首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The flavonoids of 2 samples of Conocephalum conicum gametophyte tissue have been studied, one from U.S.A. and the other from Germany. Common to both samples were vicenin-2, lucenin-2, the 7-O-glucuronides of apigenin, chrysoeriol and luteolin and the previously unknown 7-O-glucuronide 4′-O-rhamnosides of apigenin, chrysoeriol and luteolin. Additionally the German sample contained the 7,4′-di-O-glucuronides of apigenin and luteolin and a new compound, apigenin 7-O-diglucuronide 4′-O-glucuronide. The North American sample contained, additionally, luteolin 7,3′-di-O-glucuronide, luteolin 7-O-glucuronide 3′,4′-di-O-rhamnoside (a new triglycoside) and 2 further derivatives of luteolin 7-O-glucuronide. Evidence is presented for the existence of geographic faces of C. conicum and for the qualitative invariability of the flavonoid patterns with changing season or environment.  相似文献   

2.
Sophora microphylla, S. prostrata and S. tetraptera are distinguishable from one another by their leaf flavonoids. S. microphylla is distinguished by the present of rhamnosylvitexin and rhamnosylisovitexin and S. tetraptera by the presence of apigenin-7-O-rhamnosylglucoside-4′-O-glucoside and the 7-O-glucosides of apigenin, 7,4′-dihydroxyflavone, luteolin and 7,3′,4′-trihydroxyflavone. Sophora prostrata lacks all these flavonoids, but has several pigments which are common to all three species.  相似文献   

3.
The major flavonoid glycosides of Sphaerocarpos texanus are luteolin 7-O-glucuronide and 7,4′-di-O-glucuronide. Riella americana and R. affinis both contain apigenin, chrysoeriol and luteolin 7-O-glucuronides but R. americana additionally contains luteolin 3′-O-glucuronide. This finding supports the inclusion of Sphaerocarpaceae and Riellaceae in the order Marchantiales rather than their separation into another order.  相似文献   

4.
The major flavonoids of Marchantia polymorpha var. polymorpha and aquatica are the 7-O-β-d-glucuronides of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide, luteolin 7,3′-di-O-β-d-glucuronide, and the 7,4′-di-O-β-d-glucuronides of apigenin and luteolin. These are accompanied by minor amounts of apigenin, luteolin, luteolin 3′,4′-di-O-β-d-glucuronide and luteolin 7,3′,4′-tri-O-β-d-glucuronide. All the luteolin di- and triglucuronides except the 3′,4′-di- substituted compound are new natural products.  相似文献   

5.
From the aerial parts of Helichrysum chasmolycicum P.H Davis, which is an endemic species in Turkey, the flavonoids apigenin, luteolin, kaempferol, 3,5-dihydroxy-6,7,8-trimethoxyflavone, 3,5-dihydroxy-6,7,8,4′-tetramethoxyflavone, apigenin 7-O-glucoside, apigenin 4′-O-glucoside, luteolin 4′-O-glucoside, luteolin 4′,7-O-diglucoside, kaempferol 3-O-glucoside, kaempferol 7-O-glucoside and quercetin 3-O-glucoside were isolated. The methanol extract of the aerial parts of H. chasmolycicum showed antioxidant activity by DPPH method (IC50 0.92 mg/mL). Antimicrobial activity test was performed on the B, D, E extracts and also 3,5-dihydroxy-6,7,8-trimethoxyflavone and kaempferol 3-O-glucoside which were the major flavonoid compounds obtained from aerial parts of H. chasmolycicum by microbroth dilutions technique. The E (ethanol-ethyl acetate) extract showed moderate antimicrobial activity against Pseudomonas aeruginosa, B (petroleum ether-60% ethanol-chloroform) extract and 3,5-dihydroxy-6,7,8-trimethoxyflavone showed moderate antifungal activity against Candida albicans.  相似文献   

