首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the ciliate Tetrahymena, meiotic micronuclei (MICs) undergo extreme elongation, and meiotic pairing and recombination take place within these elongated nuclei (the “crescents”). We have previously shown that elongation does not occur in the absence of Spo11p-induced DNA double-strand breaks (DSBs). Here we show that elongation is restored in spo11Δ mutants by various DNA-damaging agents including ones that may not cause DSBs to a notable extent. MIC elongation following Spo11p-induced DSBs or artificially induced DNA lesions is probably a DNA-damage response mediated by a phosphokinase signal transduction pathway, since it is suppressed by the ATM/ATR kinase inhibitors caffeine and wortmannin and by knocking out Tetrahymena's ATR orthologue. MIC elongation occurs concomitantly with the movement of centromeres away from the telomeric pole of the MIC. This DNA damage–dependent reorganization of the MIC helps to arrange homologous chromosomes alongside each other but is not sufficient for exact pairing. Thus, Spo11p contributes to bivalent formation in two ways: by creating a favorable spatial disposition of homologues and by stabilizing pairing by crossovers. The polarized chromosome orientation inside the crescent resembles the conserved meiotic bouquet, and crescent and bouquet also share the putative function of aiding meiotic pairing. However, they are regulated differently because in Tetrahymena, DSBs are required for entering rather than exiting this stage.  相似文献   

2.
Dimorphic sex chromosomes create problems. Males of many species, including Drosophila, are heterogametic, with dissimilar X and Y chromosomes. The essential process of dosage compensation modulates the expression of X-linked genes in one sex to maintain a constant ratio of X to autosomal expression. This involves the regulation of hundreds of dissimilar genes whose only shared property is chromosomal address. Drosophila males dosage compensate by up regulating X-linked genes 2 fold. This is achieved by the Male Specific Lethal (MSL) complex, which is recruited to genes on the X chromosome and modifies chromatin to increase expression. How the MSL complex is restricted to X-linked genes remains unknown. Recent studies of sex chromosome evolution have identified a central role for 2 types of repetitive elements in X recognition. Helitrons carrying sites that recruit the MSL complex have expanded across the X chromosome in at least one Drosophila species.1 Our laboratory found that siRNA from an X-linked satellite repeat promotes X recognition by a yet unknown mechanism.2 The recurring adoption of repetitive elements as X-identify elements suggests that the large and mysterious fraction of the genome called “junk” DNA is actually instrumental in the evolution of sex chromosomes.  相似文献   

3.
We have examined the female meiotic behaviour of three X chromosomes which have large deletions of the basal heterochromatin in Drosophila melanogaster. We find that most of this heterochromatin can be removed without substantially altering pairing and segregation of the two Xs. To compare the role of heterochromatin in male meiosis we have constructed individuals which carry two extra identical heterochromatic mini X chromosomes. These minis behave as univalents even though their heterochromatin is known to contain satellite DNA. We conclude therefore that this satellite DNA is not sufficient to allow effectively normal meiotic behaviour. In all other respects our results in the male extend and confirm Cooper's postulate that there exist specific pairing sites in the X heterochromatin. Thus we find no support in either female or male meiosis for the concept that satellite DNA is involved in meiotic chromosome pairing of either a chiasmate or an achiasmate kind.  相似文献   

4.
We show that the geophilomorph centipede Strigamia maritima possesses an XX/XY system of sex chromosomes, with males being the heterogametic sex. This is, to our knowledge, the first report of sex chromosomes in any geophilomorph centipede. Using the recently assembled Strigamia genome sequence, we identified a set of scaffolds differentially represented in male and female DNA sequence. Using quantitative real-time PCR, we confirmed that three candidate X chromosome-derived scaffolds are present at approximately twice the copy number in females as in males. Furthermore, we confirmed that six candidate Y chromosome-derived scaffolds contain male-specific sequences. Finally, using this molecular information, we designed an X chromosome-specific DNA probe and performed fluorescent in situ hybridization against mitotic and meiotic chromosome spreads to identify the Strigamia XY sex-chromosome pair cytologically. We found that the X and Y chromosomes are recognizably different in size during the early pachytene stage of meiosis, and exhibit incomplete and delayed pairing.  相似文献   

5.
A variety of important cellular processes require, for functional purposes, the colocalization of multiple DNA loci at specific time points. In most cases, the physical mechanisms responsible for bringing them in close proximity are still elusive. Here we show that the interaction of DNA loci with a concentration of diffusing molecular factors can induce spontaneously their colocalization, through a mechanism based on a thermodynamic phase transition. We consider up to four DNA loci and different valencies for diffusing molecular factors. In particular, our analysis illustrates that a variety of nontrivial stable spatial configurations is allowed in the system, depending on the details of the molecular factor/DNA binding-sites interaction. Finally, we discuss as a case study an application of our model to the pairing of X chromosome at X inactivation, one of the best-known examples of DNA colocalization. We also speculate on the possible links between X colocalization and inactivation.  相似文献   

