首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary In two forms of acetate flagellates, the colourless Volvocale Polytomella caeca and the green Volvocale Chlorogonium elongatum, cell organelles can be demonstrated which are ultrastructurally similar to microbodies of higher organisms. The organelles do not have a close association with the endoplasmic reticulum and are located in the peripheral cytoplasm between the elongated mitochondria. In Polytomella they exhibit more or less spherical profiles in section and have a maximum diameter of approximately 0.2–0.25 . In Chlorogonium the organelles occasionally have an elongated shape and are larger than in Polytomella. Employing the electron microscopic cytochemical reagent diaminobenzidine (DAB)/H2O2 to localize the microbodial marker enzyme catalase in these organelles, it was found that no accumulation of the electron-opaque product occurs in the microbodies either at alkaline or neutral pH or at room temperature or 37° C. Only the cristae of mitochondria are stained with the DAB reaction caused by cytochrome oxidase and possibly by a cytochrome peroxidase.Organelles of Polytomella caeca containing catalase or cytochrome oxidase can be separated by rate centrifugation of a crude particulate fraction on a sucrose gradient (Gerhardt, 1971). The particles isolated from the peak of catalase activity show the same fine structural characteristics as the microbodies in situ do. But again, there is no detectable staining of these organelles by the DAB/H2O2 reaction.The identity of the microbody-like particles in Polytomella caeca and Chlorogonium elongatum with microbodies in general is deduced despite the negative results in cytochemical localization of catalase in these organelles.  相似文献   

2.
Prominent staining of rat hepatic microbodies was obtained by incubating sections of aldehyde-fixed rat liver in a modified Graham and Karnovsky's medium for ultrastructural demonstration of peroxidase activity. The electron-opaque reaction product was deposited uniformly over the matrix of the microbodies. The microbodies were identified by their size, shape, presence of tubular nucleoids, and other morphologic characteristics, and by their relative numerical counts. The staining reaction was inhibited by the catalase inhibitor, aminotriazole, and by KCN, azide, high concentrations of H2O2, and by boiling of sections. These inhibition studies suggest that the peroxidatic activity of microbody catalase is responsible for the staining reaction. In the absence of exogenous H2O2 appreciable staining of microbodies was noted only after prolonged incubation. Addition of sodium pyruvate, which inhibits endogenous generation of H2O2 by tissue oxidases, or of crystalline catalase, which decomposes such tissue-generated H2O2, completely abolished microbody staining in the absence of H2O2. Neither diaminobenzidine nor the product of its oxidation had any affinity to bind nonenzymatically to microbody catalase and thus stain these organelles. The staining of microbodies was optimal at alkaline pH of 8.5. The biological significance of this alkaline pH in relation to the similar pH optima of several microbody oxidases is discussed. In addition to staining of microbodies, a heat-resistant peroxidase activity is seen in some of the peribiliary dense bodies. The relation of this reaction to the peroxidase activity of lipofuscin pigment granules is discussed.  相似文献   

3.
The localization of catalase in isolated maize scutellum glyoxysomes was investigated by means of the diaminobenzidine histochemical reaction. Only the membranes of the glyoxysomes become heavily stained after incubation with diaminobenzidine and H2O2. If the glyoxysomes are lysed with Tricine buffer at pH 9, 70% of the catalase is solubilized, while the remaining 30% is tightly bound to an insoluble fraction formed mostly by glyoxysomal membranes. This suggests that catalase may be present also in the matrix of the glyoxysomes. The lack of staining of the matrix with diaminobenzidine is probably due to the high concentration of catalase in the membranes of the organelles.  相似文献   

