首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extraction of dry bacteria of Acinetobacter baumannii strain 24 by phenol-water yielded a lipopolysaccharide (LPS) that was studied by serological methods and fatty acid analysis. After immunisation of BALB/c mice with this strain, monoclonal antibody S48-3-13 (IgG(3) isotype) was obtained, which reacted with the LPS in western blot and characterized it as S-form LPS. Degradation of the LPS in aqueous 1% acetic acid followed by GPC gave the O-antigenic polysaccharide, whose structure was determined by compositional analyses and NMR spectroscopy of the polysaccharide and O-deacylated polysaccharide as [carbohydrate structure: see text] where QuiN4N is 2,4-diamino-2,4,6-trideoxyglucose and GalNAcA 2-acetamido-2-deoxygalacturonic acid. The amino group at C-4 of the QuipN4N residues is acetylated in about 2/3 of LPS molecules and (S)-3-hydroxybutyrylated in the rest.  相似文献   

2.
The structure of lipid A core region of the lipopolysaccharides (LPS) from Proteus mirabilis serotypes O6, O57 and O48 was determined using NMR, MS and chemical analysis of the oligosaccharides, obtained by mild acid hydrolysis, alkaline deacylation, and deamination of LPS: [see text for structure]. Incomplete substitutions are indicated by bold italic type. All sugars are present in pyranose form, alpha-Hep is the residue of L-glycero-alpha-D-manno-Hep, alpha-DD-Hep is the residue of D-glycero-alpha-D-manno-Hep, L-Ara4N is 4-amino-4-deoxy-L-arabinose, Qui4NAlaAla is the residue of 4-N-(L-alanyl-L-alanyl)-4-amino-4,6-dideoxyglucose. All sugars except L-Ara4N have D-configuration. beta-GalA* is partially present in the form of amide with 1,4-diaminobutane (putrescine)-HN(CH2)4NH2 or spermidine-HN(CH2)3NH(CH2)4NH2.  相似文献   

3.
In a previous study [Pantophlet, R., Brade, L., Dijkshoorn, L., and Brade, H. (1998) J. Clin. Microbiol. 36, 1245-1250] the O-polysaccharide of the lipopolysaccharides (LPS) from Acinetobacter haemolyticus strains 57 and 61 exhibited indistinguishable banding-patterns following Western blot and immunostaining with homologous or heterologous rabbit antiserum. In this report, the molecular basis for the observed cross-reactivity was elucidated, by determining the chemical structure of the polysaccharides by compositional analysis and NMR spectroscopy. The structures are: [sequence: see text] for strain 61 [GulpNAcA, 2-acetamido-2-deoxy-gulopyranosyluronic acid; ManpNAcA, 2-acetamido-2-deoxy-mannopyranosyluronic acid; QuipN4N, 2,4-diamino-2,4,6-trideoxy-glucopyranose; acyl (S)-3-hydroxybutyryl], thus, differing only in the anomeric configuration of the QuipN4N residue. The antigenic structures were determined by generating murine monoclonal antibodies, which were characterized by Western blot using LPS as antigen, by ELISA using LPS and de-O-acylated LPS as solid-phase antigens, and by ELISA inhibition studies using LPS, polysaccharide, and de-O-acylated LPS as inhibitors. Of the four antibodies selected, two were specific for the respective LPS moieties and two were cross-reactive. All antibodies were found to require the presence of the O-acetyl group for reactivity.  相似文献   

4.
Cellular and free lipopolysaccharides (LPS) obtained from Neisseria canis and N. subflava were essentially identical. Both cellular and free lipopolysaccharides contained O-polysaccharides of the following composition: L-rhamnose (46 mol), D-glucose (16 mol), L-glycero-D-manno-heptose (2 mol), ethanolamine (2 mol), 3-deoxy-D-manno-octulosonic acid (1 mol), and phosphate (1.5 mol). The core oligosaccharide, which was common to the cellular and free LPS of both organisms, contained L-rhamnose (4 mol), D-glucose (2 mol), L-glycero-D-manno-heptose (2 mol), 3-deoxy-D-manno-octulosonic acid (1 mol), ethanolamine (2 mol), and phosphate (1.5 mol). Accumulated results on LPS composition and structure indicated that Neisseria perflava, N. subflava, and N. flava could not be combined into a single species. On the basis of its nutritional requirements and LPS structure, N. canis could be considered a strain of N. subflava.  相似文献   

