首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A selective uptake mechanism for some nucleosides and related substances was found in retinae of light adapted rabbits and fish. After the intravitreal injection in vivo of [3H]adenosine, [3H]inosine, [3H]guanosine and certain related compounds, the distribution of radioactivity was studied by autoradiography. Retinae were also incubated in [3H]adenosine and [3H]inosine and then were similarly processed.In rabbits, the accumulation of radioactivity from [3H]adenosine and [3H]guanosine was predominantly into glial cells, but also into neurons. [3H]Inosine labelled glia almost exclusively. However, the adenosine analog, [3H]methylphenylethyl-adenosine, resulted in well-defined neuronal labelling in this species. In fish, a few photoreceptor cell bodies exhibited strong radioactivity with the nucleosides, presumably representing incorporation into nucleic acids of replicating cells. Labelling was also seen in horizontal cells, amacrine cells and ganglion cells after the injection of either [3H]adenosine, [3H]guanosine or [3H]inosine.To some extent, the selective accumulation of radioactivity is likely to be due to cell replication, but in most neurons, other factors must be responsible. Judging from what is known about the actions of adenosine in central nervous tissue, signal transmission in the retina could be such a factor.  相似文献   

2.
1. The nucleic acid metabolism in the pyridoxine-deficient rat has been investigated through studies on the incorporation of radioactivity from various isotopically labelled compounds into liver and spleen DNA and RNA. 2. In pyridoxine deficiency, the incorporation of radioactivity from sodium [14C]formate was apparently increased. The magnitude of this effect on incorporation into liver RNA and DNA and spleen RNA was approximately the same. The incorporation into spleen DNA was enhanced to a much greater degree. Administration of pyridoxine 24hr. before the rats were killed reversed the changes in incorporation of radioactivity from [14C]formate. 3. In pyridoxine deficiency, the incorporation of radioactivity from dl-[3-14C]serine, [8-14C]adenine, [Me-3H]thymidine and [2-14C]deoxyuridine was decreased. The incorporation of radioactivity from l-[Me-14C]methionine was not affected. No noteworthy differences in the effect of pyridoxine deficiency on the incorporation of radioactivity from dl-[3-14C]serine into DNA and RNA were observed, whereas the effect of the deficiency on the incorporation of radioactivity from [8-14C]adenine into spleen DNA was somewhat greater than that into spleen RNA. Administration of pyridoxine 24hr. before the rats were killed reversed the changes in incorporation of radioactivity from [3-14C]serine and [8-14C]adenine. 4. The adverse effects of pyridoxine deficiency on the biosynthesis of nucleic acids and cell multiplication are discussed in relation to the role of pyridoxal phosphate in the production of C1 units via the serine-hydroxymethylase reaction.  相似文献   

3.
The DNA synthesis system of freshly isolated tonsillar lymphocytes and those stimulated by phytohaemagglutinin were compared by different methods. Both cell populations had high DNA polymerase α and thymidine kinase activities, as well as a high rate of incorporation of [3H]thymidine into DNA. However, the two cell populations differed when their DNA distributions were compared by flow cytometry. Freshly isolated cells contained many less (6%) cells in S phase than were found in phytohaemagglutinin-stimulated lymphocytes (18%) as detected by flow cytometry. The labelling of different subpopulations of lymphocytes was studied by sorting them electrically with a fluorescence-activated cell sorter. Analysis of the radioactivity of [3H]thymidine pulse-labelled cells, sorted according to their DNA content, showed that cells in the G1 peak of DNA distribution had a significant amount of incorporated [3H]thymidine. Sorting of cells according to their size (i.e., by light scattering) revealed that only large cells were labelled with [3H]thymidine.  相似文献   

4.
This study sought to elucidate the optimal cell culture conditions for studies concerned with the incorporation of [3H]glucosamine into glycosaminoglycans by rabbit aortic smooth muscle cells. The incorporation of radioactivity into extracellular sulphated glycosaminoglycans was linear for at least 72 h and that into pericellular sulphated glycosaminoglycans for up to 24 h. The incorporation of radiolabel into hyaluronic acid was linear only up to 12 h. In the exponential growth phase the incorporation of [3H]glucosamine into sulphated glycosaminoglycans and hyaluronic acid proved to be less marked than in the stationary growth phase, but the highest values were nevertheless obtained immediately after trypsinisation. When studied in the stationary growth phase, cell density and incorporation of [3H]glucosamine were positively correlated in the case of hyaluronic acid, but in the case of sulphated glycosaminoglycans there was a negative correlation. The serum concentration of the incubation medium and the incorporation of radioactivity into hyaluronic acid were positively related. With sulphated glycosaminoglycans this was the case only after a 7-day preincubation in the different serum concentrations. when incorporation was studied without preincubation, the incorporation of radioactivity into sulphated glycosaminoglycans proved to be negatively associated with the serum concentration of the medium. The environmental pH of the cells was associated with the incorporation of radioactivity into hyaluronic acid and sulphated glycosaminoglycans in that between pH values 6.8 and 7.9 the incorporation of radioactivity increased when the pH of the medium was raised.  相似文献   