6.
Reduction in ploidy to generate haploid gametes during sexual reproduction is accomplished by the specialized cell division program of meiosis. Pairing between homologous chromosomes and assembly of the synaptonemal complex at their interface (synapsis) represent intermediate steps in the meiotic program that are essential to form crossover recombination-based linkages between homologs, which in turn enable segregation of the homologs to opposite poles at the meiosis I division. Here, we challenge the mechanisms of pairing and synapsis during C. elegans meiosis by disrupting the normal 1∶1 correspondence between homologs through karyotype manipulation. Using a combination of cytological tools, including S-phase labeling to specifically identify X chromosome territories in highly synchronous cohorts of nuclei and 3D rendering to visualize meiotic chromosome structures and organization, our analysis of trisomic (triplo-X) and polyploid meiosis provides insight into the principles governing pairing and synapsis and how the meiotic program is “wired” to maximize successful sexual reproduction. We show that chromosomes sort into homologous groups regardless of chromosome number, then preferentially achieve pairwise synapsis during a period of active chromosome mobilization. Further, comparisons of synapsis configurations in triplo-X germ cells that are proficient or defective for initiating recombination suggest a role for recombination in restricting chromosomal interactions to a pairwise state. Increased numbers of homologs prolong markers of the chromosome mobilization phase and/or boost germline apoptosis, consistent with triggering quality control mechanisms that promote resolution of synapsis problems and/or cull meiocytes containing synapsis defects. However, we also uncover evidence for the existence of mechanisms that “mask” defects, thus allowing resumption of prophase progression and survival of germ cells despite some asynapsis. We propose that coupling of saturable masking mechanisms with stringent quality controls maximizes meiotic success by making progression and survival dependent on achieving a level of synapsis sufficient for crossover formation without requiring perfect synapsis.  相似文献   

7.
We designed DNA substrates to study intrachromosomal recombination in mammalian chromosomes. Each substrate contains a thymidine kinase (tk) gene fused to a neomycin resistance (neo) gene. The fusion gene is disrupted by an oligonucleotide containing the 18-bp recognition site for endonuclease I-SceI. Substrates also contain a “donor” tk sequence that displays 1% or 19% sequence divergence relative to the tk portion of the fusion gene. Each donor serves as a potential recombination partner for the fusion gene. After stably transfecting substrates into mammalian cell lines, we investigated spontaneous recombination and double-strand break (DSB)-induced recombination following I-SceI expression. No recombination events between sequences with 19% divergence were recovered. Strikingly, even though no selection for accurate repair was imposed, accurate conservative homologous recombination was the predominant DSB repair event recovered from rodent and human cell lines transfected with the substrate containing sequences displaying 1% divergence. Our work is the first unequivocal demonstration that homologous recombination can serve as a major DSB repair pathway in mammalian chromosomes. We also found that Msh2 can modulate homologous recombination in that Msh2 deficiency promoted discontinuity and increased length of gene conversion tracts and brought about a severalfold increase in the overall frequency of DSB-induced recombination.  相似文献   

8.
9.
10.
First, we summarize recent experimental facts on homologous DNA pairing in vitro and discuss possible mechanisms of DNA–DNA sequence recognition. Then, we overview the mechanism of DNA–DNA recognition based on complementarity of DNA charge patterns. The theory predicts the recognition energy up to 10 kBT for close parallel homologous DNA fragments of gene‐relevant lengths. We argue why this estimate cannot be directly applied to pairing of homologous DNA loci in experiments on yeast chromosomes. Namely, DNA–DNA distances assessed from experiments are much larger than those typically used in theory. Finally, we suggest some experiments that could help to judge whether short‐range electrostatic forces indeed govern DNA pairing. This viewpoint paper introduces recently developed theoretical concepts to molecular biologists, with a hope to generate a junction between theory and future experiments on DNA recognition. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
DNA sequences on X chromosomes often have a faster rate of evolution when compared to similar loci on the autosomes, and well articulated models provide reasons why the X-linked mode of inheritance may be responsible for the faster evolution of X-linked genes. We analyzed microarray and RNA–seq data collected from females and males of six Drosophila species and found that the expression levels of X-linked genes also diverge faster than autosomal gene expression, similar to the “faster-X” effect often observed in DNA sequence evolution. Faster-X evolution of gene expression was recently described in mammals, but it was limited to the evolutionary lineages shortly following the creation of the therian X chromosome. In contrast, we detect a faster-X effect along both deep lineages and those on the tips of the Drosophila phylogeny. In Drosophila males, the dosage compensation complex (DCC) binds the X chromosome, creating a unique chromatin environment that promotes the hyper-expression of X-linked genes. We find that DCC binding, chromatin environment, and breadth of expression are all predictive of the rate of gene expression evolution. In addition, estimates of the intraspecific genetic polymorphism underlying gene expression variation suggest that X-linked expression levels are not under relaxed selective constraints. We therefore hypothesize that the faster-X evolution of gene expression is the result of the adaptive fixation of beneficial mutations at X-linked loci that change expression level in cis. This adaptive faster-X evolution of gene expression is limited to genes that are narrowly expressed in a single tissue, suggesting that relaxed pleiotropic constraints permit a faster response to selection. Finally, we present a conceptional framework to explain faster-X expression evolution, and we use this framework to examine differences in the faster-X effect between Drosophila and mammals.  相似文献   

