首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The major flavonoid glycosides of Sphaerocarpos texanus are luteolin 7-O-glucuronide and 7,4′-di-O-glucuronide. Riella americana and R. affinis both contain apigenin, chrysoeriol and luteolin 7-O-glucuronides but R. americana additionally contains luteolin 3′-O-glucuronide. This finding supports the inclusion of Sphaerocarpaceae and Riellaceae in the order Marchantiales rather than their separation into another order.  相似文献   

2.
3.
Sexual reproduction in Marchantia berteroana is accompanied by a dramatic change in flavonoid pattern of the plant. During the sexual reproductive phase, acacetin production ceases and the predominant flavonoids are the previously absent 8-hydroxyapigenin and 8-hydroxyluteolin glycosiduronic acids. In contrast, acacetin levels reach their peak during the asexual reproductive phase. The chemotaxonomic significance of these results is discussed.  相似文献   

4.
The flavonoid chemistry of Takakia is described for the first time. T. lepidozioides, thought to be amongst the most primitive of extant liverworts, contains a high level and wide variety of flavone C- and O-glycosides, many of which are unique. New flavonoids include the 8-O-glucuronide and 8-O-xylosylglucoside of takakin (8-hydroxyacacetin), luteolin 6-C-arabinoside-8-C-pentoside, kaempferol 3-O-glucoside-7-O-xyloside and a number of tricetin C-glycosides. The only other known Takakia species, T. ceratophylla, contains the same 4 major constituents but significantly lacks flavonols. The often suggested relationship of Takakia with the order Calobryales is not supported by the available flavonoid data. Biochemical affinities of Takakia with all major liverwort orders are noted and the flavonoid data are interpreted as supporting the concept of Takakia as an isolated branch among the ancestors of modern bryophytes.  相似文献   

5.
Sophora microphylla, S. prostrata and S. tetraptera are distinguishable from one another by their leaf flavonoids. S. microphylla is distinguished by the present of rhamnosylvitexin and rhamnosylisovitexin and S. tetraptera by the presence of apigenin-7-O-rhamnosylglucoside-4′-O-glucoside and the 7-O-glucosides of apigenin, 7,4′-dihydroxyflavone, luteolin and 7,3′,4′-trihydroxyflavone. Sophora prostrata lacks all these flavonoids, but has several pigments which are common to all three species.  相似文献   

6.
7.
The major flavonoids of Marchantia polymorpha var. polymorpha and aquatica are the 7-O-β-d-glucuronides of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide, luteolin 7,3′-di-O-β-d-glucuronide, and the 7,4′-di-O-β-d-glucuronides of apigenin and luteolin. These are accompanied by minor amounts of apigenin, luteolin, luteolin 3′,4′-di-O-β-d-glucuronide and luteolin 7,3′,4′-tri-O-β-d-glucuronide. All the luteolin di- and triglucuronides except the 3′,4′-di- substituted compound are new natural products.  相似文献   

8.
By means of 13C and 1H NMR spectroscopy three flavone glycosides, obtained from Stachys recta, were identified as 7-O-(2″-O-6″′-O-acetyl-β-D-allopyranosyl-β-D-glucopyranosides) of 4′-O-methylisoscutellarein, isoscutellarein and 3′-hydroxy-4′-O-methylisoscutellarein. The latter two compounds are isolated for the first time. Only mannose and glucose have been reported previously as sugar components of flavonoids of the genus Stachys.  相似文献   

9.
10.
John Gorham 《Phytochemistry》1977,16(2):249-253
Lunularic acid and lunularin were detected in 76 species of hepatics, but not in any of the Anthrocerotales or Algae examined. Lunularic acid, lunularin, 3,4′-dihydroxystilbene and a glycoside of lunularic acid were also identified in extracts of Hydrangea macrophylla roots, together with hydrangenol, hydrangeic acid and their glucosides.  相似文献   

11.
The sterol fractions of eight leafy liverworts were analyzed by GLC and GC-MS. Five 3β-sterols, cholest-5-en-3β-ol, 24-methylcholest-5,22-dien-3β-ol, 24-methylcholest-5-en-3p-ol, 24-ethylcholest-5,22-dien-3β-ol and 24-ethylcholest-5-en-3β-ol, were detected in all samples but there were differences in the relative amounts present.  相似文献   

12.
13.
14.
Four flavonol glycosides (Fig.1) were isolated from the leaves ofTrillium tschonoskii Maxim. By means of UV, NMR, and mass spectral analyses, they were identified to be acetylated kaempferol 3-O-arabinosylgalactoside (TK-1), kaempferol 3-O-arabinosylgalactoside (TK-2), acetylated quercetin 3-O-arabinosylgalactoside (TQ-1) and quercetin 3-O-arabinosylgalactoside (TQ-2). High performance liquid chromatography (HPLC) profiles of 172 specimens ofT. tschonoskii collected from nine different places in Japan were grouped into three different types based on the flavonoid components: type I and type II containing TK-1 and TQ-1, and TK-2 and TQ-2, respectively, as main component, and type III containing all of four flavonol glycosides. Those results show that the intraspecific variation ofT. tschonoskii with different geographical distribution has not only been found by the analysis of karyotype, but also that of flavonoid components.  相似文献   

