首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
19F-n.m.r. spectroscopy was used to study the binding of 3',5'-difluoromethotrexate to dihydrofolate reductase (tetrahydrofolate dehydrogenase) from Lactobacillus casei. The benzoyl ring of the bound difluoromethotrexate was found to 'flip' about its symmetry axis, and the rate (7.3 X 10(3) s-1 at 298 K) and activation parameters for this process were determined by lineshape analysis of the 19F-n.m.r. spectrum at a series of temperatures in the range 273-308 K. The contributions to the barrier for this process are discussed. Addition of NADP+ or NADPH to form the enzyme-difluoromethotrexate-coenzyme ternary complex led to an increase in the rate of benzoyl ring flipping by a factor of 2.6-2.8-fold, and to substantial changes in the 19F-n.m.r. chemical shifts. The possible nature of the coenzyme-induced conformational changes responsible for these effects is discussed.  相似文献   

2.
Goat epididymal intact spermatozoa have been shown to possess on the external surface specific receptors that bind with high affinity to exogenous [8-3H]cyclic AMP. The ecto-cyclic AMP-receptor activity was not due to contamination of broken or "leaky" cells, if any. The binding reaction of [3H]cyclic AMP with the receptors was extremely rapid. Uptake of the labeled cyclic AMP to the sperm cytosolic fraction was undetectable. There was little leakage of cyclic AMP-receptors from intact spermatozoa during the binding assays. The binding reaction was proportional to cell concentration, specific and saturable at 250 nM cyclic AMP. The binding of the labelled cyclic nucleotide was nearly completely displaced at saturating concentrations (2.5 microM) of the unlabelled nucleotide. The ecto-receptors showed high specificity for binding to cyclic AMP. The Kd of the binding sites was approximately 1.7 X 10(-8) M. The binding interaction was highly sensitive to treatment with proteolytic enzymes: trypsin, chymotrypsin, or pronase (125 micrograms/ml). Sonication caused a nearly 450% increase of the ecto-receptor activity. The specific activity of the ecto-cyclic AMP-receptor was approximately twofold higher in the vigorously forwardly motile spermatozoa than in the "composite" cells, suggesting that the ecto-receptors may have a role in modulating flagellar motility.  相似文献   

3.
Won HS  Yamazaki T  Lee TW  Yoon MK  Park SH  Kyogoku Y  Lee BJ 《Biochemistry》2000,39(45):13953-13962
Cyclic AMP receptor protein (CRP) plays a key role in the regulation of more than 150 genes. CRP is allosterically activated by cyclic AMP and binds to specific DNA sites. A structural understanding of this allosteric conformational change, which is essential for its function, is still lacking because the structure of apo-CRP has not been solved. Therefore, we performed various NMR experiments to obtain apo-CRP structural data. The secondary structure of apo-CRP was determined by analyses of the NOE connectivities, the amide proton exchange rates, and the (1)H-(15)N steady-state NOE values. A combination of the CSI-method and TALOS prediction was also used to supplement the determination of the secondary structure of apo-CRP. This secondary structure of apo-CRP was compared with the known structure of cyclic AMP-bound CRP. The results suggest that the allosteric conformational change of CRP caused by cyclic AMP binding involves subunit realignment and domain rearrangement, resulting in the exposure of helix F onto the surface of the protein. Additionally, the results of the one-dimensional [(13)C]carbonyl NMR experiments show that the conformational change of CRP caused by the binding of cyclic GMP, an analogue of cyclic AMP, is different from that caused by cyclic AMP binding.  相似文献   