5.
Structural characterization studies have been carried out on the carbohydrate backbone of Vibrio parahaemolyticus serotype O6 lipopolysaccharides (LPS). The carbohydrate backbone isolated from O6 LPS by sequential derivatization, that is, dephosphorylation, O-deacylation, pyridylamination, N-deacylation and N-acetylation, is a nonasaccharide consisting of 3 mol of D-glucosamine (GlcN) (of which one is pyridylaminated), 2 mol of L-glycero-D-manno-heptose (Hep), and 1 mol each of D-galactose (Gal), D-glucose (Glc), D-glucuronic acid (GlcA) and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo). Structural analyses by nuclear magnetic resonance spectroscopy and fast-atom bombardment mass spectrometry demonstrated that the carbohydrate backbone is β-Galp-(1→2)-α-Hepp-(1→3)-α-Hepp-(1→5)-α-Kdop-(2→6)-β-GlcpNAc-(1→6)-GlcNAc-PA, in which the 3-substituted α-Hepp is further substituted by β-GlcpNAc-(1→4)-β-Glcp at position 4 and by β-GlcpA at position 2. In native O6 LPS, an additional 1 mol of D-galacturonic acid, which is liberated by dephosphorylation in hydrofluoric acid, is present at an unknown position. A previous study by the present authors reported that, of 13 O-serotype LPS of V. parahaemolyticus, the only LPS from which Kdo was detected was from O6 LPS after mild acid hydrolysis. In the present study, we have demonstrated that only 1 mol of Kdo is present at the lipid A proximal position, a component which is common to the LPS in all serotypes of the bacterium, and that there is no additional Kdo in the carbohydrate backbone of O6 LPS. ELISA and ELISA inhibition analysis using antisera against O6 and Salmonella enterica Minnesota R595 and LPS of both strains further revealed that Kdo is not involved as an antigenic determinant of O6 LPS.  相似文献   

6.
The carbohydrates present in lipopolysaccharide (LPS) from Pseudomonas solanacearum are rhamnose, xylose, 2-amino-2-deoxyglucose, glucose, heptose, and 2-keto-3-deoxyoctonate. LPS extracted from cultures grown on either glycerol or glucose (as the major source of carbon) and extracted after various incubation periods had similar compositions. The LPS from several strains of the bacterium contained the same component sugars, but the amounts of each sugar varied considerably. It was observed, however, that xylose and 2-amino-2-deoxyglucose increased proportionately with rhamnose, the major component. Phenol-water-extracted LPS contained measurable amounts of nucleic acid, protein, and arabinan, but none of these polymers were detected in LPS extracted with phenol-chloroform-petroleum ether. Polysaccharides liberated from LPS by mild acid hydrolysis were purified by gel filtration. Carbohydrate analysis of the LPS from a virulent, fluidal strain (K60) showed that the O-specific antigen consisted of rhamnose, xylose, and 2-amino-2-deoxyglucose in the proportions 4:1:1. The LPS of an avirulent, afluidal strain (B1) lacked the O-specific antigen; the R-core region consisted of rhamnose, glucose, heptose, and 2-keto-3-deoxyoctonate. Methylation analysis indicated that the K60 O-specific antigen was composed of a hexasaccharide repeating unit containing 3-, 2-, and 3,4-substituted rhamnopyranosyl residues, 3-substituted 2-amino-2-deoxyglucose, and terminal xylopyranose in the molar ratios 2:1:1:1:1.  相似文献   

