首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cellular content of 170kD and 180kD topoisomerase II was studied as a function of the proliferation state and cell cycle position in NIH-3T3 cells. When the cells were synchronized by serum starvation and then stimulated to enter the cell cycle by addition of fresh growth medium, the amount of 170kD topoisomerase II present was undetectable until the cells reached late S phase, peaked in G2-M phase cells, and decreased as the cells completed mitosis. The amount of 180kD topoisomerase II was constant once the cells entered the cell cycle. When exponentially growing cells were induced to enter G0 by serum starvation, the amount of 170kD topoisomerase II decreased in parallel with the loss of cells from the S and G2-M phases of the cell cycle and was undetectable once all of the cells reached G0. In contrast, the 180kD enzyme was still present after all of the cells had entered G0. The tightness of association of the two enzymes with chromatin was measured by determining the concentration of salt required to extract them from isolated nuclei. The 180kD enzyme required a higher concentration of NaCl for extraction than did the 170kD enzyme. The different patterns of expression of the two forms of topoisomerase II suggest that they perform different functions in cells.  相似文献   

2.
A large number of correlative studies have established that the activation of the unfolded protein response (UPR) alters the cell's sensitivity to chemotherapeutic agents. Although the induction of the glucose-regulated proteins (GRPs) is commonly used as an indicator for the UPR, the direct role of the GRPs in conferring resistance to DNA damaging agents has not been proven. We report here that without the use of endoplasmic reticulum (ER) stress inducers, specific overexpression of GRP78 results in reduced apoptosis and higher colony survival when challenged with topoisomerase II inhibitors, etoposide and doxorubicin, and topoisomerase I inhibitor, camptothecin. While investigating the mechanism for the GRP78 protective effect against etoposide-induced cell death, we discovered that in contrast to the UPR, GRP78 overexpression does not result in G1 arrest or depletion of topoisomerase II. Caspase-7, an executor caspase that is associated with the ER, is activated by etoposide. We show here that specific expression of GRP78 blocks caspase-7 activation by etoposide both in vivo and in vitro, and this effect can be reversed by addition of dATP in a cell-free system. Recently, it was reported that ectopically expressed GRP78 and caspases-7 and -12 form a complex, thus coupling ER stress to the cell death program. However, the mechanism of how GRP78, a presumably ER lumen protein, can regulate cytosolic effectors of apoptosis is not known. Here we provide evidence that a subpopulation of GRP78 can exist as an ER transmembrane protein, as well as co-localize with caspase-7, as confirmed by fluorescence microscopy. Co-immunoprecipitation studies further reveal endogenous GRP78 constitutively associates with procaspase-7 but not with procaspase-3. Lastly, a GRP78 mutant deleted of its ATP binding domain fails to bind procaspase-7 and loses its protective effect against etoposide-induced apoptosis.  相似文献   

3.
HL-60/AMSA is a human leukemia cell line that is 100 times more resistant to the cytotoxic actions of the antineoplastic, topoisomerase II-reactive DNA intercalating acridine derivative amsacrine (m-AMSA) than is its parent HL-60 line. HL-60/AMSA cells are minimally resistant to etoposide, a topoisomerase II-reactive drug that does not intercalate. Previously we showed that HL-60 topoisomerase II activity in cells, nuclei, or nuclear extracts was sensitive to m-AMSA and etoposide, while HL-60/AMSA topoisomerase II was resistant to m-AMSA but sensitive to etoposide. Now we show that purified topoisomerase II from the two cell lines exhibits the same drug sensitivity or resistance as that in the nuclear extracts although the magnitude of the m-AMSA resistance of HL-60/AMSA topoisomerase II in vitro is not as great as the resistance of the intact HL-60/AMSA cells. In addition HL-60/AMSA cells are cross-resistant to topoisomerase II-reactive intercalators from the anthracycline and ellipticine families and the pattern of sensitivity or resistance to the cytotoxic actions of the various topoisomerase II-reactive drugs is paralleled by topoisomerase II-reactive drug-induced DNA cleavage and protein cross-link production in cells and the production of drug-induced, topoisomerase II-mediated DNA cleavage and protein cross-linking in isolated biochemical systems. In addition to its lowered sensitivity to intercalators, HL-60/AMSA differed from HL-60 in 1) the susceptibility of its topoisomerase II to stimulation of DNA topoisomerase II complex formation by ATP, 2) the catalytic activity of its topoisomerase II in an ionic environment chosen to reproduce the environment found within the living cell, and 3) the observed restriction enzyme pattern on a Southern blot probed with a cDNA for human topoisomerase II. These data indicate that an m-AMSA-resistant form of topoisomerase II contributes to the resistance of HL-60/AMSA to m-AMSA and to other topoisomerase II-reactive DNA intercalating agents. The drug resistance is associated with additional biochemical and molecular alterations that may be important determinants of cellular sensitivity or resistance to topoisomerase II-reactive drugs.  相似文献   