12.
During the development of female mammals, one of the two X chromosomes is inactivated, serving as a dosage-compensation mechanism to equalize the expression of X-linked genes in females and males. While the choice of which X chromosome to inactivate is normally random, X chromosome inactivation can be skewed in F1 hybrid mice, as determined by alleles at the X chromosome controlling element (Xce), a locus defined genetically by Cattanach over 40 years ago. Four Xce alleles have been defined in inbred mice in order of the tendency of the X chromosome to remain active: Xcea < Xceb < Xcec < Xced. While the identity of the Xce locus remains unknown, previous efforts to map sequences responsible for the Xce effect in hybrid mice have localized the Xce to candidate regions that overlap the X chromosome inactivation center (Xic), which includes the Xist and Tsix genes. Here, we have intercrossed 129S1/SvImJ, which carries the Xcea allele, and Mus musculus castaneus EiJ, which carries the Xcec allele, to generate recombinant lines with single or double recombinant breakpoints near or within the Xce candidate region. In female progeny of 129S1/SvImJ females mated to recombinant males, we have measured the X chromosome inactivation ratio using allele-specific expression assays of genes on the X chromosome. We have identified regions, both proximal and distal to Xist/Tsix, that contribute to the choice of which X chromosome to inactivate, indicating that multiple elements on the X chromosome contribute to the Xce.  相似文献   

13.
Germline-restricted DNA has evolved in diverse animal taxa and is found in several vertebrate clades, nematodes, and flies. In these lineages, either portions of chromosomes or entire chromosomes are eliminated from somatic cells early in development, restricting portions of the genome to the germline. Little is known about why germline-restricted DNA has evolved, especially in flies, in which 3 diverse families, Chironomidae, Cecidomyiidae, and Sciaridae, carry germline-restricted chromosomes (GRCs). We conducted a genomic analysis of GRCs in the fungus gnat Bradysia (Sciara) coprophila (Diptera: Sciaridae), which has 2 large germline-restricted “L” chromosomes. We sequenced and assembled the genome of B. coprophila and used differences in sequence coverage and k-mer frequency between somatic and germline tissues to identify GRC sequence and compare it to the other chromosomes in the genome. We found that the GRCs in B. coprophila are large, gene rich, and have many genes with divergent homologs on other chromosomes in the genome. We also found that 2 divergent GRCs exist in the population we sequenced. GRC genes are more similar in sequence to genes from another Dipteran family (Cecidomyiidae) than to homologous genes from Sciaridae. This unexpected finding suggests that these chromosomes likely arose in Sciaridae through hybridization with a related lineage. These results provide a foundation from which to answer many questions about the evolution of GRCs in Sciaridae, such as how this hybridization event resulted in GRCs and what features on these chromosomes cause them to be restricted to the germline.

Germ-line restricted chromosomes are eliminated from all somatic tissues while being retained in the germline. This study of the evolutionary origin of such chromosomes in fungus gnats reveals that they are most similar to a fly of a different family, suggesting an ancient allopolyploidization origin for these peculiar chromosomes.  相似文献   

14.
15.
A thermodynamic switch for chromosome colocalization   总被引:1,自引:0,他引:1       下载免费PDF全文
Nicodemi M  Panning B  Prisco A 《Genetics》2008,179(1):717-721
A general model for the early recognition and colocalization of homologous DNA sequences is proposed. We show, on thermodynamic grounds, how the distance between two homologous DNA sequences is spontaneously regulated by the concentration and affinity of diffusible mediators binding them, which act as a switch between two phases corresponding to independence or colocalization of pairing regions.  相似文献   

