首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fourier Transform Infrared spectroscopy (FTIR) was used to determine the phase transition temperature of whole Saccharomyces cerevisiae W303-1 A cells as a function of Aw in binary water-glycerol media. A phase transition occurred at 12 °C in water, at 16.5 °C at Aw=0.75, and at 19.5 °C at Aw=0.65. The temperature ranges over which transition occurred increased with decreasing Aw. A total lipid extract of the plasma membranes isolated from S. cerevisiae cells was also studied, with a phase transition temperature determined at 20 °C in pure water and at 27 °C in binary water-glycerol solutions for both Aw levels tested. The pure phospholipids dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) and three binary mixtures of these phospholipids (percentage molar mixtures of DMPC/DMPE of 90.5/9.5, 74.8/25.2, and 39.7/60.3) were studied. For DMPC, there was no influence of Aw on the phase transition temperature (always 23 °C). On the other hand, the phase transition temperature of DMPE increased with decreasing Aw for the three aqueous solutions tested (glycerol, sorbitol and sucrose), from 48 °C in water, to 64 °C for a solution at Aw=0.67. For the DMPC/DMPE mixtures, transitions were found intermediate between those of the two phospholipids, and a cooperative state was observed between species at the gel and at the fluid phases.  相似文献   

2.
It is now well appreciated that derivatives of phosphatidylinositol (PtdIns) are key regulators of many cellular processes in eukaryotes. Of particular interest are phosphoinositides (mono- and polyphosphorylated adducts to the inositol ring in PtdIns), which are located at the cytoplasmic face of cellular membranes. Phosphoinositides serve both a structural and a signaling role via their recruitment of proteins that contain phosphoinositide-binding domains. Phosphoinositides also have a role as precursors of several types of second messengers for certain intracellular signaling pathways. Realization of the importance of phosphoinositides has brought increased attention to characterization of the enzymes that regulate their synthesis, interconversion, and turnover. Here we review the current state of our knowledge about the properties and regulation of the ATP-dependent lipid kinases responsible for synthesis of phosphoinositides and also the additional temporal and spatial controls exerted by the phosphatases and a phospholipase that act on phosphoinositides in yeast.  相似文献   

3.
The effects of poly(ethylene glycol) (PEG) on the phase transition of phospholipid multilamellar vesicles (MLVs) were investigated by using differential scanning calorimetry (DSC). Main transition temperature (Tm) and the pre-transition temperature (Tp) of neutral phospholipid-, DMPC-1, DPPC- and DSPC-MLVs increased with an increase in PEG concentration. The subtransition temperature of DPPC-MLV also increased with an increase in PEG concentration. These results could be qualitatively explained by enhancement of the lateral packing on the basis of the osmoelastic coupling theory. The pretransition temperature increased faster than the main transition temperature did with an increase in PEG concentration. The increment of Tm depended on the hydrocarbon chain length, the shorter the hydrocarbon chain length was, the larger the increment was. The transition width in the DSC peak was broadened with an increase in PEG concentration. These three above-mentioned effects are the main differences between the effects of the osmotic stress on the phase transition of MLVs and those of hydrostatic pressure. On the other hand, ethylene glycol (EG), which is the monomer of PEG, had a biphasic effect on transition temperature of DPPC-, DSPC-, and DMPC-MLV, reducing Tm and Tp at low concentrations, but increasing Tm and extinguishing pretransition at high concentrations. This is explained by the induction of an interdigitated gel phase at high concentrations of EG, which indicates that EG can easily penetrate into the head group region of the lipid, in contrast with PEG 6K, because EG is small. Temperature-EG concentration phase diagrams for the various PC-MLVs were determined.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The osmotic tolerance of cells of Saccharomyces cerevisiae as a function of glycerol concentration and temperature has been investigated. Results show that under isothermal conditions (25 degrees C) cells are resistant (94% viability) to hyperosmotic treatment at 49.2 MPa. A thigher osmotic pressure, cell viability decreases to 25% at 99 MPa. Yeast resistance to high osmotic stress (99 Mpa) is enhanced at low temperatures (5-11 degrees C). Therefore, the temperature at which hyperosmotic pressure is achieved greatly affects cell viability. These results suggest that temperature control is a suitable means of enhancing cell survival in response to osmotic dehydration.  相似文献   