7.
The lipopolysaccharide (LPS) of Chlamydia trachomatis L2 was isolated from tissue culture-grown elementary bodies using a modified phenol/water procedure followed by extraction with phenol/chloroform/light petroleum. From a total of 5 x 10(4) cm2 of infected monolayers, 22.3 mg of LPS were obtained. Compositional analysis indicated the presence of 3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo), GlcN, phosphorus, and fatty acids in a molar ratio of 2.8:2:2.1:4.5. Matrix-assisted laser-desorption ionization mass spectrometry performed on the de-O-acylated LPS gave a major molecular ion peak at m/z 1781.1 corresponding to a molecule of 3 Kdo, 2 GlcN, 2 phosphates, and two 3-hydroxyeicosanoic acid residues. The structure of deacylated LPS obtained after successive treatment with hydrazine and potassium hydroxide was determined by 600 MHz NMR spectroscopy as Kdoalpha2-->8Kdoalpha2-->4Kdoalpha2-->6D-GlcpNbeta1 -->6D-GlcpNalpha 1,4'-bisphosphate. These data, together with those published recently on the acylation pattern of chlamydial lipid A (Qureshi, N., Kaltashov, I., Walker, K., Doroshenko, V., Cotter, R. J., Takayama, K, Sievert, T. R., Rice, P. A., Lin, J.-S. L., and Golenbock, D. T. (1997) J. Biol. Chem. 272, 10594-10600) allow us to present for the first time the complete structure of a major molecular species of a chlamydial LPS.  相似文献   

8.
The gene cluster (waa) involved in Serratia marcescens N28b core lipopolysaccharide (LPS) biosynthesis was identified, cloned, and sequenced. Complementation analysis of known waa mutants from Escherichia coli K-12, Salmonella enterica, and Klebsiella pneumoniae led to the identification of five genes coding for products involved in the biosynthesis of a shared inner core structure: [L,D-HeppIIIalpha(1-->7)-L,D-HeppIIalpha(1-->3)-L,D-HeppIalpha(1-->5)-KdopI(4<--2)alphaKdopII] (L,D-Hepp, L-glycero-D-manno-heptopyranose; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid). Complementation and/or chemical analysis of several nonpolar mutants within the S. marcescens waa gene cluster suggested that in addition, three waa genes were shared by S. marcescens and K. pneumoniae, indicating that the core region of the LPS of S. marcescens and K. pneumoniae possesses additional common features. Chemical and structural analysis of the major oligosaccharide from the core region of LPS of an O-antigen-deficient mutant of S. marcescens N28b as well as complementation analysis led to the following proposed structure: beta-Glc-(1-->6)-alpha-Glc-(1-->4))-alpha-D-GlcN-(1-->4)-alpha-D-GalA-[(2<--1)-alpha-D,D-Hep-(2<--1)-alpha-Hep]-(1-->3)-alpha-L,D-Hep[(7<--1)-alpha-L,D-Hep]-(1-->3)-alpha-L,D-Hep-[(4<--1)-beta-D-Glc]-(1-->5)-Kdo. The D configuration of the beta-Glc, alpha-GclN, and alpha-GalA residues was deduced from genetic data and thus is tentative. Furthermore, other oligosaccharides were identified by ion cyclotron resonance-Fourier-transformed electrospray ionization mass spectrometry, which presumably contained in addition one residue of D-glycero-D-talo-oct-2-ulosonic acid (Ko) or of a hexuronic acid. Several ions were identified that differed from others by a mass of +80 Da, suggesting a nonstoichiometric substitution by a monophosphate residue. However, none of these molecular species could be isolated in substantial amounts and structurally analyzed. On the basis of the structure shown above and the analysis of nonpolar mutants, functions are suggested for the genes involved in core biosynthesis.  相似文献   