5.
The incorporation of [14C]deoxycytidine, [3H]deoxyuridine, and [3H]thymidine, respectively into pyrimidine bases of DNA has been measured in rapidly proliferating P815 mouse mastocytoma cells in the presence of hydroxyurea. The incorporation of [14C]deoxycytidine-derived radioactivity into DNA cytosines is increased when compared to the incorporation into DNA thymines. The [3H]deoxyuridine-derived radioactivity is incorporated solely into DNA thymines and this incorporation is inhibited by hydroxyurea in a dose-dependent manner. This suggests an inhibitory effect of hydroxyurea on the thymidylate synthase which was proved in experiments in which the conversion of deoxyuridine monophosphate into deoxythymidine monophosphate catalysed by a crude enzyme preparation from P815 cells was inhibited in the presence of hydroxyurea. Enzymatic DNA methylation as measured by the conversion of incorporated [14C]deoxycytidine into 5-methylcytosines was not affected by hydroxyurea.  相似文献   

6.
IN VIVO SPECIFIC LABELING OF CHLAMYDOMONAS CHLOROPLAST DNA   总被引:9,自引:1,他引:8       下载免费PDF全文
When Chlamydomonas reinhardi is supplied with (methyl-3H)-thymidine, radioactivity is incorporated specifically into chloroplast DNA Chromatographic analysis of the products of enzymatic hydrolysis of the DNA reveals that only thymidine monophosphate has been labeled. Use of thymidine-6-3H yields an identical result. If thymidine-3H monophosphate is supplied, a small amount of radioactivity is incorporated into both nuclear and chloroplast DNA in proportion to the abundance of these DNA components. These observations are consistent with earlier suggestions that algae lack cytoplasmic thymidine kinase, but that the enzyme is present within their chloroplasts.  相似文献   

7.
Incorporation of L-[3H]fucose into glycoproteins was studied in R2, the giant neuron in the abdominal ganglion of Aplysia. [3H]fucose injected directly into the cell body of R2 was readily incorporated into glycoproteins which, as shown by autoradiography, were confined almost entirely to the injected neuron. Within 4 h after injection, 67% of the radioactivity in R2 had been incorporated into glycoproteins; at least 95% of these could be sedimented by centrifugation at 105,000 g, suggesting that they are associated with membranes. Extraction of the particulate fraction with sodium dodecyl sulfate (SDS), followed by gel filtration on Sephadex G-200 and polyacrylamide gel electrophoresis in SDS revealed the presence of only five major radioactive glycoprotein components which ranged in apparent molecular weight from 100,000 to 200,000 daltons. Similar results were obtained after intrasomatic injection of [3H]N-acetylgalactosamine. Mild acid hydrolysis of particulate fractions released all of the radioactivity in the form of fucose. When ganglia were incubated in the presence of [3H]fucose, radioactivity was preferentially incorporated into glial cells and connective tissue. In contrast to the relatively simple electrophoretic patterns obtained from cells injected with [3H]fucose, gel profiles of particulate fractions labeled with [14C]valine were much more complex.  相似文献   