6.
The present study evaluates the effects of severe drought stress on the content of phenolic compounds in olive leaves, namely hydroxytyrosol, tyrosol, p-hydroxybenzoic acid, catechin, luteolin 7-O-rutinoside, luteolin 7-O-glucoside, apigenin 7-O-glucoside, quercetin, apigenin, pinoresinol, oleuropein and verbascoside in greenhouse-grown plantlets. The results showed that oleuropein, verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside were the most important phenolic compound of stressed olive plants and can represent up to 84% of the total amount of the identified phenolic compounds. Application of drought stress caused a significant increase in the level of oleuropein (87%), verbascoside (78%), luteolin 7-O-glucoside (72%) and apigenin 7-O-glucoside (85%), when compared to the control. The elevated values of these phenolic compounds can help controlling the water status of olive plants and avoiding serious oxidative damage induced by water deficit stress. To our knowledge, this is the first report to show the boost in the concentrations of verbascoside, luteolin 7-O-glucoside and apigenin 7-O-glucoside in the leaves of olive trees after water deficit stress.  相似文献   

7.
Angela Wilson 《Phytochemistry》1985,24(8):1685-1691
Flavonoid pigments (18) were identified in the wings and body of Melanargia galathea: tricin, tricin 7-glucoside, tricin 7-diglucoside, tricin 4′-glucoside, luteolin, luteolin 7-glucoside, luteolin 7-diglucoside, luteolin 7-triglucoside, apigenin, apigenin 7-glucoside, orientin, orientin 7-glucoside, iso-orientin, iso-orientin 7-glucoside, vitexin 7-glucoside, vitexin 7-glucoside, isovitexin, isovitexin 7-glucoside and a novel but incompletely identified tricin 4′-conjugate. Examination of the wings and bodies of individual M. galathea, M. galathea var. procida, M. lachesis, M. russiae, M. larissa, M. occitanica and M. ines butterflies from a number of different populations in Europe by 2D PC revealed that variation in their flavonoid patterns was so minor that the flavonoid pattern of these Melanargia spp. may be considered constant. The concentration of flavonoids in the wings of each butterfly was greater than that in the body, as is the covering of scales. Not all flavonoids are located in the scales; some are also located in the reproductive tissues of the female. With the exception of the tricin 4′-conjugate which was absent from the egg and first instar larvae before feeding commences, these flavonoids were present in all the life stages of M. galathea. The presence of tricin 4′-conjugate in Melanargia but its absence from the larval food plants suggests that this compound is synthesized by the insect and that flavonoids are not merely sequestered from the diet but are also partly metabolized.  相似文献   

8.
We examined the foliar flavonoids of Chrysanthemum arcticum subsp. arcticum and yezoense, and related Chrysanthemum species. Five flavonoid glycosides (luteolin 7-O-glucoside and 7-O-glucuronides of luteolin, apigenin, eriodictyol and naringenin) were isolated from these taxa. Luteolin 7-O-xylosylglucoside, luteolin, apigenin and quercetin 3-methyl ether were found in subsp. yezoense as very minor compounds that were not recognised by high-performance liquid chromatography/photodiode array (HPLC/PDA). The related species C. yezoense contained acacetin 7-O-rutinoside and some methoxylated flavone aglycones as major compounds. Thus, C. arcticum was distinguished from C. yezoense according to their flavonoid profiles.  相似文献   

9.
《Phytochemistry》1999,52(8):1701-1703
Three flavonoid glucuronides are reported from a n-BuOH extract of Picria fel-terrae (Scrophulariaceae). The structures were established by UV, one- and two-dimensional NMR and mass spectrometry as apigenin 7-O-β-glucuronide, luteolin 7-O-β-glucuronide and apigenin 7-O-β-(2″-O-α-rhamnosyl)glucuronide, the latter one being a new compound.  相似文献   

10.
Thirty-three Sonchus, one Embergeria, one Babcockia and five Taeckholmia species were surveyed for their phenolic constituents. The coumarins scopoletin and aesculetin were found as major constituents of Embergeria, Babcockia and Taeckholmia species, and in lesser amount in some Sonchus species. Six flavone glycosides were identified: apigenin 7-glucuronide, apigenin 7-rutinoside, luteolin 7-glucoside, luteolin 7-glucuronide, luteolin 7-rutinoside and luteolin 7-glucosylglucuronide and the systematic significance of their distribution is discussed.  相似文献   