4.
The localization of peroxidase activity in methanol-grown cells of the yeast Hansenula polymorpha has been studied by a method based on cytochemical staining with diaminobenzidine (DAB). The oxidation product of DAB occurred in microbodies, which characteristically develop during growth on methanol, and in the intracristate space of the mitochondria. The staining of microbodies was H2O2 dependent, appeared to be optimal at pH 10.5, diminished below pH 10 and was inhibited by 20 mM 3-amino 1,2,4 triazole (AT). In contrast to these observations, the reaction in the mitochondria was not H2O2 dependent and not notably affected by differences in pH in the range of 8.5 to 10.5. Microbodies and mitochondria were also stained when H2O2 was replaced by methanol. Appropriate control experiments indicated that in this case methanol oxidase generated the H2O2 for the peroxidative conversion of DAB by catalase. These results suggest that catalase is located in the microbodies of methanol-grown yeasts. A model for a possible physiological function of the microbodies during growth on methanol is put forward.  相似文献   

5.
Two sites for the β-oxidation of fatty acids in avocado (Persea americana L.) mesocarp exist. One site is the microbody, the other the mitochondrion. It is apparent that the mitochondrial membrane barrier, which remains intact after sucrose density gradient centrifugation, prevents rapid access of acyl CoA substrates to matrix β-oxidation sites. Thus, intact mitochondria showed little β-oxidation enzyme activity. Rupturing of the mitochondrial membrane allowed rapid access of the acyl CoA substrates to matrix sites. Consequently, in ruptured mitochondria, high O2-oxidation enzyme activities were measured. O2 uptake studies further distinguished the two organellar sites of β-oxidation. During palmitoyl CoA oxidation, O2 uptake was reduced by catalase and increased by KCN in the microbodies, whilst mitochondrial O2 uptake was unaffected by catalase and reduced by KCN. This reflected the differing fates of FADH2, produced during the first β-oxidation step, in the two organelles. In addition, only the mitochondrial β-oxidation of fatty acids was carnitine-dependent.  相似文献   

6.
Synopsis The distribution of catalase and D-amino acid oxidase, marker enzymes for peroxisomes, was determined cytochemically in the kidney tubules of an euryhaline teleost, the three-spined stickleback.Catalase activity was localized with the diaminobenzidine technique. The presence of D-amino acid oxidase was determined using H2O2 generated by the enzyme, D-alanine as a substrate, and cerous ions for the formation of an electron-dense precipitate. Both enzymes appeared to be located in microbodies. The combined presence of these enzymes characterizes the microbodies as peroxisomes. Biochemically and cytochemically, no urate oxidase or glycolate-oxidizing L--hydroxy acid oxidase could be demonstrated.Stereological analysis of the epithelia lining the renal tubules showed that the fractional volume of the microbodies is 5 to 10 times higher in the cells of the second proximal tubules than in the other nephronic segments or the ureter. The fractional volume of the microbodies was similar in kidneys of freshwater and seawater fishes.  相似文献   

7.
In the anaerobic fungus Neocallimastix sp. L2 fermentation of glucose proceeds via the Embden-Meyerhof-Parnas pathway. Enzyme activities leading to the formation of succinate, lactate, ethanol, and formate are associated with the cytoplasmic fraction. The enzymes malic enzyme, NAD(P)H: ferredoxin oxidoreductase, pyruvate: ferredoxin oxidoreductase, hydrogenase, acetate: succinate CoA transferase and succinate thiokinase leading to the formation of H2, CO2, acetate, and ATP are localized in microbodies. Thus, these organelles are identified as hydrogenosomes. In addition, the microbodies contain the O2-scavenging enzymes NADH- and NADPH oxidase, while NAD(P)H peroxidase, catalase, or superoxide dismutase could not be detected. In cell-free extracts from zoospores of Neocallimastix sp. L2 the specific activities of hydrogenosomal enzymes as well as the quantities of these proteins are 2- to 6-fold higher than in mycelium extracts. These findings suggest that hydrogenosomes perform an important role-especially in zoospores — as H2-evolving, ATP-generating and O2-scavenging organelles.Abbrevations DTT Dithiotreitol - PEP Phosphoenol pyruvate  相似文献   