16.
Unnatural base pairs (UBPs) which exhibit a selectivity against pairing with canonical nucleobases provide a powerful tool for the development of nucleic acid-based technologies. As an alternative strategy to the conventional UBP designs, which involve utility of different recognition modes at the Watson–Crick interface, we now report that the exclusive base pairing can be achieved through the spatial separation of recognition units. The design concept was demonstrated with the alkynylated purine (NPu, OPu) and pyridazine (NPz, OPz) nucleosides endowed with nucleobase-like 2-aminopyrimidine or 2-pyridone (‘pseudo-nucleobases’) on their major groove side. These alkynylated purines and pyridazines exhibited exclusive and stable pairing properties by the formation of complementary hydrogen bonds between the pseudo-nucleobases in the DNA major groove as revealed by comprehensive Tm measurements, 2D-NMR analyses, and MD simulations. Moreover, the alkynylated purine-pyridazine pairs enabled dramatic stabilization of the DNA duplex upon consecutive incorporation while maintaining a high sequence-specificity. The present study showcases the separation of the recognition interface as a promising strategy for developing new types of UBPs.  相似文献   

17.
Female mammals are functional mosaics of their parental X-linked gene expression due to X chromosome inactivation (XCI). This process inactivates one copy of the X chromosome in each cell during embryogenesis and that state is maintained clonally through mitosis. In mice, the choice of which parental X chromosome remains active is determined by the X chromosome controlling element (Xce), which has been mapped to a 176-kb candidate interval. A series of functional Xce alleles has been characterized or inferred for classical inbred strains based on biased, or skewed, inactivation of the parental X chromosomes in crosses between strains. To further explore the function structure basis and location of the Xce, we measured allele-specific expression of X-linked genes in a large population of F1 females generated from Collaborative Cross (CC) strains. Using published sequence data and applying a Bayesian “Pólya urn” model of XCI skew, we report two major findings. First, inter-individual variability in XCI suggests mouse epiblasts contain on average 20–30 cells contributing to brain. Second, CC founder strain NOD/ShiLtJ has a novel and unique functional allele, Xceg, that is the weakest in the Xce allelic series. Despite phylogenetic analysis confirming that NOD/ShiLtJ carries a haplotype almost identical to the well-characterized C57BL/6J (Xceb), we observed unexpected patterns of XCI skewing in females carrying the NOD/ShiLtJ haplotype within the Xce. Copy number variation is common at the Xce locus and we conclude that the observed allelic series is a product of independent and recurring duplications shared between weak Xce alleles.  相似文献   

18.
The roundworm Caenorhabditis elegans has a haploid karyotype containing six linear chromosomes. The termini of worm chromosomes have been proposed to play an important role in meiotic prophase, either when homologs are participating in a genome-wide search for their proper partners or in the initiation of synapsis. For each chromosome one end appears to stimulate crossing-over with the correct homolog; the other end lacks this property. We have used a bioinformatics approach to identify six repetitive sequence elements in the sequenced C.elegans genome whose distribution closely parallels these putative meiotic pairing centers (MPC) or homolog recognition regions (HRR). We propose that these six DNA sequence elements, which are largely chromosome specific, may correspond to the genetically defined HRR/MPC elements.  相似文献   

19.
Summary A Neurospora crassa mutation, mei-2, affecting recombination and pairing of homologous chromosomes during meiosis, was characterized for its effect on repeat-induced point mutation (RIP). We found that RIP, which depends on recognition of DNA sequence homology, is not inhibited by mei-2, suggesting that the defect in chromosome pairing of this mutant is not due to a defect in DNA pairing and that DNA pairing is not dependent on chromosome pairing.  相似文献   

20.
We report the results of a 14-center collaborative study of genotype-phenotype correlations in 318 fragile X families; these families comprised 2,253 individuals, 1,344 of whom carried a fragile X mutation and 693 of whom had a typical full fragile X mutation. This study demonstrates that direct DNA diagnosis establishes the genotype at the FRAXA-FMR-1 locus. There was a significantly higher prevalence of “mosaic” cases among males who carry a full mutation (12%) than among females who carry a full mutation (6%); the mosaic males had a larger expansion than did the mosaic females. Mental status of premutated individuals did not differ from that of those with a normal genotype. Both the abnormal methylation of the FMR-1–EagI site and the size of the expansion were highly correlated with cytogenetics, facial dysmorphism, macroorchidism, and mental retardation (MR). Among female carriers of a full mutation, those with MR had significantly larger expansion than did those without MR. Among 164 independent couples, 3 unrelated husbands carried a premutation that suggests that the prevalence of fragile X premutations in the general population is ~0.9% of the X chromosomes. Our data validate the use of direct DNA testing for fragile X diagnosis as well as for carrier identification and support and complete the established relationships among the DNA results and the cytogenetic, physical, and psychological aspects of the disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号