15.
In a leaf flavonoid analysis of six Fuchsia species and seven Fuchsia hybrids, flavonols were found to be abundant in all taxa except F. procumbens. Flavone glycosides were found in only three species: luteolin 7-glucoside in F. splendens; and luteolin and apigenin 7-glucuronides and 7-glucuronidesulphates, tricin 7-glucuronidesulphate and diosmetin 7-glucuronide from one or both of the New Zealand species F. procumbens and F. excorticata. Luteolin 7- glucuronidesulphate is reported for the first time. Other less common phenolics identified include the flavanone, eriodictyol 7-glucoside from F. excorticata, a galloylglucose from F. triphylla, and a galloylglucosesulphate present in all taxa. Eight of the flavonoid glycosides proved useful as marker substances for particular Fuchsia species: quercetin 3- rhamnoside, 3-glucuronide and 3-rutinoside for F.fulgens; quercetin and kaempferol 3-galactosides for F. boliviana var. luxurians; diosmetin 7-glucuronide for F. excorticata and apigenin 7-glucuronide and 7-glucuronidesulphate for F. procumbens. The chemical results on the hybrids support the view that the cultivar ‘Mary’ is a hybrid of F. boliviana var. luxurians and F. triphylla and that both F.fulgens and F. triphylla are involved as parents of the cultivars ‘Koralle’ and ‘Traudchen Bondstedt’.  相似文献   

16.
A survey of 125 species of the Palmae revealed a complex pattern of flavonoids in the leaf. C-Glycosylflavones, leucoanthocyanins and tricin, luteolin and quercetin glycosides were common, being present in 84, 66, 51, 30 and 24% of the species respectively. Apigenin and kaempferol were recorded in only a few species and isorhamnetin only once. Eighteen flavonoids were identified: the 7-glucoside, 7-diglucoside and 7-rutinoside of both luteolin and tricin, tricin 5-glucoside, apigenin 7-rutinoside, quercetin 3-rutinoside-7-galactoside, isorhamnetin 7-rutinoside, orientin, iso-orientin, vitexin, isovitexin and vitexin 7-O-glucoside. Many of the C- and O-flavonoid glycosides were present as the potassium bisulphate salts and negatively charged compounds were detected in 50% of the species. The distribution patterns are correlated with the taxonomy of the family in several ways. Thus, the Phoenicoideae and Caryotoideae have distinctive flavonoid patterns, there is evidence to support the separation of the subfamilies Phytelephantoideae and Nypoideae, and tricin is a useful marker at tribal level. At the generic level, Cocos is clearly separated from Butia, and other Cocoseae and Mascarena and Chamaedorea form well defined groups within the Arecoideae. A numerical analysis of these biochemical data, together with morphological characters, produces a new classification which suggests that the flavonoid data may have more systematic value than is indicated when they are applied to the traditional classification.  相似文献   

17.
The discovery of campesteryl behenate in all species of the Calypogeia genus so far studied suggests that it is a characteristic feature of this liverwort genus.  相似文献   

18.
A number of new flavonoid glycosides have been isolated from foliage of the New Zealand white pine, Dacrycarpus dacrydioides. These include tricetin 3′,5′-di-O-β-glucopyranoside; the 3′-O-β-xylopyranoside, 7-O-α-rhamnopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3-O-methylmyricetin; the 3′-O-β-xylopyranoside, 7-O-α-rhamnopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3-O-methyl-quercetin, and the 3′-O-β-xylopyranoside and 7-O-α-rhamnopyranoside-3′-O-β-xylopyranoside of 3,4′-di-O-methylmyricetin. The accumulation of 3-methoxyflavones and B-ring trioxygenated flavonoids appears to distinguish D. dacrydioides from all other New Zealand members of the classical genus Podocarpus. Support for De Laubenfels' proposed separation of Dacrycarpus from this genus is seen in the present work.  相似文献   

19.
20.
The flavonoids of 2 samples of Conocephalum conicum gametophyte tissue have been studied, one from U.S.A. and the other from Germany. Common to both samples were vicenin-2, lucenin-2, the 7-O-glucuronides of apigenin, chrysoeriol and luteolin and the previously unknown 7-O-glucuronide 4′-O-rhamnosides of apigenin, chrysoeriol and luteolin. Additionally the German sample contained the 7,4′-di-O-glucuronides of apigenin and luteolin and a new compound, apigenin 7-O-diglucuronide 4′-O-glucuronide. The North American sample contained, additionally, luteolin 7,3′-di-O-glucuronide, luteolin 7-O-glucuronide 3′,4′-di-O-rhamnoside (a new triglycoside) and 2 further derivatives of luteolin 7-O-glucuronide. Evidence is presented for the existence of geographic faces of C. conicum and for the qualitative invariability of the flavonoid patterns with changing season or environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号