4.
Physiological cell conditions such as glucose deprivation and hypoxia play roles in the development of drug resistance in solid tumors. These tumor-specific conditions cause decreased expression of DNA topoisomerase IIalpha, rendering cells resistant to topo II target drugs such as etoposide. Thus, targeting tumor-specific conditions such as a low glucose environment may be a novel strategy in the development of anticancer drugs. On this basis, we established a novel screening program for anticancer agents with preferential cytotoxic activity in cancer cells under glucose-deprived conditions. We recently isolated an active compound, AA-98, from Streptomyces sp. AA030098 that can prevent stress-induced etoposide resistance in vitro. Furthermore, LC-MS and various NMR spectroscopic methods identified AA-98 as mithramycin, which belongs to the aureolic acid group of antitumor compounds. We found that mithramycin prevents the etoposide resistance that is induced by glucose deprivation. The etoposide-chemosensitive action of mithramycin was just dependent on strict low glucose conditions, and resulted in the selective cell death of etoposide-resistant HT-29 human colon cancer cells.  相似文献   

5.
Vaccinia virus replication is inhibited by etoposide and mitoxantrone even though poxviruses do not encode the type II topoisomerases that are the specific targets of these drugs. Furthermore, one can isolate drug-resistant virus carrying mutations in the viral DNA ligase and yet the ligase is not known to exhibit sensitivity to these drugs. A yeast two-hybrid screen was used to search for proteins binding to vaccinia ligase, and one of the nine proteins identified comprised a portion (residue 901 to end) of human topoisomerase IIbeta. One can prevent the interaction by introducing a C(11)-to-Y substitution mutation into the N terminus of the ligase bait protein, which is one of the mutations conferring etoposide and mitoxantrone resistance. Coimmunoprecipitation methods showed that the native ligase and a Flag-tagged recombinant protein form complexes with human topoisomerase IIalpha/beta in infected cells and that this interaction can also be disrupted by mutations in the A50R (ligase) gene. Immunofluorescence microscopy showed that both topoisomerase IIalpha and IIbeta antigens are recruited to cytoplasmic sites of virus replication and that less topoisomerase was recruited to these sites in cells infected with mutant virus than in cells infected with wild-type virus. Immunoelectron microscopy confirmed the presence of topoisomerases IIalpha/beta in virosomes, but the enzyme could not be detected in mature virus particles. We propose that the genetics of etoposide and mitoxantrone resistance can be explained by vaccinia ligase binding to cellular topoisomerase II and recruiting this nuclear enzyme to sites of virus biogenesis. Although other nuclear DNA binding proteins have been detected in virosomes, this appears to be the first demonstration of an enzyme being selectively recruited to sites of poxvirus DNA synthesis and assembly.  相似文献   

6.
Despite the likely requirement for a DNA topoisomerase II activity during synthesis of mitochondrial DNA in mammals, this activity has been very difficult to identify convincingly. The only DNA topoisomerase II activity conclusively demonstrated to be mitochondrial in origin is that of a type II activity found associated with the mitochondrial, kinetoplast DNA network in trypanosomatid protozoa [Melendy, T., Sheline, C., and Ray, D.S. (1988) Cell 55, 1083-1088; Shapiro, T.A., Klein, V.A., and Englund, P.A. (1989) J. Biol. Chem.264, 4173-4178]. In the present study, we report the discovery of a type DNA topoisomerase II activity in bovine mitochondria. Identified among mtDNA replicative proteins recovered from complexes of mtDNA and protein, the DNA topoisomerase relaxes a negatively, supercoiled DNA template in vitro, in a reaction that requires Mg2+ and ATP. The relaxation activity is inhibited by etoposide and other inhibitors of eucaryotic type II enzymes. The DNA topoisomerase II copurifies with mitochondria and directly associates with mtDNA, as indicated by sensitivity of some mtDNA circles in the isolated complex of mtDNA and protein to cleavage by etoposide. The purified activity can be assigned to a approximately 150-kDa protein, which is recognized by a polyclonal antibody made against the trypanosomal mitochondrial topo II enzyme. Mass spectrometry performed on peptides prepared from the approximately 150-kDa protein demonstrate that this bovine mitochondrial activity is a truncated version of DNA topoisomerase IIbeta, one of two DNA topoisomerase II activities known to exist in mammalian nuclei.  相似文献   