8.
During a 2-d sequence of anthesis, the spadices of the thermogenic arum lily, Philodendron selloum, regulated maximum temperature within a small range (37–44°C) by reversible thermal inhibition of respiratory heat production. This response protects the inflorescence and the attracted insects from thermal damage. Heat production by whole spadices, measured by O2 respirometry, equalled heat loss, measured by gradient layer calorimetry, which confirmed the heat equivalence of O2 consumption (20.4 J ml-1). This also indicated that there was no net phosphorylation during thermogenesis, heat production being the primary function of high rates of respiration. The sterile male florets consumed about 30 ml g-1 h-1 and the average 124-g spadix produced about 7 W to maintain a 30°C difference between spadix and ambient temperature. Most of the energy for thermogenesis is present in the florets before anthesis. Despite high respiratory rates, thermogenesis is an energetically inexpensive component of the reproductive process.  相似文献   

9.
Bernt Gerhardt 《Planta》1973,110(1):15-28
Summary The enzyme patterns in sunflower cotyledons indicate that the glyoxysomal function of microbodies is replaced by the peroxisomal function of these organelles during the transition from fat degradation to photosynthesis. The separation of the microbody population into glyoxysomes and peroxisomes during this transition period is reported. The mean difference in density between the activity peaks of glyoxysomal and peroxisomal marker enzymes on a sucrose gradient was calculated to be 0.007±0.004 g/cm3 and turned out to be significant (t=7.8>4.04=t 5;0.01). The activity peak of catalase coincides with that of isocitrate lyase in early stages of development, but shifts to the activity peak of peroxisomal marker enzymes during the transition period. No isozymes of the catalase could be detected by gel electrophoresis in the microbodies with the two different functions.During the rise of the peroxisomal marker enzymes no synthesis of the common microbody marker, catalase, could be demonstrated using the inhibitor allylisopropylacetamide. Using D2) for density labeling of newly-formed catalase, no difference is observed between the density of catalase from cotyledons grown on 99.8% D2O during the transition period and the density of enzyme from cotyledons grown on H2O. The activity of particulate glycolate oxidase is reduced 30–50% by allylisopropylacetamide, but is not affected by D2O. The chlorophyll formation in the cotyledons is strongly inhibited by both substances.  相似文献   

10.
Compartmentation of the metabolism of ethylamine in Trichosporon cutaneum X4 was studied in cells, grown on this compound as the sole source of energy, carbon, and nitrogen. Transfer experiments indicated that an amine oxidase is involved in the early metabolism of ethylamine. The synthesis of this enzyme was induced by primary amines and was subject to partial carbon catabolite repression. Repression by ammonium ions was not observed. Adaptation of glucose-grown cells to growth on ethylamine was associated with the development of many microbodies, which developed from already existing organelles present in the inoculum cells and multiplied by division. Cytochemical experiments indicated that the organelles contained amine oxidase and catalase. Therefore, they were considered to play a key role in the metabolism of ethylamine. The physiological significance of the microbodies was investigated by fractionation studies of homogenized protoplasts from ethylamine-grown cells by differential- and sucrose-gradient centrifugation of subcellular organelles. Intact microbodies were only obtained when the isolation procedure was performed at pH 5.8 in the absence of Mg2+-ions. Analysis of the different fractions indicated that the key enzymes of the glyoxylate cycle, namely isocitrate lyase and malate synthase, cosedimented together with catalase and amine oxidase. In addition, activities of malate dehydrogenase, glutamate:oxaloacetate aminotransferase (GOT) and (NAD-dependent) glutamate dehydrogenase were detected in these fractions. Electron microscopy revealed that they mainly contained microbodies. Cytochemical experiments indicated that the above enzymes were all present in the same organelle. These findings suggest that microbodies of ethylamine-grown T. cutaneum X4 produce aspartate, so allowing NADH generated in the oxidation of malate by malate dehydrogenase to be quantitatively reoxidized inside the organelles in a series of reactions involving GOT and glutamate dehydrogenase. Aspartase and fumarase were not detected in the microbodies; activities of these two enzymes were present in the cytoplasm.Abbreviations ABTS 2,2-Azino-di(3-ethylbenzthiazoline sulfonate [6]) - DTT dithiothreitol - GOT glutamate:oxaloacetate aminotransferase - DTNB 5,5-dithiobis-2-nitrobenzoate - DAB diaminobenzidine - BSPT 2-(2-benzothiazolyl)-3-(4-phthalhydrazidyl)-t-styryl-sH-tetrazolium chloride - PF convex fracture face - EF concave fracture face  相似文献   

