both central and peripheral binding sites. Inosine and hypoxanthine displace nuclear [3H]flunitrazepam binding with greater potency than the membrane [3H]flunitrazepam binding. Triiodothyronine (T3) increases the maximum number of binding sites (Bmax) of nuclear [3H]flunitrazepam binding in vitro while thyroxine (T4) does not have any effect. Diazepam reduces the affinity of nuclear125I-T3 binding in vitro, while the Bmax is not affected significantly. Mild digestion of chromatin, using micrococcal nuclease, reveals that a major portion of nuclear [3H]flunitrazepam binding sites are located on chromatin. These data suggest a functional role for nuclear benzodiazepine binding and a possible modulatory effect of benzodiazepines on T3 binding with its nuclear receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号