7.
In this study, we evaluated the influence of protein kinase C zeta (PKC zeta) on topoisomerase II inhibitor-induced cytotoxicity in monocytic U937 cells. In U937-zeta J and U937-zeta B cells, enforced PKC zeta expression, conferred by stable transfection of PKC zeta cDNA, resulted in total inhibition of VP-16- and mitoxantrone-induced apoptosis and decreased drug-induced cytotoxicity, compared with U937-neo control cells. In PKC zeta-overexpressing cells, drug resistance correlated with decreased VP-16-induced DNA strand breaks and DNA protein cross-links measured by alkaline elution. Kinetoplast decatenation assay revealed that PKC zeta overexpression resulted in reduced global topoisomerase II activity. Moreover, in PKC zeta-overexpressing cells, we found that PKC zeta interacted with both alpha and beta isoforms of topoisomerase II, and these two enzymes were constitutively phosphorylated. However, when human recombinant PKC zeta (rH-PKC zeta) was incubated with purified topoisomerase II isoforms, rH-PKC zeta interacted with topoisomerase II beta but not with topoisomerase II alpha. PKC zeta/topoisomerase II beta interaction resulted in phosphorylation of this enzyme and in decrease of its catalytic activity. Finally, this report shows for the first time that topoisomerase II beta is a substrate for PKC zeta, and that PKC zeta may significantly influence topoisomerase II inhibitor-induced cytotoxicity by altering topoisomerase II beta activity through its kinase function.  相似文献   

8.
The quinolone CP-115,953 (6,8-difluoro-7-(4-hydroxyphenyl)-1-cyclopropyl-4- quinolone-3-carboxylic acid) represents a novel mechanistic class of drugs with potent activity against eukaryotic topoisomerase II in vitro (Robinson, M. J., Martin, B. A., Gootz, T. D., McGuirk, P. R., Moynihan, M., Sutcliffe, J. A., and Osheroff, N. (1991) J. Biol. Chem. 266, 14585-14592). Although the quinolone is highly toxic to mammalian cells in culture, its mechanism of cytotoxic action is not known. Therefore, yeast was used as a model system to determine whether topoisomerase II is the primary target responsible for the in vivo effects of CP-115,953. The quinolone was equipotent to etoposide at enhancing DNA breakage mediated by the Saccharomyces cerevisiae type II enzyme. Moreover, at concentrations as low as 5 microM, CP-115,953 was cytotoxic to yeast cells that carried wild type topoisomerase II (TOP2+). By utilizing a yeast strain that expressed the top2-1 temperature-sensitive mutant, the effect of topoisomerase II activity on quinolone cytotoxicity was determined. At the permissive temperature of 25 degrees C, cells were highly sensitive to CP-115,953. However, at the semipermissive temperature of 30 degrees C (where in vivo enzyme activity is present but is greatly diminished), cells displayed only marginal sensitivity to the quinolone at concentrations as high as 50 microM. These results strongly suggest that topoisomerase II is the primary physiological target responsible for quinolone cytotoxicity and that CP-115,953 kills cells by converting the type II enzyme into a cellular poison.  相似文献   

9.
Animal cells respond to calcium ionophore (A23187) treatment with the coordinate induction of a set of genes encoding proteins identical to the glucose-regulated proteins (GRPs). By monitoring the intracellular free calcium with the fluorescent indicator fura-2 while employing both intracellular and extracellular calcium buffers, we demonstrated that A23187 can induce the GRP94 and GRP78 genes without an increase in cytoplasmic calcium ([Ca2+]i). Induction of GRP mRNA during glucose starvation was also independent of [Ca2+]i. Instead, gene induction by A23187 was closely correlated with the depletion of intracellular calcium stores. We conclude that perturbations of sequestered calcium ions by A23187 can serve as a stimulus for gene expression.  相似文献   