11.
Glyoxysomes isolated from castor bean (Ricinus communis L. var. zanzibariensis) endosperm have been stained by the cytochemical diaminobenzidine reaction. The reaction product obtained by preincubation with 3,3′-diaminobenzidine and incubation with the reagent and H2O2 is distributed uniformly throughout the matrix of the organelles. Ricinosomes or dilated cisternae may be completely absent from the organelle preparation or are, at the most, a minor contaminant.  相似文献   

12.
Summary A novel procedure is described for fluorescence staining of microbodies, which can be applied quickly and easily. We developed this technique of microbody staining with the unicellular red algaCyanidioschyzon merolae. Cyanidioschyzon merolae only contains a single chloroplast, mitochondrion, and microbody per cell, and the mitotic cycle and the organelle division cycle are easily synchronized. Knowing that the concentration of H2O2 in the microbody is higher than it is in the cytosol and other cell components, we attempted to visualize the microbody by using fluorescence microscopy to detect H2O2. Brilliant sulfoflavin (BSF), used for detecting Fe2+ in analytical chemistry, fluoresces when it reacts with Fe2+ and H2C2. We were able to specifically stain microbodies with BSF, under acidic conditions (pH 3.0 or pH 2.5) with blue-light excitation. Using this procedure, we observed division of the microbody and the effect of aphidicolin on the microbody. We also discovered that microbody division is regulated by the cell nucleus and follows division of the cell nucleus.  相似文献   

13.
Rat liver peroxisomes are membrane-bounded organelles containing catalase and oxidases producing H2O2. Diffusion effects in the metabolism of H2O2 and the physiological significance of the structure of peroxisomes are explored on the basis of two models. Model I considers the liver cell as consisting of two rapidly mixed compartments, the peroxisomal contents and the rest of the cell, separated by a membrane. On the basis of model I, it is concluded that in order to maintain a minimal H2O2 concentration in the cytoplasm, there must be an H2O2 destroying system in the cytoplasm, but the capacity of this system need be only a small fraction of that of the catalase in the peroxisomes. Model II takes account of the detailed morphology of peroxisomes and includes the effect of peroxisomal membrane permeability to H2O2 and H2O2 diffusion inside and outside the peroxisomes. On the basis of previously published experimental data and model II, it is concluded that the latency of catalase activity in intact peroxisomes is due chiefly to a permeability barrier to H2O2 at the peroxisomal membrane rather than to a restriction of H2O2 diffusion within the peroxisomes. Peroxisomes are calculated to be very efficient at destroying the H2O2 produced within them, whether the H2O2 is produced in the catalase-free core or in the catalase-containing matrix. Less than 2% of the H2O2 produced in peroxisomes leaves the particles. The efficiency of H2O2 trapping is the consequence of the membrane permeability barrier. A similar H2O2 trapping efficiency could be achieved by particles without a membrane barrier only if H2O2 diffusion within such particles were reduced by many orders of magnitude.  相似文献   

14.
A comparative kinetic study of extracellular catalases produced by Penicillium piceum F-648 and their variants adapted to H2O2 was performed in culture liquid filtrates. The specific activity of catalase, the maximum rate of catalase-induced H2O2 degradation (V max), V max/K M ratio, and the catalase inactivation rate constant in the enzymatic reaction (k in, s–1) were estimated in phosphate buffer (pH 7.4) at 30°C. The effective constant representing the rate of catalase thermal inactivation (k in *, s–1) was determined at 45°C. In all samples, the specific activity and K M for catalase were maximum at a protein concentration in culture liquid filtrates of (2.5–3.5) × 10–4 mg/ml. The effective constants describing the rate of H2O2 degradation (k, s–1) were similar to that observed in the initial culture. These values reflected a twofold decrease in catalase activity in culture liquid filtrates. We hypothesized that culture liquid filtrates contain two isoforms of extracellular catalase characterized by different activities and affinities for H2O2. Catalases from variants 5 and 3 with high and low affinities for H2O2, respectively, had a greater operational stability than the enzyme from the initial culture. The method of adaptive selection for H2O2 can be used to obtain fungal variants producing extracellular catalases with improved properties.  相似文献   