11.
The phytochemical investigation on Tanacetum sinaicum (Fresen.) Delile ex Bremer & Humphries led to the isolation of eight flavonoid aglycones (apigenin 1, acacetin 2, luteolin 3, chrysoeriol 4, cirsilineol 5, jaceidin 6, chrysosplenetin 7 and vitexicarpin; casticin 8), four flavonoid glycosides (apigenin 7-O-β-glucopyranoside 9, apigenin 7-O-β-glucuronide 10, luteolin 7-O-β-glucopyranoside 11 and luteolin 7-O-β-glucuronide 12) and three phenolics (4-hydroxy-3-methoxy benzoic acid 13, 3,4-dimethoxy benzoic acid 14 and 4-hydroxy acetophenone 15). Their structures were determined by chemical and spectroscopic analysis. Among them, compounds 1–3, 9, 11, 13 and 14 were reported for the first time from T. sinaicum. The chemotaxonomic significance of the isolated flavonoids was also summarized.  相似文献   

12.
Apigenin, a member of the flavone subclass of flavonoids, has long been considered to have various biological activities. Its glucosides, in particular, have been reported to have higher water solubility, increased chemical stability, and enhanced biological activities. Here, the synthesis of apigenin glucosides by the in vitro glucosylation reaction was successfully performed using a UDP-glucosyltransferase YjiC, from Bacillus licheniformis DSM 13. The glucosylation has been confirmed at the phenolic groups of C-4′ and C-7 positions ensuing apigenin 4′-O-glucoside, apigenin 7-O-glucoside and apigenin 4′,7-O-diglucoside as the products leaving the C-5 position unglucosylated. The position of glucosylation and the chemical structures of glucosides were elucidated by liquid chromatography/mass spectroscopy and nuclear magnetic resonance spectroscopy. The parameters such as pH, UDP glucose concentration and time of incubation were also analyzed during this study.  相似文献   

13.
Leaf flavonoid glycosides of Eucalyptus camaldulensis were identified as kaempferol 3-glucoside and 3-glucuronide; quercetin 3-glucoside, 3-glucuronide, 3-rhamnoside, 3-rutinoside and 7-glucoside, apigenin 7-glucuronide and luteolin 7-glucoside and 7-glucuronide. Two chemical races were observed based on the flavonoid glycosides. These races correspond to the northern and southern populations of species growing in Australia. The Middle Eastern species examined were found to belong to the southern Australian chemical race. The major glycosides of E. occidentalis proved to be quercetin and myricetin 3-glucuronide.  相似文献   

14.
The major flavonoid of Marchantia berteroana is hypolaetin 8-O-β-d-glucuronide. This is accompanied by apigenin and luteolin, isoscutellarein (8-hydroxyapigenin) 8-O-β-d-glucuronide, the 7-O-β-d-glucuronide and -galacturonide of apigenin and luteolin, luteolin 3′-O-β-d-glucuronide and -galacturonide, luteolin 7,3′-di-O-β-d-glucuronide and -galacturonide, luteolin 3′,4′-di-O-β-d-glucuronide and -galacturonide, luteolin 7,4′-di-O-β-d-glucuronide, and hypolaetin 8,4′-di-O-β-d-glucuronide. The isoscutellarein and hypolaetin glucuronides, and the galacturonide flavones are all new natural products.  相似文献   

15.
Lipophilic and vacuolar flavonoids were separately identified in representative temperate species of the genera Anthemis, Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum. The four Anthemis species investigated variously produced four main surface constituents, in leaf and flower: santin, quercetagetin 3,6,3′-trimethyl ether, scutellarein 6,4′-dimethyl ether and 6-hydroxyluteolin 6,3′-dimethyl ether. By contrast, surface extracts of disc and ray florets of the species of Chrysanthemum, Cotula, Ismelia, Leucanthemum and Tripleurospermum surveyed yielded five common flavones in the free state: apigenin, luteolin, acacetin, apigenin 7-methyl ether and chrysoeriol. Polar flavonoids were isolated and identified in leaf, ray floret and disc floret of all the above plants. Anthemis species were distinctive in having flavonol glycosides in the leaves, whereas the leaf flavonoids of the other taxa were generally flavone O-glycosides. The 3-glucoside and 3-rutinoside of patuletin were characterised for the first time from Anthemis tinctoria ssp. subtinctoria. Two new flavonol glycosides, the 5-glucuronides of quercetin and kaempferol, were obtained from the leaf of Leucanthemum vulgare, where they co-occur with the related 5-glucosides and with several flavone glycosides. The ray florets of these Anthemideae generally contain apigenin and/or luteolin 7-glucoside and 7-glucuronide, whereas disc florets have additional flavonol glycosides, notably the 7-glucosides of quercetin and patuletin and the 7-glucuronide of quercetin. A comparison of the flavonoid pattern encountered here with those previously recorded for Tanacetum indicate some chemical affinity between Anthemis and Tanacetum. Flavonoid patterns of the other five genera are more distinct from those of Tanacetum and suggest that those genera form a related group. All 14 species surveyed for their flavonoid profiles have distinctive constituents and the chemical data are in harmony with modern taxonomic treatments of the “Chrysanthemum complex” as a series of separate genera.  相似文献   