4.
5.
6.
Isolated rat kidneys were perfused with a recirculating medium containing exogenous adenosine 3':5'-monophosphate (cyclic AMP) or guanosine 3':5'-monophosphate (cyclic GMP) at an initial concentration of 0.1 mM. Both cyclic nucleotides were rapidly removed from the perfusate. Urinary excretion accounted for about 20% and 40% of the respective cyclic AMP and cyclic GMP lost from the perfusate. The metabolism of the cyclic nucleotides was studied by 14C-labeled cyclic nucleotides in the perfusate. During 60 min, 30% of added cyclic [14C]AMP was metabolized to renal [14C]adenine nucleotides (ATP, ADP, and AMP) and 30% to perfusate [14C]uric acid. Similarly, 20% of cyclic[14C]GMP was metabolized to renal [14C]guanine nucleotides (GTP, GDP, and GMP) and 30% to perfusate [14C]uric acid. Urine contained principally unchanged 14C-labeled cyclic nucleotide. Addition of 0.1 mM cyclic AMP to the perfusate elevated the renal ATP and ADP contents 2-fold. Addition of 0.1 mM of either cyclic AMP or cyclic GMP to the perfusate also elevated the renal production of uric acid 2- to 3-fold. The production and distribution of metabolites of exogenous cyclic nucleotides were also studied in the intact rat. Within 60 min after injection, 3.3 mumol of either 14C-labeled cyclic AMP or cyclic GMP was cleared from the plasma. Kidney cortex and liver were the principal tissues for 14C accumulation. Urinary excretion accounted for about 20 and 45% of the cyclic [14C]AMP and cyclic [14C]GMP lost from the plasma, respectively. The 14C found in the kidney and liver was present almost entirely as the respective purine mono-, di-, and trinucleotides. The other principal metabolite was [14C]allantoin, found in the urine and, to a lesser extent, the liver. The urine contained mostly unchanged 14C-labeled cyclic nucleotide. Unlike the findings with the perfused kidney, [14C]uric acid was not a significant metabolite of the 14C-labeled cyclic nucleotides in these in vivo experiments.  相似文献   

7.
B J Lee  H Aiba  Y Kyogoku 《Biochemistry》1991,30(37):9047-9054
The identification and assignment of the proton magnetic resonances of some aliphatic and aromatic amino acid residues of cyclic AMP receptor protein (CRP) are reported. The signals of the leucine and valine residues at around 0 ppm were identified on the basis of intermolecular nuclear Overhauser effects, deuterium labeling, and partial proteolytic digestion. On the addition of cAMP, methyl proton signals due to Val-49 and three leucine residues were detected as upfield-shifted signals at around -0.2 ppm. These signals can be used as indicators of the proper binding of cAMP because they are not observed on the addition of cGMP or 2'-deoxy-cAMP. They are also not observed on cAMP binding to mutant CRP*5 (Ser-62-Phe), which can only be activated by a high concentration of cAMP, but they are observed on cAMP binding to other mutant CRP*s (four species), which can be activated by lower concentrations of cAMP. The resonance of some aromatic protons, i.e., C-2H of two tryptophans, C-2H and C-4H of six histidines, and C-2,6H and C-3,5H of six tyrosine residues in CRP, were assigned by means of deuterium labeling and NOE measurements. The 1H NMR spectrum of labeled CRP [Trp(ring-d5), Phe(ring-d5), and Tyr(3,5-d2)] showed good resolution in the aromatic region. The addition of cAMP to this CRP in D2O caused pronounced line broadening of resonances arising from the residues in the cAMP-binding domain, but the resonances of the DNA-binding domain were not affected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Using purified rat ventricular myocytes and membranes prepared from them, we have previously found that alpha 1-adrenergic stimulation causes decreased cyclic AMP accumulation and decreased activation of cyclic AMP-dependent protein kinase. We have now analyzed the mechanism by which alpha 1 stimulation is linked to cyclic AMP metabolism. In an adenylate cyclase assay in which carbachol inhibits the stimulatory effect of norepinephrine, the addition of prazosin (alpha 1-antagonist) has no effect on the response to norepinephrine. In membranes prepared from myocytes treated with pertussis toxin, norepinephrine competes for alpha 1-receptors (assessed by [3H]prazosin binding) with two components, binding to the high affinity component being sensitive to exogenous GTP, exactly as in membranes prepared from control myocytes. In intact cells labeled with [3H]adenine in which carbachol antagonizes the norepinephrine response, prazosin enhances accumulation of [3H]cyclic AMP due to norepinephrine. Treatment of cells with pertussis toxin eliminates inhibition by carbachol but does not alter prazosin's capacity to enhance the norepinephrine response. Addition of phosphodiesterase inhibitors eliminates this effect of alpha 1 blockade. In [3H]adenine-labeled cells loaded with [3H]cyclic AMP by prior treatment with isoproterenol, alpha 1-adrenergic stimulation enhances disappearance of [3H]cyclic AMP. Measurements of cellular cyclic AMP give results similar to those obtained with the adenine labeling technic. We conclude that occupation of the myocyte alpha 1-receptor results in stimulation of cyclic AMP phosphodiesterase activity.  相似文献   