9.
The lipopolysaccharide (LPS) of the Gram-negative Acidiphilium strain GS18h/ATCC55963, a new soil isolate, exhibited very low endotoxic activity as determined by Limulus gelation activity, lethal toxicity in galactosamine (GalN) sensitised mice, and level of tumor necrosis factor alpha (TNFalpha) in the blood serum of BALB/c mice. Analysis of the LPS, specially of lipid A which usually accounts for the toxicity, revealed the latter to contain glucosamine and phosphate besides fatty acids, of which 14:0(3-OH), 18:0(3-OH), 18:1 and 19:0(cyclo) are the major components, while 12:0, 16:0, 19:1, 20:0(3-OH) and 20:1(3-OH) are present in small amounts. The 14:0(3-OH) and 18:0(3-OH) fatty acids are amide-linked, whereas the rest are ester bound. Glucose, galactose, mannose, rhamnose, heptose, galacturonic acid and 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) were present in the polysaccharide part of this LPS. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the LPS showed a macromolecular heterogeneity distinctly different from those of Escherichia coli or Salmonella. The toxicity of this LPS being extremely low attributed to fatty acid composition of its lipid A, promises potential therapeutic application.  相似文献   

10.
The results of the study of the Pseudomonas fluorescens IMV 247 (biovar II) lipopolysaccharide (LPS) isolated from the dry bacterial mass by Westphal's method and purified by repeated ultracentrifugation are presented. The macromolecular organization of the LPS is characterized by the presence of S and R forms of LPS molecules in a 1:1 ratio. The structural components of the LPS molecule--lipid A, the core oligosaccharide, and the O-specific polysaccharide--were isolated and characterized. 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, and dodecanoic acids proved to be the main lipid A fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic portion. Glucose, galactose, arabinose, rhamnose, glucosamine, alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulonate (KDO) were revealed in the heterogeneous fraction of the core oligosaccharide. The O-specific polysaccharide chain was composed of repeating tetrasaccharide units consisting of L-rhamnose (L-Rha), 3,6-dideoxy-3-[(S)-3-hydroxybutyramido]-D-glucose (D-Qui3NHb), 2-acetamido-2,4,6-trideoxy-4[(S)-3-hydroxybutyramido-D-glucose (D-QuiNAc4NHb), and 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) residues. A peculiarity of the O-specific polysaccharide was that it released, upon partial acid hydrolysis, the nonreducing disaccharide GalNAcA-->QuiNAc4NHb with a 3-hydroxybutyryl group glycosylated intramolecularly with a QuiN4N residue. Double immunodiffusion in agar and lipopolysaccharide precipitation reactions revealed no serological interrelationship between the strain studied and the P. fluorescens strains studied earlier.  相似文献   

11.
The results of the study of thePseudomonas fluorescens IMV 247 (biovar II) lipopolysaccharide (LPS) isolated from the dry bacterial mass by Westphal’s method and purified by repeated ultracentrifugation are presented. The macromolecular organization of the LPS is characterized by the presence of S and R forms of LPS molecules in a 1 : 1 ratio. The structural components of the LPS molecule-lipid A, the core oligosaccharide, and the 0-specific polysaccharide-were isolated and characterized. 3-Hydroxydecanoic, 2-hydroxydodecanoic, 3-hydroxydodecanoic, and dodecanoic acids proved to be the main lipid A fatty acids. Glucosamine, phosphoethanolamine, and phosphorus were identified as the components of the lipid A hydrophilic portion. Glucose, galactose, arabinose, rhamnose, glucosamine, galactosamine alanine, phosphoethanolamine, phosphorus, and 2-keto-3-deoxyoctulonate (KDO) were revealed in the heterogeneous fraction of the core oligosaccharide. The 0-specific polysaccharide chain was composed of repeating tetrasaccharide units consisting of L-rhamnose (L-Rha), 3,6-dideoxy-3-[(S)-3-hydroxybutyramido]-D-glucose (D-Qui3NHb), 2-acetamido-2,4,6-trideoxy4 [(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NHb), and 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) residues. A peculiarity of the 0-specific polysaccharide was that it released, upon partial acid hydrolysis, the nonreducing disaccharide GalNAcA→ QuiNAc4NHb with a 3-hydroxybutyryl group glycosylated intramolecularly with a QuiN4N residue. Double immunodiffusion in agar and lipopolysaccharide precipitation reactions revealed no serological interrelationship between the strain studied and theP. fluorescens strains studied earlier.  相似文献   