10.
When exposed to etoposide, the outer cells from Chinese hamster V79 spheroids are about 10 times more resistant to DNA strand breaks and cell killing than V79 cells grown as monolayers. Previous results have shown that the outer cells of both spheroids and monolayers grow at the same rate and contain the same amount and activity of the target enzyme, topoisomerase II. In order to examine possible mechanisms for this resistance, cell fusion studies were conducted with fluorescent dye-tagged monolayer and spheroid cells. Fused cells were exposed for 30 min to 1.2 μg/ml etoposide and then separated using fluorescence-activated cell sorting into binucleate cells consisting of two monolayer cells, two spheroid cells, or a mixed doublet consisting of one cell of each type. Individual sorted cell doublets were examined for the presence of etoposide-induced DNA strand breaks using the alkaline comet assay. As expected, doublets of monolayer cells were sensitive to etoposide and doublets of spheroid cells were resistant. However, mixed doublets were as resistant to DNA damage by etoposide as spheroid doublets. In comparison, when etoposide- or adriamycin-resistant V79 monolayer cells were fused to the parent monolayer cells, the expected intermediate sensitivity to etoposide was observed for the mixed doublets. We conclude that etoposide resistance associated with the outer cells of spheroids can be “transferred” to produce resistance in monolayer cells. Rapid changes in phosphorylation that can affect topoisomerase II activity or localization, or that can alter chromatin structure, are suggested as possible mechanisms of resistance. In support of this hypothesis, topo IIα phosphorylation was at least 10 times greater in monolayers than in the outer cell layer of spheroids.  相似文献   

11.
Etoposide is a widely prescribed anticancer drug that stabilizes covalent topoisomerase II-cleaved DNA complexes. The drug contains a polycyclic ring system (rings A-D), a glycosidic moiety at C4, and a pendant ring (E-ring) at C1. Interactions between human topoisomerase IIα and etoposide in the binary enzyme--drug complex appear to be mediated by substituents on the A-, B-, and E-rings of etoposide. These protein--drug contacts in the binary complex have predictive value for the actions of etoposide within the ternary topoisomerase IIα--drug--DNA complex. Although the D-ring of etoposide does not appear to contact topoisomerase IIα in the binary complex, etoposide derivatives with modified D-rings display reduced cytotoxicity against murine leukemia cells [Meresse, P., et al. (2003) Bioorg. Med. Chem. Lett. 13, 4107]. This finding suggests that alterations in the D-ring may affect etoposide activity toward topoisomerase IIα in the ternary enzyme--drug--DNA complex. Therefore, to address the potential contributions of the D-ring to the activity of etoposide, we characterized drug derivatives in which the C13 carbonyl was moved to the C11 position (retroetoposide and retroDEPT) or the D-ring was opened (D-ring diol). All of the D-ring alterations decreased the ability of etoposide to enhance DNA cleavage mediated by human topoisomerase IIα in vitro and in cultured cells. They also weakened etoposide binding in the ternary enzyme--drug--DNA complex and altered sites of enzyme-mediated DNA cleavage. On the basis of these findings, we propose that the D-ring of etoposide has important interactions with DNA in the ternary topoisomerase II cleavage complex.  相似文献   

12.
Glucose- or nitrogen-starved cultures of Escherichia coli exhibited enhanced resistance to heat (57 degrees C) or H2O2 (15 mM) challenge, compared with their exponentially growing counterparts. The degree of resistance increased with the time for which the cells were starved prior to the challenge, with 4 h of starvation providing the maximal protection. Protein synthesis during starvation was essential for these cross protections, since chloramphenicol addition at the onset of starvation prevented the development of thermal or oxidative resistance. Starved cultures also demonstrated stronger thermal and oxidative resistance than did growing cultures adapted to heat, H2O2, or ethanol prior to the heat or H2O2 challenge. Two-dimensional gel electrophoresis of 35S-pulse-labeled proteins showed that subsets of the 30 glucose starvation proteins were also synthesized during heat or H2O2 adaptation; three proteins were common to all three stresses. Most of the common proteins were among the previously identified Pex proteins (J.E. Schultz, G. I. Latter, and A. Matin, J. Bacteriol. 170:3903-3909, 1988), which are independent of cyclic AMP positive control for their induction during starvation. Induction of starvation proteins dependent on cyclic AMP was not important in these cross protections, since a delta cya strain of E. coli K-12 exhibited the same degree of resistance to heat or H2O2 as the wild-type parent did during both growth and starvation.  相似文献   