10.
Adipocytes from spontaneously hypertensive rats demonstrated a blunted lipolytic response to isoproterenol and dibutyryl cyclic AMP. (-)-[3H]Dihydroalprenolol binding was examined in adipocytes from normotensive and spontaneously hypertensive rats. Increasing concentrations of isoproterenol decreased total (-)-[3H]dihydroalprenolol binding to intact cells from normotensive rats, and the efficacy of competition was decreased in adipocytes from spontaneously hypertensive rats. Scatchard analysis indicated that the number of (-)-[3H]dihydroalprenolol binding sites and the affinity of dihydroalprenolol binding were comparable between normotensive and spontaneously hypertensive rats. Isoproterenol- and Gpp(NH)p-stimulated adenylate cyclase activity was consistently depressed in adipocyte membranes from spontaneously hypertensive rats as compared to normotensive rats. No difference in fluoride-stimulated adenylate cyclase activity was observed. The blunted lipolytic and cyclic AMP response to isoproterenol in these cells suggest a postreceptor lesion of the lipolytic pathway (possibly the guanine nucleotide regulatory protein) in adipocytes from spontaneously hypertensive rats. The blunted lipolytic response to dibutyryl cyclic AMP suggests defective regulation of lipolytic enzymes at the protein kinase-hormone-sensitive lipase level.  相似文献   

11.
Yao YN  Zhang QS  Yan XZ  Zhu G  Wang ED 《FEBS letters》2003,547(1-3):197-200
The 19F nuclear magnetic resonance (NMR) spectra of 4-fluorotryptophan (4-F-Trp)-labeled Escherichia coli arginyl-tRNA synthetase (ArgRS) show that there are distinct conformational changes in the catalytic core and tRNA anticodon stem and loop-binding domain of the enzyme, when arginine and tRNA(Arg) are added to the unliganded enzyme. We have assigned five fluorine resonances of 4-F-Trp residues (162, 172, 228, 349 and 446) in the spectrum of the fluorinated enzyme by site-directed mutagenesis. The local conformational changes of E. coli ArgRS induced by its substrates observed herein by 19F NMR are similar to those of crystalline yeast homologous enzyme.  相似文献   

12.
Renal cortical plasma membranes were solubilized with sodium deoxycholate. The membrane-bound cyclic AMP receptors retained biologic activity in the detergent-dispersed state exhibiting the properties of high affinity for cyclic AMP, saturability and specificity. Half-maximal binding of cycle [3H]-AMP to these receptors was found to occur at 0.06 muM and 1.5 pmol of cyclic [3H]AMP was bound per mg membrane protein at saturation (0.5 muM cyclic [3H]AMP). Sodium deoxycholate-solubilized membrane proteins were chromatographed on Biogel A-5m. Cyclic [3H]AMP receptors eluted in the internal volume at positions equivalent to molecular sizes of 50 000 and 20 000 daltons and in the void volume at molecular size greater than 450 000. After photoaffinity labeling the renal membrane receptors with cyclic [3H]AMP, we found peaks of tritium radioactivity which eluted at similar molecular size positions on this Bogel A-5m column. Further treatment of photoaffinity labeled membranes with sodium dodecyl sulfate, mercaptoethanol and urea, followed by polyacrylamide gel electrophoresis, showed bands of tritium-labeled receptor protein with relative mobilities corresponding to molecular sizes of 26 000 and 21 000 daltons. This study shows that porcine renal cortical membranes contain at least two molecular species of cyclic AMP receptors which may be associated with regulation of the membrane-bound cyclic AMP-dependent protein kinase.  相似文献   