15.
Empirical estimations of H2O2 concentration in a system containing bovine liver catalase and continually supplied with H2O2 were done to evaluate the efficiency of the enzyme to cleave H2O2. It was found that the continuous addition of H2O2 leads to the formation of steady-state concentrations of H2O2 in the medium. At a constant catalase concentration both the level and the duration of the steady state are dependent on the flow rate of H2O2. The increase of the catalase concentration in the medium does not change the steady-state level, it merely leads to the maintenance of the steady state for longer durations. At higher flow rates of H2O2, no steady state could be maintained, even when catalase was present in high excess. The incomplete cleavage of H2O2 by catalase under these conditions is due to the low affinity of catalase toward H2O2 (high Km value, apparent Km = 0.1M H2O2) and to the rapid inactivation of the enzyme during the continuous addition of H2O2.  相似文献   

16.
This research investigated microbial responses to bioremediation with hydrogen peroxide (H2O2) as a supplemental oxygen source. Columns containing aquifer material from Traverse City, MI, USA, were continuously supplied with benzene, toluene, ethylbenzene, o-xylene and m-xylene (BTEX) and H2O2 in increasing concentration. The microbial responses studied were changes in microbial numbers, community structure, degradative ability, and activity of catalase and superoxide dismutase (SOD). Both adaptation to H2O2 and stress-related consequences were observed. Adaptation to H2O2 was demonstrated by increased catalase and SOD activity during the course of the experiment. The microbial community in the untreated aquifer material used in the columns consisted primarily of Corynebacterium sp and Pseudomonas fluorescens. Following amendment with 500 mg L−1 H2O2, the column inlet was dominated by P. fluorescens with few Corynebacterium sp present; Xanthomonas maltophilia dominated the middle and outlet sections. Dimethyl phenols detected in the effluent of two of the biologically active columns were probably metabolic products. The ratio of oxygen to BTEX mass consumed was approximately 0.3 before H2O2 addition, 0.7 following 10 mg L−1 H2O2 supplementation, and 2.6 over the course of the experiment. Abiotic decomposition H2O2 was observed in a sterile column and impeded flow at a feed concentration of 500 mg L−1 H2O2. Increasing the BTEX concentration supplied to the biologically active columns eliminated flow disruptions by satisfying the carbon and energy demand of the oxygen evolved by increasing catalase activity. Received 15 February 1996/ Accepted in revised form 15 July 1996  相似文献   

17.
It was to be shown whether during the biogenesis of microbodies some of their components were already present in the cell prior to the organelle's assembly. To this end, the occurrence and properties of catalase in soluble and particular fractions of ripening cucumber seeds were examined. Homogenates of seeds from ripening fruits were fractionated by isopycnic density gradient centrifugation, and thus catalase was found in three different fractions: as a soluble enzyme in the gradient supernatant, as a membrane fraction at density d=1.18 kg l-1, and in association with microbodies. In the early steps of seed formation, catalase was detected at density d=1.18 kg l-1 and in the gradient supernatant. At a later stage of seed maturation, however, catalase was primarily associated with microbodies which exhibited an equilibrium density of d=1.23 kg l-1. M r as well as subunit M r of catalase were determined, and their close immunological relationship to leaf peroxisomal catalase and glyoxysomal catalase was demonstrated. Biosynthesis of catalase at different stages of seed maturation was investigated by in vivo labeling with l-[35S]methionine, l-[14C]leucine and -[3H]aminolaevulinic acid. Electrophoretic analysis of de novo synthesized catalase subunits revealed the occurrence of a heavy form (M r 57,500) in the soluble fraction; this form was preferentially labeled. A light form, M r 53,500, was detected in microbodies and also in the soluble fraction. The findings lend support to the hypothesis that the rate of catalase synthesis is highest in an early stage of seed formation, when globulins have already been formed, but before de novo synthesis of malate synthase has commenced. Prior to microbody assembling, a cytoplasmic pool of catalase was labeled.Abbreviations EDTA Na2-ethylenediaminotetraacetate - Hepes 4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid - M r molecular weight  相似文献   