5.
Sterols are essential components of the plasma membrane in eukaryotic cells. Nystatin-resistant erg mutants were used in the present study to investigate the in vitro effects of altered sterol structure on membrane lipid composition, fluidity, and asymmetry of phospholipids. Quantitative analyses of the wild type and mutants erg2, erg3 and erg6 revealed that mutants have lower sterol (free)-to-phospholipid molar ratios than the wild type. Phosphatidylcholine content was decreased in erg2 and erg3 mutants; however, it was increased in erg6 strains as compared to normals. Phosphatidylserine content was increased in the erg6 mutant only. Fluorescence anisotropy decreased with temperature in both probes, and was lower for mutants than for the wild type, suggesting an increased freedom in rotational movement due to decreased membrane order. Investigation of changes in the aminophospholipid transbilayer distribution using two chemical probes, trinitrobenzene sulfonic acid and fluorescamine, revealed that the amounts of phosphatidylethanolamine derivatized by these probes were quite similar in both the wild type and various erg strains. The present findings suggest that adaptive responses in yeast cells with altered sterol structure are possibly manifested through changes in membrane lipid composition and fluidity, and not through transbilayer rearrangement of aminophospholipids.  相似文献   

6.
7.
Summary The continuous production of mead was achieved with whole cells of Saccharomyces cerevisiae immobilized in calcium alginate gels. The alcohol production was stable in the pH range of 2.5–6.0 and a temperature range of 18–30°C with a sharp increase at 35°C. The process reduced the problems of contamination and secondary fermentation which are associated with traditional mead production.  相似文献   

8.
Water permeability (Lp), calculated from the volume variations of cells subjected to an osmotic shock, is classically used to characterize cell membrane properties. In this work, we have shown the importance of the kind of mixing reactor used to measure the Lp parameter. A mathematical model including the mixing time constant has been proposed allowing an accurate Lp estimation even though the mixing time constant is higher than the cell time constant obtained in response to a perfect shock. The estimated Lp values of human leukemia K562 cells were found to be the same whatever the mixing time constant. The Lp value of Saccharomyces cerevisiae could not be exactly estimated. However, S. cerevisiae has unexpectedly high water permeability, implying that this yeast may contain water channels in the membrane. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 62-70, 1997.  相似文献   

9.
Phospholipid synthesis activity and plasma membrane growth have been studied in the Saccharomyces cerevisiae temperature-sensitive, secretion-defective mutants isolated by Novick and Schekman (Proc. Natl. Acad. Sci. U.S.A. 76:1858-1862, 1979; Novick et al., Cell 21:205-215, 1980). The mutants, sec1 through sec23, do not grow at 37 degrees C and exhibit lower rates of phospholipid synthesis than does the wild-type strain X2180. None of the mutants exhibits a decline in lipid synthesis rapid enough to explain secretion failure. Plasma membrane growth was assessed indirectly by examining the osmotic sensitivity of spheroplasts derived from cultures transferred from 24 to 37 degrees C. Spheroplasts from the normal-growing strain X2180 exhibited a small rapid increase in osmotic sensitivity and stabilized at a more sensitive state. Spheroplasts from the sec mutants exposed to the same temperature shift exhibited progressively increasing osmotic sensitivity. Cycloheximide treatment prevented progressive increases in osmotic fragility. These data are compatible with the hypothesis that plasma membrane expansion is restricted in the sec mutants. During incubation at 37 degrees C, the accumulation of intracellular materials within the no-longer expanding plasma membrane exerts osmotic stress on the membrane, increasing with time. The gene products defective in Novick and Schekman's sec mutants appear to be required for both extracellular protein secretion and plasma membrane growth in yeast cells.  相似文献   

10.
The extracted toxic barley protein showed different protein content depending on the barley strain and demonstrated an inhibitory effect on the growth of yeast and glucose consumption. Chinese barley Danpi-2 had the highest concentration of toxic protein of all the types barley tested. When the concentration of proteins was increased to 32 μg/ml, the inhibition ratio also went up by 50%. The SDS-PAGE electrophoresis pattern showed that the protein was stable and tolerant at the temperature of 100°C.  相似文献   