8.
We have investigated the effects of inhibiting protein synthesis on the overall rate of DNA synthesis and on the rate of replication fork movement in mammalian cells. In order to test the validity of using [3H]thymidine incorporation as a measure of the overall rate of DNA synthesis during inhibition of protein synthesis, we have directly measured the size and specific radioactivity of the cells' [3H]dTTP pool. In three different mammalian cell lines (mouse L, Chinese hamster ovary, and HeLa) nearly complete inhibition of protein synthesis has little effect on pool size (±26%) and even less effect on its specific radioactivity (±11%). Thus [3H]thymidine incorporation can be used to measure accurately changes in rate of DNA synthesis resulting from inhibition of protein synthesis.Using the assay of [3H]thymidine incorporation to measure rate of DNA synthesis, and the assay of [14C]leucine or [14C]valine incorporation to measure rate of protein synthesis, we have found that eight different methods of inhibiting protein synthesis (cycloheximide, puromycin, emetine, pactamycin, 2,4-dinitrophenol, the amino acid analogs canavanine and 5-methyl tryptophan, and a temperature-sensitive leucyl-transfer tRNA synthetase) all cause reduction in rate of DNA synthesis in mouse L, Chinese hamster ovary, or HeLa cells within two hours to a fairly constant plateau level which is approximately the same as the inhibited rate of protein synthesis.We have used DNA fiber autoradiography to measure accurately the rate of replication fork movement. The rate of movement is reduced at every replication fork within 15 minutes after inhibiting protein synthesis. For the first 30 to 60 minutes after inhibiting protein synthesis, the decline in rate of fork movement (measured by fiber autoradiography) satisfactorily accounts for the decline in rate of DNA synthesis (measured by [3H]thymidine incorporation). At longer times after inhibiting protein synthesis, inhibition of fork movement rate does not entirely account for inhibition of overall DNA synthesis. Indirect measurements by us and direct measurements suggest that the additional inhibition is the result of decline in the frequency of initiation of new replicons.  相似文献   

9.
The mode of chromosome segregation in an asymmetrically dividing bacterium, Caulobacter crescentus, was studied by examining the fate of labeled DNA strands. Swarmer cells (one type of Caulobacter daughter cell), in which single strands of DNA had been labeled with [3H]thymidine during the previous round of chromosome replication, were grown synchronously in a non-radioactive medium for two generations. The distribution of radioactivity among the cells was visualized by autoradiography under a phase-contrast microscope. The labeled DNA strands in each cell were found to consist of two conserved units. From this, we propose a model in which the swarmer cell has two identical chromosomes, which are segregated into the progeny swarmer cell and the progeny stalked cell after chromosome replication.  相似文献   

10.
Information has been lacking as to whether mitochondrial DNA of animal cells is methylated. The methylation patterns of mitochondrial and nuclear DNAs of several mammalian cell lines have therefore been compared by four methods: (1) in vivo transfer of the methyl group from [methyl-3H]methionine; (2) in vivo incorporation of [32P]orthophosphate and a combination of (1) and (2); (3) in vivo incorporation of [3H]deoxycytidine; (4) in vitro methylation of DNAs with 3H-labeled S-adenosylmethionine as methyl donor and DNA methylase preparations from L cell nuclei. The cell lines were mouse L cells, BHK21C13, C13B4 (baby hamster kidney cells transformed by the Bryan strain of Rouse sarcoma virus), and PyY (BHK cells transformed by polyoma virus). DNA bases were separated chromatographically, using 5-methylcytosine, 6-methylaminopurine and, in some cases, 7-methylguanine as markers.Mitochondrial DNA was found to be significantly less methylated than nuclear DNA with respect to 5-methylcytosine in all cell types studied and by all methods used. The relative advantages and disadvantages of each method have been discussed. The level of 5-methylcytosine in mitochondrial DNA as compared with that in nuclear DNA was estimated as one-fourth to one-fourteenth in various cell lines. The estimated 5-methylcytosine content per circular mitochondrial DNA molecule (mol. wt 10 × 106) was about 12 methylcytosine residues for L cells and 24, 30 and 36 methylcytosine residues for BHK, B4 and PyY cells, respectively. Relative to cytosine residues, the estimate was one 5-methylcytosine per 500 cytosine residues of mitochondrial DNA and one 5-methylcytosine per 36 cytosine residues of nuclear DNA from L-cells. The values for methylcytosine of mitochondrial DNA are presumed to be maximal. PyY cells as compared with other cells had the highest methylcytosine content of both mitochondrial and nuclear DNA as estimated by method (3). No methylation of nuclear DNA was observed in confluent L cells.Evidence for the presence of DNA methylase activity associated with mitochondrial fractions was obtained. This activity could be distinguished from other cellular DNA methylase activity by differential response to mercaptoethanol. Radioactivity from 3H-labeled S-adenosylmethionine was found only in 5-methyl-cytosine of DNA.  相似文献   