12.
13.
The chemical structure of the 2-keto-3-deoxyoctonate (KDO) region of the lipopolysaccharide (LPS) isolated from O1 V. cholerae NIH 41R (Ogawa) was elucidated by dephosphorylation, periodate oxidation and methylation analysis. Methylation analysis of KDO in the dephosphorylated LPS revealed the presence of 5-O-acetyl-1,2,4,6,7,8-hexa-O-methyl-3-deoxy-octitol and 2-keto-3-deoxy-heptulosonic acid was detected in the methanolysate of the periodate-oxidized and dephosphorylated LPS. These results indicated that the site of binding of KDO to the core oligosaccharide is position C5 as in enteric gram-negative bacterial LPS, while only one molecule of the KDO residue carrying phosphate on position C4 is present in the inner core region of the LPS in contrast to enteric gram-negative bacterial LPS in which one molecule of KDO carrying KDO or KDO2----4KDO disaccharide instead of the phosphate group at position C4 is present in its main chain.  相似文献   

14.
Fulminant meningococcal sepsis (FMS) is considered the prototypical Gram-negative sepsis. Lipopolysaccharide (LPS) is thought to be the main toxic element that induces pro-inflammatory cytokine production after interaction with CD14 and toll-like receptor 4 (TLR4). However, there is increasing evidence that LPS is not the sole toxic element of meningococci. The aim of the present study was to determine the role of CD14 and TLR4 in pro-inflammatory cytokine induction by meningococci. To this end, cytokine induction by isolated meningoccal LPS, wild-type N. meningitidis H44/76 (LPS+-meningococci) matched for concentrations of LPS and LPS-deficient N. meningitidis H44/76lpxA (LPS - -meningococci) was studied in human PBMCs and murine peritoneal macrophages (PMs). Pre-incubation of PBMCs with WT14, a monoclonal antibody against CD14, abolished TNF-alpha and IL-1beta induction by E. coli LPS, while cytokine induction by meningococcal LPS was only partially inhibited. When LPS+- and LPS - -meningococci at higher concentrations were used as stimuli, anti-CD14 had a minimal effect. In C3H/HeJ murine PMs, devoid of a functional TLR4, minimal IL-1alpha, IL-6 and TNF-alpha production was seen after stimulation with 10 ng/mL E. coli or meningococcal LPS. However, at higher concentrations (1000 ng LPS/mL) the production of TNF-alpha, but not IL-1alpha or IL-6, occurred also independently of TLR4. The expression of a functional TLR4 in murine PMs had no effect on the cytokine induction by LPS+- or LPS - -meningococci. It is concluded that pro-inflammatory cytokine induction by N. meningitidis can occur independently of CD14 and TLR4.  相似文献   

15.
The following structure of the lipid A-core region of the lipopolysaccharide (LPS) from Proteus vulgaris serotype O25 was determined by using NMR and chemical analysis of the core oligosaccharide, obtained by mild acid hydrolysis of LPS, of the products of alkaline deacylation of the LPS, and of the products of LPS deamination: [structure: see text] Terminal residues of beta-GlcNAc and beta-Kdo (indicated by bold italics) are present alternatively in approximately 3:2 amount, leaving no unsubstituted beta-Gal. All sugars are in the pyranose form, alpha-Hep is the residue of L-glycero-alpha-D-manno-Hep, alpha-DDHep is the residue of D-glycero-alpha-D-manno-Hep.  相似文献   

