首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Co-translational integration of a nascent viral membrane protein into the endoplasmic reticulum membrane takes place via the translocon. We have been studying the early stages of the integration of a double-spanning plant viral movement protein to gain insights into how viral membrane proteins are transferred from the hydrophilic interior of the translocon into the hydrophobic environment of the bilayer, where the transmembrane (TM) segments of the viral proteins can diffuse freely. Photocrosslinking experiments reveal that this integration involves the sequential passage of the TM segments past Sec61alpha and translocating chain-associating membrane protein (TRAM). Each TM segment is first adjacent to Sec61alpha and subsequently is adjacent to TRAM. TRAM crosslinking extends for a long period during nascent chain biogenesis. In addition, the replacement of the first viral TM segment with a non-viral TM sequence still yields nascent chain photo-adducts with TRAM. TRAM therefore appears to be involved in viral membrane protein integration, and nascent chain recognition by TRAM does not appear to rely solely on the TM domains.  相似文献   

2.
The translocating chain-associating membrane protein (TRAM) is a glycoprotein involved in the translocation of secreted proteins into the endoplasmic reticulum (ER) lumen and in the insertion of integral membrane proteins into the lipid bilayer. As a major step toward elucidating the structure of the functional ER translocation/insertion machinery, we have characterized the membrane integration mechanism and the transmembrane topology of TRAM using two approaches: photocross-linking and truncated C-terminal reporter tag fusions. Our data indicate that TRAM is recognized by the signal recognition particle and translocon components, and suggest a membrane topology with eight transmembrane segments, including several poorly hydrophobic segments. Furthermore, we studied the membrane insertion capacity of these poorly hydrophobic segments into the ER membrane by themselves. Finally, we confirmed the main features of the proposed membrane topology in mammalian cells expressing full-length TRAM.  相似文献   

3.
The outer nuclear membrane is morphologically similar to rough endoplasmic reticulum. The presence of ribosomes bound to its cytoplasmic surface suggests that it could be a site of synthesis of membrane glycoproteins. We have examined the biogenesis of the vesicular stomatitis virus G protein in the nuclear envelope as a model for the biogenesis of membrane glycoproteins. G protein was present in nuclear membranes of infected Friend erythroleukemia cells immediately following synthesis and was transported out of nuclear membranes to cytoplasmic membranes with a time course similar to transport from rough endoplasmic reticulum (t 1/2 = 5-7 min). Temperature-sensitive mutations in viral membrane proteins which block transport of G protein from endoplasmic reticulum also blocked transport of G protein from the nuclear envelope. Friend erythroleukemia cells and NIH 3T3 cells differed in the fraction of newly synthesized G protein found in nuclear membranes, apparently reflecting the relative amount of nuclear membrane compared to endoplasmic reticulum available for glycoprotein synthesis. Nuclear membranes from erythroleukemia cells appeared to have the enzymatic activities necessary for cleavage of the signal sequence and core glycosylation of newly synthesized G protein. Signal peptidase activity was detected by the ability of detergent-solubilized membranes of isolated nuclei to correctly remove the signal sequence of human preplacental lactogen. RNA isolated from the nuclear envelope was highly enriched for G protein mRNA, suggesting that G protein was synthesized on the outer nuclear membrane rather than redistributing to nuclear membranes from endoplasmic reticulum before or during cell fractionation. These results suggest a mechanism for incorporation of membrane glycoproteins into the nuclear envelope and suggest that in some cell types the nuclear envelope is a major source of newly synthesized membrane glycoproteins.  相似文献   

4.
During polytopic protein biogenesis, multiple transmembrane segments (TMs) must pass through the ribosome exit tunnel and into the Sec61 translocon prior to insertion into the endoplasmic reticulum membrane. To investigate how movement of a newly synthesized TM along this integration pathway might be influenced by synthesis of a second TM, we used photocross-linking probes to detect the proximity of ribosome-bound nascent polypeptides to Sec61alpha. Probes were inserted at sequential sites within TM2 of the aquaporin-1 water channel by in vitro translation of truncated mRNAs. TM2 first contacted Sec61alpha when the probe was positioned approximately 38 residues from the ribosome peptidyltransferase center, and TM2-Sec61alpha photoadducts decreased markedly when the probe was >80 residues from the peptidyltransferase center. Unexpectedly, as nascent chain length was gradually extended, photocross-linking at multiple sites within TM2 abruptly and transiently decreased, indicating that TM2 initially entered, withdrew, and then re-entered Sec61alpha. This brief reduction in TM2 photocross-linking coincided with TM3 synthesis. Replacement of TM3 with a secretory reporter domain or introduction of proline residues into TM3 changed the TM2 cross-linking profile and this biphasic behavior. These findings demonstrate that the primary and likely secondary structure of the nascent polypeptide within the ribosome exit tunnel can influence the timing with which topogenic determinants contact, enter, and pass through the translocon.  相似文献   