13.
Monochloramine (NH(2)Cl) is a physiological oxidant produced by activated neutrophils, and it affects apoptosis signaling. We studied the effects of NH(2)Cl on the cell death induced by etoposide, a widely used anticancer agent that is directed to DNA topoisomerase II. Jurkat T cells, a human acute T cell leukemia cell line, were pretreated with 70 microM of NH(2)Cl for 10 min. After 24 h, 5-30 microM of etoposide was added to the NH(2)Cl pretreated and control cells, and their apoptosis, caspase activity, cell morphology, and cellular DNA contents were measured. NH(2)Cl pretreatment significantly inhibited apoptosis and caspase activation induced by etoposide or camptothecin, a DNA topoisomerase I poison, but not by staurosporine or Fas stimulation. The apoptosis inhibition actually resulted in the proliferation of the survived cells and, notably, the survived cells showed more aberrant morphology, such as variation in nuclear size, nuclear fragments, and multinucleated cells. DNA content analysis of the survived cells showed an increase in aneuploid nuclei. Cell cycle analysis after 24 h of NH(2)Cl treatment showed a significant decrease in S phase cells with a concurrent increase in G(0)/G(1) phase cells, which suggested that NH(2)Cl induced G(1) arrest. Using synchronized Jurkat cells, etoposide and camptothecin were found to be particularly cytotoxic to S phase cells, whereas staurosporine and Fas stimulation were not. Thus NH(2)Cl-induced G(1) arrest was a likely cause of the observed resistance to etoposide. These observations suggested that inflammation-derived oxidants may make the tumor cells more resistant to etoposide and increase the risk of tumor progression and the development of secondary tumors by increasing the survival of DNA damage-bearing cells.  相似文献   

14.
Chinese hamster fibroblasts CHL V-79 RJK were subjected to multistep selection in the presence of etoposide, known as an inhibitor of topoisomerase II and inductor of apoptosis. The karyotype of cells stably resistant to etoposide was analysed at progressive stages of selection using G-type staining of metaphase chromosomes. Multiple changes in the karyotype of resistant cells were observed at an early stage of selection (0.2 mg/ml of etoposide) and included: random chromosome breaks leading to formation of new chromosome markers, high frequency of aneuploid and polyploid cells, morphological instability and extracopy of q-shoulder of chromosome 1. On advanced stages of selection we observed an increased frequency of specific minute chromosome and the appearance of chromosomes with homogeneously or differentially stained regions (HSR and DSR). These data suggest that different mechanisms may be involved in developing cellular resistance to etoposide at progressive stages of selection.  相似文献   

15.
The topoisomerase II inhibitor, VP-16 (etoposide), is an important component in many chemotherapeutic regimens. To cahracterize resistance to this drug, the human melanoma cell line, FEM-X, was selected in multiple steps with VP-16. To prevent the development of typical multidrug resistance, an inhibitor of P-glycoprotein, the tiapamil analog, RO-11–2933, was added to the selections. The resultant clone FVP3 is 56-fold resistant to VP-16 and cross-resistant to doxorubicin (Adriamycin) (9-fold) and VM-26 (27-fold). These cells are also two- to fourfold resistant to m-AMSA, daunorubicin, and mitoxantrone. FVP3 is not resistant to the P-glycoprotein substrate vinblastine, does not express the MDR1 gene at detectable levels, and does not show reduced 3H-VP-16 accumulation. Unlike other cell lines that exhibit resistance to inhibitors of topoisomerase II, FVP3 has the same level of topoisomerase II expression and activity as FEM-X. Using live cells treated with VP-16, band depeletion assays and KCI/SDS precipitation assays show that topoisomerase II from FVP3 is much less susceptible to drug-induced cleavable complex formation than is that from FEM-X. This difference in sensitivity to VP-16 is also detected using lysates from disrupted cells, but not with isolated nuclei devoid of cytoplasmic and membrane components. In addijtion, the topoisomerase li present in nuclear edtracts from FVP3 is not resistant to the effects of VP-16 as measured by: (1)inhibition of strand passing activity during decatenation of kinetoplast DNA, (2) drug-induced linearization of plasmid DNA, and (3) immunodepletion by VP-16. These results suggest that some component of the cytoplasm or cellular membranes, or a factor depleted from nuclei during their isolation, is responsible for the resistance to VP-16 in FVP3. © 1993 Wiley-Liss, Inc.  相似文献   