16.
Burkholderia cepacia, a Gram-negative bacterium ubiquitous in the environment, is a plant pathogen causing soft rot of onions. This microorganism has recently emerged as a life-threatening multiresistant pathogen in cystic fibrosis patients. An important virulence factor of B. cepacia is the lipopolysaccharide (LPS) fraction. Clinical isolates and environmental strains possess LPS of high inflammatory nature, which induces a high level production of cytokines. For the first time, the complete structure of the lipid A components isolated from the lipopolysaccharide fraction of a clinical strain of B. cepacia is described. The structural studies carried out by selective chemical degradations, MS, and NMR spectroscopy revealed multiple species differing in the acylation and in the phosphorylation patterns. The highest mass species was identified as a penta-acylated tetrasaccharide backbone containing two phosphoryl-arabinosamine residues in addition to the archetypal glucosamine disaccharide [Arap4N-l-beta-1-P-4-beta-D-GlcpN-(1-6)-alpha-D-GlcpN-1-P-1-beta-L-Arap4N]. Lipid A fatty acids substitution was also deduced, with two 3-hydroxytetradecanoic acids 14:0 (3-OH) in ester linkage, and two 3-hydroxyhexadecanoic acids 16:0 (3-OH) in amide linkage, one of which was substituted by a secondary 14:0 residue at its C-3. Other lipid A species present in the mixture and exhibiting lower molecular weight lacked one or both beta-L-Arap4N residues.  相似文献   

17.
Low-Mr lipopolysaccharides (LPS) of Campylobacter jejuni reference strains for serotypes O:1, O:4, O:23, and O:36 were examined through the liberation of core oligosaccharides by mild acid cleavage of the ketosidic linkage of 3-deoxy-D-manno-2-octulosonic acid residues to the lipid A moiety. The liberated oligosaccharides were examined for chemical structure by compositional analysis and methylated linkage analysis in conjunction with fast atom bombardment-mass spectrometry of permethylated oligosaccharide derivatives. The results showed (i) that the LPS contained short oligosaccharide chains of branched nonrepetitive structure, to many of which N-acetylneuraminic acid residues remained attached by 2----3 linkages to 4-linked D-galactose residues in the core structure; (ii) that serotypical differences, which are not readily defined through qualitatively similar compositions, are clearly reflected in variations in linkage types and sequences of sugar residues in the outer core attached to an inner region of invariable structure; but (iii) that the presence or absence of NeuAc residues does not appear to be a basis for serotypical differences. The results also showed that oligosaccharide chains from LPS of serotypes O:1 and O:4 are distinctly different and are distinct again from those of the cross-reacting serotypes O:23 and O:36, between whose core oligosaccharide chains no differences were found. It is concluded that the structurally variable low-Mr LPS from C. jejuni show greater similarities to the lipooligosaccharides from Neisseria spp. than to the highly conserved core regions of Salmonella species. Those strains (serotypes O:23 and O:36) which also furnish high-Mr LPS are unique among gram-negative bacteria in possessing both low-Mr molecules of the Neisseria lipooligosaccharide type and high-Mr LPS of the Salmonella smooth type.  相似文献   

18.
A modified methylation analysis is described which allows the elucidation of the structure of the inner core region [heptose/3-deoxy-D-manno-2-octulosonic acid (KDO)] of enterobacterial lipopolysaccharides (LPS) of Salmonella minnesota rough mutants (Re, strain R595; and Rd2P-, strain R4). Methylation, carboxyl-reduction, remethylation, hydrolysis, carbonyl-reduction, and acetylation of the Re-mutant LPS yielded the 2,6-di-O-acetyl and 2,4,6-tri-O-acetyl derivatives of partially methylated 3-deoxyoctitol in equimolar amounts, indicating the presence of a terminal and a 4-linked pyranosidic KDO residue. For Rd2P- LPS, the hydrolysis step involved 0.1M trifluoroacetic acid at 100 degrees for 1 h which cleaved ketosidic linkages, and the final products included the foregoing acetyl derivatives in the molar ratio of 1:02 and a partially methylated and acetylated 3-deoxyoctitol derivative which was substituted at O-5 by a methylated heptopyranosyl residue. Trideuteriomethylation of the latter product followed by methanolysis and acetylation gave 5-O-acetyl-3-deoxy-1,7,8-tri-O-methyl-2,4,6-tri-O-trideuteriomethyl++ +-D- glycero-D-talo/galacto-octitol and 1,5-di-O-acetyl-2,3,4,6,7-penta-O-methyl-L-glycero-D-manno-heptitol++ +. These results prove the presence of a (2----4)-linked KDO disaccharide in Re LPS and show that the core region of Rd2P- LPS contains a terminal alpha-L-glycero-D-manno-heptopyranosyl group and a non-substituted, a 4-O-, and a 4,5-di-O-substituted pyranosidic KDO residue in the molar ratios 1:1:0.2:1.  相似文献   