5.
A viral inner nuclear membrane-sorting motif sequence (INM-SM) was used to identify proteins that recognize integral membrane proteins destined for the INM. Herein we describe importin-alpha-16, a membrane-associated isoform of Spodoptera frugiperda importin-alpha that contains the C-terminal amino acid residues comprising armadillo helical-repeat domains 7-10. In the endoplasmic reticulum (ER) membrane, importin-alpha-16 is adjacent to the translocon protein Sec61alpha. Importin-alpha-16 cross-links to the INM-SM sequence as it emerges from the ribosomal tunnel and remains adjacent to the INM-SM after INM-SM integration into the ER membrane and release from the translocon. Cross-linking results suggest that importin-alpha-16 discriminates between INM- and non-INM-directed proteins. Thus, it seems that during and after cotranslational membrane integration, importin-alpha-16 is involved in the trafficking of integral membrane proteins to the INM.  相似文献   

6.
Protein transport via the Sec translocon represents an evolutionary conserved mechanism for delivering cytosolically-synthesized proteins to extra-cytosolic compartments. The Sec translocon has a three-subunit core, termed Sec61 in Eukaryotes and SecYEG in Bacteria. It is located in the endoplasmic reticulum of Eukaryotes and in the cytoplasmic membrane of Bacteria where it constitutes a channel that can be activated by multiple partner proteins. These partner proteins determine the mechanism of polypeptide movement across the channel. During SRP-dependent co-translational targeting, the ribosome threads the nascent protein directly into the Sec channel. This pathway is in Bacteria mainly dedicated for membrane proteins but in Eukaryotes also employed by secretory proteins. The alternative pathway, leading to post-translational translocation across the Sec translocon engages an ATP-dependent pushing mechanism by the motor protein SecA in Bacteria and a ratcheting mechanism by the lumenal chaperone BiP in Eukaryotes. Protein transport and biogenesis is also assisted by additional proteins at the lateral gate of SecY/Sec61α and in the lumen of the endoplasmic reticulum or in the periplasm of bacterial cells. The modular assembly enables the Sec complex to transport a vast array of substrates. In this review we summarize recent biochemical and structural information on the prokaryotic and eukaryotic Sec translocons and we describe the remarkably complex interaction network of the Sec complexes.  相似文献   

7.
Recent advances have led to considerable convergence in ideas of the way topogenic sequences act to translocate proteins across various intracellular membranes (Table 2). Whereas co-translational translocation and processing were previously considered the norm at the endoplasmic reticulum membrane, several instances of post-translational translocation into endoplasmic reticulum microsomes in vitro have now been described. However, it must be noted that post-translational translocation in vitro is much less efficient than when endoplasmic reticulum membranes are present during translation, and it is possible that in the intact cell translocation occurs during translation. Movement of proteins into chloroplasts and mitochondria occurs after translation. When translocation is post-translational, proteins may perhaps traverse the membrane as folded domains, and the conformational effects of topogenic sequences on these domains may be as envisaged in Wickner's 'membrane-trigger hypothesis'. Both signal and transit sequences possess amphipathic structures which are capable of interacting with phospholipid bilayers, and these interactions may disturb the bilayer sufficiently to allow entry of the following domains of protein. There is increasing evidence that GTP is required to bind ribosomes and their associated nascent chains to the endoplasmic reticulum membrane. Precisely how the cell's energy is applied to achieve translocation is not clear, but one possibility at the endoplasmic reticulum is that a GTP-hydrolysing transducing mechanism may exist to couple signal sequence receptor binding to movement of the nascent chain across the membrane. Electrochemical gradients are required for protein movement to the mitochondrial inner membrane and across the bacterial inner membrane. Cytoplasmic factors such as SRP, the secA gene product or a 40 kDa protein (for mitochondrial precursors) may act by binding to topogenic sequences and preventing precursor proteins as they are translated from folding into forms which cannot be translocated. Specificity in the cell may be achieved both by targetting interactions between these cytoplasmic factors and their receptors located in target membranes, and also by specific binding of the topogenic sequences to specific proteins integrated into the target membranes. Possible candidates for the latter are the protein of microsomal membranes that reacts with a photoreactive signal peptide to give a 45 kDa complex (Fig. 1), the secY gene product of the bacterial inner membrane, and receptors on the outer membranes of chloroplasts and mitochondria. Whether these aid translocation as well as recognition is not clear.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
9.
It is somewhat paradoxical that the malaria parasite’s survival strategy involves spending almost all of its blood-stage existence residing behind a two-membrane barrier in a host red blood cell, yet giving considerable attention to exporting parasite-encoded proteins back across these membranes. These exported proteins are thought to play diverse roles and are crucial in pathogenic processes, such as re-modelling of the erythrocyte cytoskeleton and mediating the export of a major virulence protein known as Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), and in metabolic processes such as nutrient uptake and solute exchange. Despite these varied roles most exported proteins have at least one common link; they share a trafficking pathway that begins with entry into the endoplasmic reticulum and concludes with passage across the vacuole membrane via a proteinaceous translocon known as the Plasmodium translocon of exported proteins (PTEX). In this commentary we review recent advances in our understanding of this export pathway and suggest several models by which different aspects of the process may be interconnected.  相似文献   