11.
A method is presented for determining the extent of methylation of tRNAs synthesized in mammalian and bacterial cell systems and is based upon determining the distribution of radioactivity associated with the guanine constituents of total cellular tRNA preparations previously labeled with [2-14C]guanosine and with [methyl]-3H or -14C]methionine. Whereas labeling with guanosine provides a means of assessing the extent of methylation of the [2-14C]guanine residues incorporated into tRNA, methionine labeling provides a measure of the percentage of [methyl-3H or -14C]methylated constituents that are methylated guanines. Analyses such as the above reveal that the tRNA of KB cells acquires approximately three times as many methyl groups as that of E. coli B tRNA. Coupled with the knowledge that both mammalian and bacterial tRNA preparations contain an average of 24 guanine residues per molecule, the above analyses further reveal that 7.2 and 2.4 methyl groups are incorporated into each tRNA molecule synthesized in exponentially growing KB- and E. coli B-cells, respectively. Additional information regarding the extent of formation of individual methylated constituents per tRNA molecule synthesized is presented.  相似文献   

12.
The conversion factor for the calculation of bacterial production from rates of [3H]thymidine incorporation was examined with diluted batch cultures of freshwater bacteria. Natural bacterial assemblages were grown in aged, normal, and enriched media at 10 to 20°C. The generation time during 101 growth cycles covered a range from 4 to >200 h. The average conversion factor was 2.15 × 1018 cells mol-1 of thymidine incorporated into the trichloroacetic acid (TCA) precipitate (standard error = 0.29 × 1018; n = 54), when the generation time exceeded 20 h. At generation times of <20 h, the average conversion factor was 11.8 × 1018 cells mol-1 of thymidine incorporated into TCA precipitate (standard error = 1.72 × 1018; n = 47). The amount of radioactivity in purified DNA increased with decreasing generation time and increasing conversion factor (calculated from the TCA precipitate), corresponding to a decrease in the percentage in protein. The conversion factors calculated from purified DNA or from the TCA precipitate gave the same variability. Conversion factors did not change significantly with the medium, but were significantly higher at 20°C than at 15 and 10°C. A detailed examination of the [3H]thymidine concentrations that were needed to achieve maximum labeling in DNA was carried out 6 times during a complete growth cycle. During periods with low generation times and high conversion factors, 15 nM [3H]thymidine was enough for the maximum labeling of the TCA precipitate. This suggests that incorporation of [3H]thymidine into DNA is probably limited by uptake during periods with generation times of <20 h and that freshwater bacterioplankton cell production sometimes is underestimated when a conversion factor of 2.15 × 1018 cells mol-1 of thymidine incorporated is used.  相似文献   

13.
[3H] Kainic acid was administered intraventricularly to rats at a dose that selectively destroys the pyramidal cells of hippocampal area CA3. Only about one-third of the injected radioactivity was recovered in the brain 15 min later, but the residual radioactivity disappeared at a much slower rate. [3H]-Kainic acid distributed rather evenly throughout the brain; there was no correlation between accumulation of radioactivity and neurotoxicity. Almost 90% of the radioactivity in sucrose homogenates was recovered in the high-speed supernatant. No cerebral metabolism of [3H] kainic acid was detected by thin-layer chromatography. These data rule out the possibility that a lethal accumulation of the toxin by hippocampus accounts for the preferential vulnerability of hippocampal pyramidal cells.  相似文献   

14.
In cultures of a murine mastocytoma, endogenous synthesis of thymidine phosphates, as determined by the incorporation of [3H]deoxyuridine into DNA, was reduced within 15 min to less than 3% of control values by the addition of amethopterin (10 µM) in combination with hypoxanthine and glycine. If [3H]thymidine and unlabeled thymidine were added simultaneously with amethopterin, the increase with time of radioactivity in cellular DNA was linear at least between 30 and 90 min, while radioactivity in the acid-soluble nucleotide fraction remained constant during this time interval, indicating that intracellular thymidine nucleotides had the same specific activity as exogenously supplied [3H]thymidine. This permitted calculation of the amount of thymidine incorporated per hour into DNA of 106 cells. In conjunction with the base composition of mouse DNA, these results were used to calculate rates of DNA synthesis. Cell proliferation rate, cell cycle time, and the duration of the S period were not affected to any appreciable extent by the addition of amethopterin and thymidine. Rates of DNA synthesis, as derived from thymidine incorporation rates, were in good agreement with those derived from the measured mean DNA content of exponentially multiplying cells and rates of cell proliferation.  相似文献   