16.
C-glycosylation, for the biogenesis of C-glycosylflavones, has been demonstrated to occur at the flavanone level for axenically-cultured Spirodela polyrhiza clone 7003. 4′,5,7-Trihydroxy[2-14C] flavanone (naringenin) was incorporated in a parallel manner into apigenin 7-O-glucoside and apigenin 8-C-glucoside (vitexin) and into luteolin 7-O-glucoside and luteolin 8-C-glucoside (orientin). In addition the data suggests that the enzyme which oxidizes flavanone (chalcone) to flavone is irreversible under the described experimental conditions.  相似文献   

17.
Eight flavonoids were isolated from the leaves of Salix alba. One, apigenin 7-O-(4-p-coumarylglucoside), is a new natural compound; another, terniflorin, the 6-isomer, is an artefact. The others are quercetin 3-O-glucoside, quercetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, isorhamnetin 3-O-rutinoside and quercetin 7,′3-dimethylether 3-O-glucoside.  相似文献   

18.
The flavonoid patterns of plants of Elodea canadensis, E. ernstae and E. nuttallii apigenin were investigated. The main flavonoids of E. canadensis are apeginin, luteolin and chrysoeriol 7-O-diglucuronides, of E. nuttalli apigenin and luteolin 7-O- diglucuronides, and of E. ernstae apigenin and luteonin 7-O-monoglucoronides. The qualitative stability of these flavonoid patterns is checked by chromatographic comparison of various populations from a wide area of the three species, it is shown that the flavonoid patterns are valuable criteria for the separation of these species.  相似文献   

19.
Two flavones, luteolin 7-O-β-glucuronide and diosmetin 7-O-β-glucuronide, were isolated and identified from Chrysanthemum morifolium L. v. Ramat leaves. Identification techniques included HPLC DAD, MS, 1H and 13C NMR spectroscopy. At concentrations of 0.2 and 2.0 mM, luteolin 7-O-β-glucuronide significantly reduced the frond number and chlorophyll content of Lemna gibba plants, but did not significantly affect dry weight. At a concentration of 0.2 mM diosmetin 7-O-β-glucuronide had no significant effect on frond number, dry weight or chlorophyll concentration of L. gibba. These results indicate that an ortho-3′,4′-dihydroxy arrangement of the B-flavonoid ring in the luteolin compound is probably responsible for allelopathic activity.  相似文献   

20.
Leaf flavonoids from 73 strains ofMatricaria andTripleurospermum are compared. 7-Glucosides of quercetin, isorhamnetin and luteolin together with small amounts of chrysoeriol and apigenin 7-glucoside are typical for the two genera.Matricaria differs fromTripleurospermum by the additional occurrence of 6-hydroxyluteolin 7-glucoside as well as 7-rhamnosylglucosides of luteolin and chrysoeriol. Polyacetylene data obtained so far also confirm the generic separation. WithinTripleurospermum the occurrence of flavon 4′-glucosides and accumulation of apigenin 7-glucoside may contribute to a more natural arrangement of the species and to suggestions concerning their evolution and geographical differentiation.Tripleurospermum with its perennial species and dominating flavonol glycosides evidently occupies a more primitive position, whileMatricaria appears progressively more advanced because of flavonol reduction and 6-hydroxylation of flavones. This is well in line with the distribution and biosynthetic pathways of characteristic polyacetylenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号