19.
Sepsis is a severe catabolic condition. The loss of skeletal muscle protein mass is characterized by enhanced release of the amino acids glutamine and arginine, which (in)directly affects interorgan arginine and the related nitric oxide (NO) synthesis. To establish whether changes in muscle amino acid and protein kinetics are regulated by NO synthesized by nitric oxide synthase-2 or -3 (NOS2 or NOS3), we studied C57BL6/J wild-type (WT), NOS2-deficient (NOS2-/-), and NOS3-deficient (NOS3-/-) mice under control (unstimulated) and lipopolysaccharide (LPS)-treated conditions. Muscle amino acid metabolism was studied across the hindquarter by infusing the stable isotopes L-[ring-2H5]phenylalanine, L-[ring-2H2]tyrosine, L-[guanidino-15N2]arginine, and L-[ureido-13C,2H2]citrulline. Muscle blood flow was measured using radioactive p-aminohippuric acid dilution. Under baseline conditions, muscle blood flow was halved in NOS2-/- mice (P < 0.1), with simultaneous reductions in muscle glutamine, glycine, alanine, arginine release and glutamic acid, citrulline, valine, and leucine uptake (P < 0.1). After LPS treatment, (net) muscle protein synthesis increased in WT and NOS2-/- mice [LPS vs. control: 13 +/- 3 vs. 8 +/- 1 (SE) nmol.10 g(-1).min(-1) (WT), 18 +/- 5 vs. 7 +/- 2 nmol.10 g(-1).min(-1) (NOS2-/-); P < 0.05 for LPS vs. control]. This response was absent in NOS3-/- mice (LPS vs. control: 11 +/- 4 vs. 10 +/- 2 nmol.10 g(-1).min(-1)). In agreement, the increase in muscle arginine turnover after LPS was also absent in NOS3-/- mice. In conclusion, disruption of the NOS2 gene compromises muscle glutamine release and muscle blood flow in control mice, but had only minor effects after LPS. NOS3 activity is crucial for the increase in muscle arginine and protein turnover during early endotoxemia.  相似文献   

20.
A structural investigation has been carried out on the carbohydrate backbone of Vibrio parahaemolyticus O2 lipopolysaccharides (LPS) isolated by dephosphorylation, O-deacylation and N-deacylation. The carbohydrate backbone is a short-chain saccharide consisting of nine monosaccharide units i.e., 1 mol each of D-galactose (Gal), D-glucose (Glc), D-glucuronic acid (GlcA), L-glycero-D-manno-heptose (L,D-Hep), D-glycero-D-manno-heptose (D,D-Hep), 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo), 5,7-diacetamido-3,5,7,9-tetradeoxy-D-glycero-D-galacto-non-2-ulosonic acid (NonlA), and 2 mol of 2-amino-2-deoxy-D-glucose (D-glucosamine, GlcN). Based on the data obtained by NMR spectroscopy, fast-atom bombardment mass spectrometry (FABMS) and methylation analysis, a structure was elucidated for the carbohydrate backbone of O2 LPS. In the native O2 LPS, the 2-amino-2-deoxy-D-glucitol (GlcN-ol) at the reducing end of the nonasaccharide is present as GlcN. The lipid A backbone is a beta-D-GlcN-(1-->6)-D-GlcN disaccharide as is the case for many Gram-negative bacterial LPS. The lipid A proximal Kdo is substituted by the distal part of the carbohydrate chain at position-5. In the native O2 LPS, D-galacturonic acid, which is liberated from LPS by mild acid treatment or by dephosphorylation in hydrofluoric acid, is present although its binding position is unknown at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号