16.
17.
Chinese hamster cell line K12 is temperature-sensitive for the initiation of DNA synthesis. K12 cells synchronized by serum deprivation were collected in early G1(G0). Heterokaryons were formed by fusing chick erythrocytes with serum-starved K12 cells through the use of UV-irradiated Sendai virus. At the permissive temperature (36.5 degrees C), erythrocyte nuclei in heterokaryons enlarged, the chromatin dispersed, and erythrocyte nuclei synthesized DNA at about the same time as the K12 nuclei. At the restrictive temperature (41 degrees C), erythrocyte nuclei enlarged, but neither erythrocyte nor K12 nuclei initiated DNA synthesis. When erythrocyte nuclei were fused with Wg-1A cells, the wild-type parent for ts K12 cells, both kinds of nuclei synthesized DNA at 36.5 degrees C and 41 degrees C. Activation of erythrocyte nuclei was inefficient in heterokaryons incubated in low-serum medium. The results indicate that serum factors and a cellular function defined by the K12 mutation are required for activation of chick erythrocyte nuclear DNA synthesis.  相似文献   

18.
《The Journal of cell biology》1990,111(6):2839-2850
We report the development of a new method for producing mitotic extracts from tissue culture cells. These extracts reproducibly promote the condensation of chromatin in vitro when incubated with purified interphase nuclei. This condensation reaction is not species specific, since nuclei from chicken, human, and hamster cell lines all undergo chromatin condensation upon incubation with the extract. We have used this extract to investigate the role of DNA topoisomerase II (topo II) in the chromosome condensation process. Chromatin condensation does not require the presence of soluble topo II in the mitotic extract. However, the extent of formation of discrete chromosome-like structures correlates with the level of endogenous topo II present in the interphase nuclei. Our results further suggest that chromatin condensation in this extract may involve two processes: chromatin compaction and resolution into discrete chromosomes.  相似文献   

19.
The glucose-regulated stress response of cancer cells leads to a decreased expression of DNA topoisomerase IIα (topo IIα) and a cell cycle arrest at the G1 phase. In this study, we found that the topo IIα decrease occurred specifically during the G1 arrest in human colon adenocarcinoma HT-29 cells. The intracelluar level of topo IIα in HT-29 cells was relatively constant regardless of cell cycle position in the exponentially growing state, determined using a centrifugal elutriation technique and synchronizing the cells with a mitotic inhibitor nocodazole. Interestingly, when the cell cycle was arrested in the M phase by nocodazole, the topo IIα level remained high even in stressed cells. After the stressed cells were released from the M phase, topo IIα steeply decreased along with cell cycle progression followed by the next G1 arrest. This decrease in nuclear topo IIα protein was completely inhibited by selective inhibitors for proteasome. Furthermore, we found that proteasome activity was elevated three to fourfold in the nuclear extract of stressed cells over unstressed cells. Accordingly, there were increased amounts of nuclear proteasome subunits, although total intracellular content of the subunits did not change in stressed cells. These findings indicate that the expression of topo IIα in stressed cells is downregulated at the G1 phase by proteasome-mediated degradation and that the proteolysis of topo IIα can be facilitated by the nuclear accumulation of proteasome. J. Cell. Physiol. 180:97–104, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

20.
Exposure of HL-60 cells to 1,25-dihydroxyvitamin D(3) (calcitriol) induces their differentiation into monocytes. This terminal differentiation is associated with acquired resistance to many proapoptotic stimuli. Here we show that differentiated HL-60 cells undergo apoptosis upon curcumin treatment although they retain resistance to apoptosis induced by a topoisomerase poison - etoposide. Curcumin induced changes of nuclear morphology, DNA fragmentation, release of cytochrome c as well as caspase activation in both differentiated and undifferentiated cells. Experiments performed in other laboratories suggested that curcumin initiates apoptosis by DNA damage that results from topoisomerase II poisoning. We measured gammaH2AX expression, a marker of DNA double strand breaks, in both undifferentiated and differentiated HL-60 cells treated with curcumin or etoposide. In etoposide-treated undifferentiated cells early gammaH2AX expression correlated with initiation phase of apoptosis. In contrast, in curcumin-treated cells gammaH2AX expression correlated with apoptotic DNA fragmentation, which is characteristic for the execution phase of apoptosis. Our experiments show that curcumin overcomes the resistance of calcitriol-differentiated HL-60 cells to DNA-damage-induced apoptosis by activating other cell signaling pathways leading to cell death of HL-60.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号