10.
The primary membrane of vaccinia virus, as well as those of other poxviruses, forms within a discrete cytoplasmic factory region. We recently determined the existence of an operative pathway from the endoplasmic reticulum within the virus factory to nascent viral membranes and demonstrated that a viral protein could be diverted from this pathway to Golgi membranes by the addition of COPII-binding sites (M. Husain, A. S. Weisberg, and B. Moss, Proc. Natl. Acad. Sci. USA, 103:19506-19511, 2006). Here we describe an investigation of the structural features that are required for transit of proteins to the viral membrane. Deletion of either the N-terminal domain or the C-terminal cytoplasmic tail from the conserved A9 protein did not prevent its incorporation into viral membranes, whereas deletion of the transmembrane domain resulted in its distribution throughout the cytoplasm. Nevertheless, replacement of the A9 transmembrane domain with the corresponding region of a nonpoxvirus transmembrane protein or of a vaccinia virus extracellular envelope protein allowed viral membrane targeting, indicating no requirement for a specific amino acid sequence. Remarkably, the epitope-tagged A9 transmembrane domain alone, as well as a heterologous transmembrane domain lacking a poxvirus sequence, was sufficient for viral membrane association. The data are consistent with a sequence-independent pathway in which transmembrane proteins that are synthesized within the virus factory and lack COPII or other binding sites that enable conventional endoplasmic reticulum exiting are incorporated into nascent viral membranes.  相似文献   

11.
Plant viruses encode movement proteins that are essential for systemic infection of their host but dispensable for replication and encapsidation. BL1, one of the two movement proteins encoded by the bipartite geminivirus squash leaf curl virus, was immunolocalized to unique approximately 40-nm tubules that extended up to and across the walls of procambial cells in systemically infected pumpkin leaves. These tubules were not found in procambial cells from pumpkin seedlings inoculated with BL1 mutants that are defective in movement. The tubules also specifically stained with antisera to binding protein (BiP), indicating that they were derived from the endoplasmic reticulum. Independent confirmation of this endoplasmic reticulum association was obtained by subcellular fractionation studies in which BL1 was localized to fractions that contained both endoplasmic reticulum membranes and BiP. Thus, squash leaf curl virus appears to recruit the endoplasmic reticulum as a conduit for cell-to-cell movement of the viral genome.  相似文献   

12.
Dengue virus-induced modifications of host cell membranes.   总被引:5,自引:5,他引:0       下载免费PDF全文
Enzymatic markers and electron microscopy were utilized to determine the cellular origin of the membrane types isolated from type 2 dengue virus-infected BHK cells by discontinuous sucrose gradient centrifugation. The results showed an apparent separation of plasma membrane, smooth and rough endoplasmic reticulum with increasing density. Virus-induced protein and RNA synthesis, as indicated by the incorporation of radiolabled precursors, was localized on the rough endoplasmic reticulum. Glycosylation, measured by the incorporation of radiolabeled glucosamine into membrane-associated proteins, was most active in the bands of intermediate and smooth endoplasmic reticulum. Polyacrylamide gel electrophoresis of isolated membrane bands, radiolabeled in the presence of actinomycin D, after pulse inhibition by cycloheximide, revealed seven virus-specific proteins associated with all membrane fractions. Viral structural protein V-3, and nonstructural proteins NV-3 and NV-2, increased with decreasing density, whereas NV-5 and NV-4 remained constant. The viral capsid protein V-2 was depleted in the intermediate and smooth endoplasmic reticulum, suggesting that these membranes may serve as the sites for viral maturation. NV-3 was the most prominent virus-specified protein found in the plasma membrane.  相似文献   