15.
During routine [3H]thymidine incorporation measurements of environmental samples, significant amounts of radioactivity are often incorporated into macromolecules other than DNA. Although the percentage of nonspecific labeling varies both temporally and spatially, the cause(s) of these variations remain unknown. Correlations between the percent incorporated radioactivity in DNA and a variety of experimental and environmental parameters measured in the Alfia River, Crystal River, Medard Reservoir, and Bayboro Harbor were examined. The amount of radioactivity incorporated into DNA ranged from 6 to 95% ( ; n=121). Nonspecific labeling began immediately upon the addition of [3H]thymidine and was linear over time. Labeling patterns were independent of both the amount of thymidine added and cell-size fraction. A two year study of Bayboro Harbor indicated no conclusive relationship between nonspecific labeling and seasonality. The amount of radioactivity incorporated into DNA was inversely correlated with total rates of thymidine incorporation and a strong diurnal pattern was observed in the Crystal River. No consistent relationship was observed between labeling patterns and primary productivity, chlorophylla, particulate DNA, dissolved DNA, bacterial cell numbers, temperature, salinity, and dissolved organic carbon. The only relationship with dissolved inorganic nutrients (N and P) occurred in the Crystal River. In this phosphate limited river, the percent of radioactivity incorporated into DNA was positively correlated with phosphate concentrations. These results indicate that nonspecific labeling is not dependent on any one parameter but may be a function of many interacting environmental factors or a function of the specific ambient bacterial population.  相似文献   

16.
Mechanisms of DNA Utilization by Estuarine Microbial Populations   总被引:9,自引:6,他引:3       下载免费PDF全文
The mechanisms of utilization of DNA by estuarine microbial populations were investigated by competition experiments and DNA uptake studies. Deoxyribonucleoside monophosphates, thymidine, thymine, and RNA all competed with the uptake of radioactivity from [3H]DNA in 4-h incubations. In 15-min incubations, deoxyribonucleoside monophosphates had no effect or stimulated [3H]DNA binding, depending on the concentration. The uptake of radioactivity from [3H]DNA resulted in little accumulation of trichloroacetic acid-soluble intracellular radioactivity and was inhibited by the DNA synthesis inhibitor novobiocin. Molecular fractionation studies indicated that some radioactivity from [3H]DNA appeared in the RNA (10 and 30% at 4 and 24 h, respectively) and protein (approximately 3%) fractions. The ability of estuarine microbial assemblages to transport gene sequences was investigated by plasmid uptake studies, followed by molecular probing. Although plasmid DNA was detected on filters after filtration of plasmid-amended incubations, DNase treatment of filters removed this DNA, indicating that there was little transport of intact gene sequences. These observations led to the following model for DNA utilization by estuarine microbial populations. (i) DNA is rapidly bound to the cell surface and (ii) hydrolyzed by cell-associated and extracellular nonspecific nucleases. (iii) DNA hydrolysis products are transported, and (iv) the products are rapidly salvaged into nucleic acids, with little accumulation into intracellular nucleotide pools.  相似文献   

17.
Nuclear DNA (ncDNA) synthesis in Chlamydomonas reinhardtii was measured by both 32P[or-thophosphoric acid] (32P) and [14C]adenine incorporation and found to be highly synchronous. Ca. 85% of incorporation was confined to the first 6 h of the dark period of a synchronized regime consisting of an alternating light-dark period of 12 h each. In contrast, no such synchronous incorporation pattern was found for chloroplast (cp) and mitochondrial (mt) DNAs in the same cell population. These two organellar DNAs also exhibited different 32P-incorporation patterns in the cell cycle. Considerable amounts of 32P were incorporated into cpDNA throughout the light-dark synchronous cycle under both mixo- and phototrophic growth conditions, although the second 6-h light period under phototrophy showed an increase not apparent under mixotrophy. This change in growth conditions did not affect 32P incorporation into mtDNA, which was found throughout the cell cycle, with a modest peak in the first 6-h of the dark period. The pattern of [3H]thymidine incorporation into cpDNA was also determined. Under synchronous phototrophic conditions, this pattern was quite different from that obtained with 32P. Most [3H]thymidine incorporation occurred during the light period of the synchronous cycle; this period had been shown previously by density transfer experiments to be the time of cpDNA duplication. Such preferential [3H]thymidine incorporation into cpDNA in the light period was not observed under mixotrophic synchronous growth conditions; in these, [3H]thymidine incorporation was detected throughout the cell cycle. This lack of coincidence between the patterns of 32P- and of [3H]thymidine incorporation into cpDNA during the synchronous cell cycle indicates that in addition to replication, the considerably reiterated organelle-DNA molecules may also regularly undergo an extensive repair process during each cell cycle.  相似文献   