13.
The circular dichroic spectra of [Arg8]vasopressin, [Mpr1, Arg8]vasopressin, [Mpr1, D-Arg8]-vasopressin, pressinamide, deaminopressinamide, tocinamide, deaminotocinamide, [Leu4, D-Arg8]-vasotocin, [Mpr1, Leu4, D-Arg8]vasotocin and [Phe2, Lys8]vasopressin have been studied. All these substances showed a characteristic positive dichroic band at about 225 nm due to the presence of tyrosine in sequence position 2. The intensity of this band was affected by interactions between the tyrosine side-chain and other structural elements in the molecule, such as the Na-amino group, the side-chain of phenylalanine in position 3 and the linear C-terminal peptide. Analysis of the response of this band to structural modifications of the molecule and change in the solvent (particularly comparing neutral aqueous solutions with hexafluoroacetone solutions) allowed some conformational conclusions. The linear C-terminal tripeptide is probably situated over the cyclic portion of the molecule both in vasopressin and oxytocin substances. Its steric interaction with the tyrosine side-chain seems to be particularly efficient in molecules containing D-arginine in position 8. In the vasopressin series the stacking interaction of neighbouring aromatic amino acid residues furthermore limits the conformational freedom of the tyrosine side-chain and also probably distorts the dihedral angles of residues 1-3 in comparison with oxytocin. The interactions of phenylalanine and arginine with tyrosine relatively decrease the conformational effects of the primary amino group. Consequently the local conformation of vasopressin in the region of the tyrosine residue is more rigid and less sensitive to changes in medium than that of oxytocin. The circular dichroic spectra did not show any basic conformational differences in the backbone peptide chain of oxytocin and vasopressin substances. A weak negative disulphide band at about 290 nm could be observed in the spectra of both series of substances.  相似文献   

14.
15.
Prostaglandin E1 is known to alter the structural and functional characteristics of red blood cells, yet, little is understood about the membrane receptors mediating this process. We therefore studied the binding of tritium-labeled prostaglandin E1 to the intact human erythrocyte membrane and demonstrated that the interaction is highly specific, rapid, saturable and reversible. Scatchard analysis of prostaglandin E1 binding to the membrane preparations showed the presence of two independent classes of prostaglandin E1 binding sites which differed in their affinity for the autacoid. The high-affinity class had Kd = 3.6 X 10(-9) M and the low-affinity class had Kd = 5.6 X 10(-5) M. The optimum pH for the binding of [3H]prostaglandin E1 to the erythrocyte membrane was found to be around 7.5 and maximum specific binding occurred at a concentration of 5 mM Mg2+ in the incubation mixture. [3H]Prostaglandin E1 bound to the membrane preparation could not be displaced by GTP or by its stable derivative Gpp[NH]p. However, prostaglandin E1 bound to the erythrocyte membrane preparation could be rapidly displaced by cyclic AMP. The IC50 (concentration of the nucleotide displacing 50% bound [3H]prostaglandin E1 from the membrane) was 75 nM. Other adenine nucleotides or cyclic GMP could not substitute for cyclic AMP. Unlike the right-side-out erythrocyte membrane, the inside-out membrane preparations do not bind [3H]prostaglandin E1. Treatment of right-side-out erythrocyte membrane preparation with neuraminidase markedly decreases the binding of prostaglandin E1. Incubation of the erythrocyte membrane preparation with trypsin resulted in total loss of the binding activity. These results indicate that the prostaglandin E1 binding sites located on the cell surface and sialic acid residues are required for prostaglandin E1 binding to the human erythrocytes. These results also indicated that the binding sites are glycoprotein in nature.  相似文献   

16.
Dong A  Malecki JM  Lee L  Carpenter JF  Lee JC 《Biochemistry》2002,41(21):6660-6667
Cyclic AMP receptor protein (CRP) regulates the expression of a large number of genes in E. coli. It is activated by cAMP binding, which leads to some yet undefined conformational changes. These changes do not involve significant redistribution of secondary structures. A potential mechanism of activation is a ligand-induced change in structural dynamics. Hence, the cAMP-mediated conformational and structural dynamics changes in the wild-type CRP were investigated using hydrogen-deuterium exchange and Fourier transform infrared spectroscopy. Upon cAMP binding, the two functional domains within the wild-type CRP undergo conformational and structural dynamics changes in two opposite directions. While the smaller DNA-binding domain becomes more flexible, the larger cAMP-binding domain shifts to a less dynamic conformation, evidenced by a faster and a slower amide H-D exchange, respectively. To a lesser extent, binding of cGMP, a nonfunctional analogue of cAMP, also stabilizes the cAMP-binding domain, but it fails to mimic the relaxation effect of cAMP on the DNA-binding domain. Despite changes in the conformation and structural dynamics, cAMP binding does not alter significantly the secondary structural composition of the wild-type CRP. The apparent difference between functional and nonfunctional analogues of cAMP is the ability of cAMP to effect an increase in the dynamic motions of the DNA binding domain.  相似文献   