18.
《Free radical research》2013,47(1):479-488
Washed or growing E. coli cells are killed by epinephrine, norepinephrine or dopamine in the presence of non lethal concentrations of Cu(II). Killing is enhanced by anoxia and by sublethal Concentrations of H2O1. The rate of killing is proportional to the rate of catecholamine oxidation. The copper epinephrine complex binds to E. coli cells, induces membrane damage and depletion of the cellular ATP pool. The cells may be partially protected by SOD or catalase but not by OH radical scavengers. Addition of H2O2 to cells which were sensitized by preincubation with the epinephrine-copper complex, causes rapid killing and DNA degradation. Sensitized cells are not protected by BSA.  相似文献   

19.
The usefulness of cell‐enclosing microcapsules in biomedical and biopharmaceutical fields is widely recognized. In this study, we developed a method enabling the preparation of microcapsules with a liquid core in one step using two enzymatic reactions, both of which consume H2O2 competitively. The microcapsule membrane prepared in this study is composed of the hydrogel obtained from an alginate derivative possessing phenolic hydroxyl moieties (Alg‐Ph). The cell‐enclosing microcapsules with a hollow core were obtained by extruding an aqueous solution of Alg‐Ph containing horseradish peroxidase (HRP), catalase, and cells into a co‐flowing stream of liquid paraffin containing H2O2. Formation of the microcapsule membrane progressed from the surface of the droplets through HRP‐catalyzed cross‐linking of Ph moieties by consuming H2O2 supplied from the ambient liquid paraffin. A hollow core structure was induced by catalase‐catalyzed decomposition of H2O2 resulting in the center region being at an insufficient level of H2O2. The viability of HeLa cells was 93.1% immediately after encapsulation in the microcapsules with about 250 µm diameter obtained from an aqueous solution of 2.5% (w/v) Alg‐Ph, 100 units mL?1 HRP, 9.1 × 104 units mL?1 catalase. The enclosed cells grew much faster than those in the microparticles with a solid core. In addition, the thickness of microcapsule membrane could be controlled by changing the concentrations of HRP and catalase in the range of 13–48 µm. The proposed method could be versatile for preparing the microcapsules from the other polymer derivatives of carboxymetylcellulose and gelatin. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1528–1534, 2013  相似文献   

20.
The immediate effect of zinc (Zn) and hydrogen peroxide (H2O2) in Chara braunii was analyzed in short-time exposure experiments. The exposure concentrations were 12.3, 18.4, and 24.5 μmol L?1 H2O2, 12, 60, and 120 mg L?1 Zn, and 12.3 μmol L?1 H2O2 + 12 mg L?1 Zn, 12.3 μmol L?1 H2O2 + 60 mg L?1 Zn, and 18.4 μmol L?1 H2O2 + 12 mg L?1 Zn. The stress response of C. braunii was analyzed by measuring photosynthetic photosystem II activity, chlorophyll a and b and carotenoid contents, the H2O2 concentration, and antioxidant enzyme activities of ascorbic peroxidase, catalase, and guaiacol peroxidase. The short-term addition of Zn reduced pigment contents in C. braunii. Chlorophyll a and b and carotenoid contents in H2O2-exposed C. braunii were as high as in control plants. Photosynthesis was reduced in H2O2-treated C. braunii and the short-term addition of Zn did not affect the electron transport rate. H2O2 concentration and antioxidant enzyme activities in C. braunii were not significantly different between control and exposed plants. Trends of enzymatic adaptation were described: the H2O2-induced stress response was characterized by increased antioxidant enzyme activities, whereas Zn inactivated catalase in C. braunii.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号