13.
Integral membrane proteins are cotranslationally inserted into the endoplasmic reticulum via the protein translocation channel, or translocon, which mediates the transport of lumenal domains, retention of cytosolic domains and integration of transmembrane spans into the phospholipid bilayer. Upon translocon binding, transmembrane spans interact with a lateral gate, which regulates access to membrane phospholipids, and a lumenal gate, which controls the translocation of soluble domains. We analyzed the in vivo kinetics of integration of model membrane proteins in Saccharomyces cerevisiae using ubiquitin translocation assay reporters. Our findings indicate that the conformational changes in the translocon that permit opening of the lumenal and lateral channel gates occur less rapidly than elongation of the nascent polypeptide. Transmembrane spans and lumenal domains are therefore exposed to the cytosol during integration of a polytopic membrane protein, which may pose a challenge to the fidelity of membrane protein integration.  相似文献   

14.
Little is known about quality control of proteins that aberrantly or persistently engage the endoplasmic reticulum (ER)-localized translocon en route to membrane localization or the secretory pathway. Hrd1 and Doa10, the primary ubiquitin ligases that function in ER-associated degradation (ERAD) in yeast, target distinct subsets of misfolded or otherwise abnormal proteins based primarily on degradation signal (degron) location. We report the surprising observation that fusing Deg1, a cytoplasmic degron normally recognized by Doa10, to the Sec62 membrane protein rendered the protein a Hrd1 substrate. Hrd1-dependent degradation occurred when Deg1-Sec62 aberrantly engaged the Sec61 translocon channel and underwent topological rearrangement. Mutations that prevent translocon engagement caused a reversion to Doa10-dependent degradation. Similarly, a variant of apolipoprotein B, a protein known to be cotranslocationally targeted for proteasomal degradation, was also a Hrd1 substrate. Hrd1 therefore likely plays a general role in targeting proteins that persistently associate with and potentially obstruct the translocon.  相似文献   

15.
Virus-encoded movement proteins (MPs) mediate cell-to-cell spread of viral RNA through plant membranous intercellular connections, the plasmodesmata. The molecular pathway by which MPs interact with viral genomes and target plasmodesmata channels is largely unknown. The 9-kDa MP from carnation mottle carmovirus (CarMV) contains two potential transmembrane domains. To explore the possibility that this protein is in fact an intrinsic membrane protein, we have investigated its insertion into the endoplasmic reticulum membrane. By using in vitro translation in the presence of dog pancreas microsomes, we demonstrate that CarMV p9 inserts into the endoplasmic reticulum without the aid of any additional viral or plant host components. We further show that the membrane topology of CarMV p9 is N(cyt)-C(cyt) (N and C termini of the protein facing the cytoplasm) by in vitro translation of a series of truncated and full-length constructs with engineered glycosylation sites. Based on these results, we propose a topological model in which CarMV p9 is anchored in the membrane with its N- and C-terminal tail segments interacting with its soluble, RNA-bound partner CarMV p7, to accomplish the viral cell-to-cell movement function.  相似文献   

16.
BackgroundIn eukaryotic cells, many proteins have to be transported across or inserted into the endoplasmic reticulum membrane during their biogenesis on the ribosome. This process is facilitated by the protein translocon, a highly dynamic multi-subunit membrane protein complex.Scope of reviewThe aim of this review is to summarize the current structural knowledge about protein translocon components in mammals.Major conclusionsVarious structural biology approaches have been used in synergy to characterize the translocon in recent years. X-ray crystallography and cryoelectron microscopy single particle analysis have yielded highly detailed insights into the structure and functional mechanism of the protein-conducting channel Sec61, which constitutes the functional core of the translocon. Cryoelectron tomography and subtomogram analysis have advanced our understanding of the overall structure, molecular organization and compositional heterogeneity of the translocon in a native membrane environment. Tomography densities at subnanometer resolution revealed an intricate network of interactions between the ribosome, Sec61 and accessory translocon components that assist in protein transport, membrane insertion and maturation.General significanceThe protein translocon is a gateway for approximately one third of all synthesized proteins and numerous human diseases are associated with malfunctioning of its components. Thus, detailed insights into the structure and molecular organization of the translocon will not only advance our understanding of membrane protein biogenesis in general, but they can potentially pave the way for novel therapeutic approaches against human diseases.  相似文献   