17.
An assay for cyclic AMP is described which takes advantage of the high affinity of the dissociated receptor moiety of cyclic AMP-dependent protein kinase I for the nucleotide. The kinase is kept dissociated by salt (800 mM-NaCl/30mM-EDTA). In the presence of a simply prepared heat-stable protein fraction the binding reagent is stable for the time needed to reach equilibrium of binding. A simple procedure [precipitation with poly-(ethylene glycol) followed by DEAE-cellulose chromatography] is described for the separation of protein kinase I from other binding proteins for cyclic AMP in rabbit skeletal muscle. The sensitivity, precision, reproducibility and specificity of the assay compared favourably with those of other cyclic AMP assays. The main advantage of the present assay is its resistance towards non-specific interference from a number of salts, tissue-culture media and substances found in crude tissue extracts. The reliability of cyclic AMP measurement directly in crude tissue extracts was ensured by removal of the assayable cyclic AMP with cyclic nucleotide phosphodiesterase digestion or adsorption with antibody against cyclic AMP, by comparison with measurement in tissue extracts purified by chromatography on QAE-Sephadex or sequentially on Dowex 50, and aluminium oxide as well as by dilution and recovery experiments.  相似文献   

18.
19.
K Gaston  A Kolb    S Busby 《The Biochemical journal》1989,261(2):649-653
Binding of the Escherichia coli CRP protein to DNA fragments carrying nucleotide sequences closely corresponding to the consensus is very tight with a dissociation time of over 2 h in our conditions. The concentration of cyclic AMP required for this binding is below the physiological range of intracellular cyclic AMP concentrations. Changes in nucleotide sequence at positions that are not well-conserved between different naturally-occurring CRP sites allow a more rapid dissociation of CRP-DNA complexes. There is an inverse correlation between the stability of CRP binding to sites in vitro and the repression by glucose of expression dependent on these sites in vivo: expression that is dependent on the tighter binding sites cannot be repressed by the inclusion of glucose in the growth medium.  相似文献   

20.
Adenosine 3':5'-monophosphate (cyclic AMP), a mediator of hormone action in a variety of tissues, has been measured in its free and bound forms in intact cardiac tissue. We have used a rapid high dilution technique which involves tissue homogenization, subcellular fractionation, and separation of bound from free cyclic AMP by Millopore filtration. The precision of this method is dependent upon minimization of binding and dissociation of cyclic AMP that occur during the preparation and handling of tissue homogenates. In each experiment, a tracer of cyclic [3H]AMP prebound to isolated cardiac binding protein was freed of unbound cyclic [3H]AMP by Sephadex gel filtration and added to the tissue just prior to homogenization in cold EDTA buffer. This tracer was therefore treated identically to the sample through all subsequent dilution, fractionation, and filtration procedures, and provided an acurate internal monitor for total cyclic AMP dissociation during the course of the free-bound determination. Each tissue sample was then individually corrected for dissociation. Rapid dilution to produce a 1:1000 homogenate was found to lower endogenous cyclic AMP levels sufficiently to make binding (or rebinding) during the procedure negligible (less than 5%). Spontaneously beating rat right atria (controls) contained 5.96 +/- 0.28 pmol of cyclic AMP/mg of protein (n = 19) of which 41 and 14% were bound to soluble and particulate proteins, respectively. The remaining cyclic AMP was free. Pretreatment of the tissue with 1 muM isoproterenol (30 s at 30 degrees) increased both the bound and free forms of cyclic AMP (n = 8). While free cyclic AMP increased 420% with the catecholamine, the bound forms increased 240% (soluble) and 60% (particulate). Similar results were obtained when atria (n = 6) were treated with the phosphodiesterase inhibitor, methylisobutylxanthine (0.5 mM, 10 min at 30 degrees). When both agents were used together, cyclic AMP bound to soluble proteins was elevated 4-fold over control while free cyclic AMP increased 27-fold (n = 7), indicating saturation of the soluble sites. It could be calculated that less than one-third of these sites are occupied in the unstimulated cell. These sites may represent the R subunit of cyclic AMP-dependent protein kinase. The data suggest that half-maximal binding in vivo occurs at an intracellular free cyclic AMP concentration of about 1 muM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号