11.
Ro09-0198 (Ro) is a tetracyclic peptide antibiotic that binds specifically to phosphatidylethanolamine (PE) and causes cytolysis. To investigate the molecular basis of transbilayer movement of PE in biological membranes, we have isolated a series of budding yeast mutants that are hypersensitive to the Ro peptide. One of the most sensitive mutants, designated ros3 (Ro-sensitive 3), showed no significant change in the cellular phospholipid composition or in the sensitivity to amphotericin B, a sterol-binding polyene macrolide antibiotic. These results suggest that the mutation of ros3 affects the PE organization on the plasma membrane, rather than PE synthesis or overall organization of the membrane structures. By functional complementation screening, we identified the gene ROS3 affected in the mutant, and we showed that the hypersensitive phenotype was caused by the defective expression of the ROS3 gene product, Ros3p, an evolutionarily conserved protein with two putative transmembrane domains. Disruption of the ROS3 gene resulted in a marked decrease in the internalization of fluorescence-labeled analogs of PE and phosphatidylcholine, whereas the uptake of fluorescence-labeled phosphatidylserine and endocytic markers was not affected. Neither expression levels nor activities of ATP-binding cassette transporters of the ros3Delta cells differed from those of wild type cells, suggesting that Ros3p is not related to the multidrug resistance activities. Immunochemical analyses of the structure and subcellular localization showed that Ros3p was a glycosylated membrane protein localized in both the plasma membrane and the endoplasmic reticulum, and that a part of Ros3p was associated with the detergent-insoluble glycolipid-enriched complexes. These results indicate that Ros3p is a membrane glycoprotein that plays an important role in the phospholipid translocation across the plasma membrane.  相似文献   

12.
Phosphatidylethanolamine methyltransferase (PEMT) and phospholipid methyltransferase (PLMT), which are encoded by the CHO2 and OPI3 genes, respectively, catalyze the three-step methylation of phosphatidylethanolamine to phosphatidylcholine in Saccharomyces cerevisiae. Regulation of PEMT and PLMT as well as CHO2 mRNA and OPI3 mRNA abundance was examined in S. cerevisiae cells supplemented with phospholipid precursors. The addition of choline to inositol-containing growth medium repressed the levels of CHO2 mRNA and OPI3 mRNA abundance in wild-type cells. The major effect on the levels of the CHO2 mRNA and OPI3 mRNA occurred in response to inositol. Regulation was also examined in cho2 and opi3 mutants, which are defective in PEMT and PLMT activities, respectively. These mutants can synthesize phosphatidylcholine when they are supplemented with choline by the CDP-choline-based pathway but they are not auxotrophic for choline. CHO2 mRNA and OPI3 mRNA were regulated by inositol plus choline in opi3 and cho2 mutants, respectively. However, there was no regulation in response to inositol when the mutants were not supplemented with choline. This analysis showed that the regulation of CHO2 mRNA and OPI3 mRNA abundance by inositol required phosphatidylcholine synthesis by the CDP-choline-based pathway. The regulation of CHO2 mRNA and OPI3 mRNA abundance generally correlated with the activities of PEMT and PLMT, respectively. CDP-diacylglycerol synthase and phosphatidylserine synthase, which are regulated by inositol in wild-type cells, were examined in the cho2 and opi3 mutants. Phosphatidylcholine synthesis was not required for the regulation of CDP-diacylglycerol synthase and phosphatidylserine synthase by inositol.  相似文献   

13.
14.
15.
A proteomics approach was used to search for novel phospholipid binding proteins in Saccharomyces cerevisiae. Phospholipids were immobilized on a solid support and the lipids were probed with soluble yeast protein extracts. From this, the phosphatidic acid binding proteins were eluted and identified by mass spectrometry. Thirteen proteins were identified and 11 of these were previously unknown lipid binding proteins. The protein-lipid interactions identified would not have been predicted using bioinformatics approaches as none possessed a known lipid binding motif. A subset of the identified proteins was purified to homogeneity and determined to directly bind phospholipids immobilized on a solid support or organized into liposomes. This simple approach could be systematically applied to perform an exhaustive screen for soluble lipid binding proteins in S. cerevisiae or other organisms.  相似文献   

16.
Summary Some physiological properties of a multiple-drug-resistant mutant with a permeability barrier to chloramphenicol and its isogenic parental strain were compared. The ATPase specific activity of plasma and mitochondrial membranes isolated from the mutant strain was approximately 20% lower (P(0.001, Tables 1 and 2) than that of membranes isolated from the isogenic parental strain. Additional evidence of altered mitochondrial function was: (i) the enhanced growth of the parental strain was eliminated by the [rho-] state (Table 3); (ii) the mutant strain had a greater resistance to petite induction by ethidium bromide (Table 4); (iii) the mutant strain was unable to use a nonfermentable energy source for respiratory adaptation (Table 5). It is proposed that a single gene mutation has resulted in an alteration of some physiological properties of the plasma and mitochondrial membranes.  相似文献   

17.
18.
Abstract A stable copper-resistant mutant of Saccharomyces cerevisiae took up less copper than the wild-type. The use of protoplasts showed that the decreased uptake depended on changed membrane transport properties and not on alterations in the cell wall.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号