18.
Nucleotides and sugar nucleotides were extracted from cultures of human fibroblasts with perchloric acid, separated by isotachophoresis, and quantified by uv absorption analysis at 254 nm. ATP (936 pmol/μg DNA) was, as expected, the dominating nucleotide pool. The energy charge was estimated to 0.9. The UDP-N-acetylhexosamine pool was also a very prominent compound (596 pmol/μg DNA). After incubation of fibroblasts with [3H]glucosamine, more than 95% of the acid-soluble radioactivity was found in the UDP-N-acetylhexosamine pool. Incubation with [35S]sulfate resulted in the incorporation of [35S]sulfate into 3′-phosphoadenosine-5′-phosphosulfate (PAPS). The latter could, however, only be measured as radioactivity, as the amount was too small to be quantified as total mass. Pulse-labeling of fibroblasts with [35S]sulfate and [3H]glucosamine from 5 min to 16 h showed that [35S]PAPS was equilibrated in less than 10 min, while [3H]glucosamine required a longer time, 2–4 h, to attain a steady state with UDP-N-acetylhexosamine. [14C]Glucose required approximately the same time as [3H]glucosamine to reach steady state with UDP-acetylhexosamine, which suggests that the reason for the long equilibration time is the slow turnover of this pool.  相似文献   

19.
The metabolic fate of 1-β-d -arabinofuranosyl-5-[(E)-2-bromovinyl]uracil (BV-araU) in herpes simplex virus type 1-infected cells was studied using tritium-labeled BV-araU. [3H]BV-araU was selectively taken-up by infected cells. Approximately 10% of the total uptake of [3H]BV-araU was recovered from the acid-insoluble fraction at any time post-infection. Both cellular uptake of [3H]BV-araU and its incorporation into the acid-insoluble fraction increased with increasing incubation time through 8 hr post-infection. Uptake of [3H]BV-araU and its incorporation into the acid-insoluble fraction also increased proportionally to the duration of exposure to [3H]BV-araU. An alkaline sucrose gradient sedimentation analysis revealed that the radioactive DNA obtained from cells pulse-labeled with [3H]BV-araU were small DNA fragments which remained at the top following a chasing period in isotope-free medium, whereas that pulse-labeled with [3H]thymidine was chased to a fraction of high molecular weight DNA. Nuclease P1 digestion reduced 99% of the [3H]BV-araU-labeled DNA extracted from infected cells to a low molecular weight. Following digestion of [3H]BV-araU-labeled DNA with micrococcal nuclease and spleen exonuclease, all of the radioactivity was recovered as [3H]BV-araU 3′-monophosphate. Thus, BV-araU strongly inhibits the elongation of viral DNA strands as demonstrated by the alkaline sucrose gradient sedimentation analysis, whereas at least a portion of the [3H]BV-araU is incorporated inside viral DNA strands in infected cells.  相似文献   

20.
The effect of 5-fluoro-2′-deoxyuridine (FdUrd) on [methyl-3H] thymidine incorporation by bacterioplankton populations in subtropical freshwater, estuarine, and oceanic environments was examined. In estuarine waters, intracellular isotope dilution was inhibited by FdUrd, which enabled us to estimate both intracellular and extracellular isotope dilution. In 2 of 10 cases, extracellular isotope dilution was significant. At low concentrations of [methyl-3H]thymidine or [6-3H]thymidine, FdUrd completely inhibited incorporation of radioactivity into protein and RNA. At high concentrations of [3H]thymidine, however, FdUrd had little effect on labeling patterns. The dihydrofolate reductase inhibitors amethopterin and trimethoprim had no effect on macromolecular labeling patterns. These results suggest that thymidylate synthase is not involved in nonspecific labeling and that FdUrd inhibits nonspecific labeling by blocking some other enzyme involved in thymidine catabolism. In oligotrophic oceanic and freshwater samples, FdUrd did not inhibit intracellular isotope dilution or [3H]thymidine labeling of protein and RNA, but caused some inhibition of [3H]thymidine incorporation into DNA. The ability of FdUrd to inhibit nonspecific macromolecular labeling during [3H]thymidine incorporation was significantly correlated (r = 0.84) with total thymidine incorporation (in picomoles per liter per hour). The results are discussed in terms of applications of FdUrd to routine bacterial production measurements and the general assumptions of [3H]thymidine incorporation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号