17.
The role of SecA in selecting bacterial proteins for export was examined using a heterologous system that lacks endogenous SecA and other bacterial proteins. This approach allowed us to assess the interaction of SecA with ribosome-bound photoreactive nascent chains in the absence of trigger factor, SecB, Ffh (the bacterial protein component of the signal recognition particle), and the SecYEG translocon in the bacterial plasma membrane. In the absence of membranes, SecA photocross-linked efficiently to nascent translocation substrate OmpA in ribosome-nascent chain (RNC) complexes in an interaction that was independent of both ATP and SecB. However, no photocross-linking to a nascent membrane protein that is normally targeted by a signal recognition particle was observed. Modification of the signal sequence revealed that its affinity for SecA and Ffh varied inversely. Gel filtration showed that SecA binds tightly to both translating and non-translating ribosomes. When purified SecA.RNC complexes containing nascent OmpA were exposed to inner membrane vesicles lacking functional SecA, the nascent chains were successfully targeted to SecYEG translocons. However, purified RNCs lacking SecA were unable to target to the same membranes. Taken together, these data strongly suggest that cytosolic SecA participates in the selection of proteins for export by co-translationally binding to the signal sequences of non-membrane proteins and directing those nascent chains to the translocon.  相似文献   

18.
Yamamoto H  Fujita H  Kida Y  Sakaguchi M 《Biochemistry》2012,51(17):3596-3605
Various proteins are translocated through and inserted into the endoplasmic reticulum membrane via translocon channels. The hydrophobic segments of signal sequences initiate translocation, and those on translocating polypeptides interrupt translocation to be inserted into the membrane. Positive charges suppress translocation to regulate the orientation of the signal sequences. Here, we investigated the effect of membrane cholesterol on the translocational behavior of nascent chains in a cell-free system. We found that the three distinct translocation processes were sensitive to membrane cholesterol. Cholesterol inhibited the initiation of translocation by the signal sequence, and the extent of inhibition depended on the signal sequence. Even when initiation was not inhibited, cholesterol impeded the movement of the positively charged residues of the translocating polypeptide chain. In surprising contrast, cholesterol enhanced the translocation of hydrophobic sequences through the translocon. On the basis of these findings, we propose that membrane cholesterol greatly affects partitioning of hydrophobic segments into the membrane and impedes the movement of positive charges.  相似文献   

19.
A phospholipid flippase activity from the endoplasmic reticulum (ER) of the model organism Saccharomyces cerevisiae has been characterized and functionally reconstituted into proteoliposomes. Analysis of the transbilayer movement of acyl-7-nitrobenz-2-oxa-1,3-diazol-4-yl (acyl-NBD)-labeled phosphatidylcholine in yeast microsomes using a fluorescence stopped-flow back exchange assay revealed a rapid, ATP-independent flip-flop (half-time, <2 min). Proteoliposomes prepared from a Triton X-100 extract of yeast microsomal membranes were also capable of flipping NBD-labeled phospholipid analogues rapidly in an ATP-independent fashion. Flippase activity was sensitive to the protein modification reagents N-ethylmaleimide and diethylpyrocarbonate. Resolution of the Triton X-100 extract by velocity gradient centrifugation resulted in the identification of a approximately 4S protein fraction enriched in flippase activity as well as of other fractions where flippase activity was depleted or undetectable. We estimate that flippase activity is due to a protein(s) representing approximately 2% (wt/wt) of proteins in the Triton X-100 extract. These results indicate that specific proteins are required to facilitate ATP-independent phospholipid flip-flop in the ER and that their identification is feasible. The architecture of the ER protein translocon suggests that it could account for the flippase activity in the ER. We tested this hypothesis using microsomes prepared from a temperature-sensitive yeast mutant in which the major translocon component, Sec61p, was quantitatively depleted. We found that the protein translocon is not required for transbilayer movement of phospholipids across the ER. Our work defines yeast as a promising model system for future attempts to identify the ER phospholipid flippase and to test and purify candidate flippases.  相似文献   

20.
A Müsch  M Wiedmann  T A Rapoport 《Cell》1992,69(2):343-352
We show by photocross-linking that nascent secretory proteins, during their passage through the endoplasmic reticulum membrane of S. cerevisiae, are in physical contact with Sec61p and Sec62p, two genetically identified membrane proteins that are essential for in vivo translocation. Sec61p seems to be in continuous contact, whereas Sec62p is involved only transiently. Translocation comprises both ATP-dependent and -independent phases of interaction with the Sec proteins. The results suggest a direct role of the Sec proteins in translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号