首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alfa grass lignin obtained by the acetic acid/formic acid/water CIMV pulping process was characterized by FTIR and (1)H, (13)C-(1)H 2D HSQC, and (31)P NMR spectroscopies. Lignin samples purified by further dissolution/precipitation or basic hydrolysis steps were also analyzed. The CIMV alfa lignin is a mixture of low molar mass compounds (M(n) = 1500 g/mol) of SGH type with β-O-4 ether bonds as the major interunit linkage. The crude lignin contains fatty acids and residual polysaccharides. It also contains large amounts of acetate and hydroxycinnamates, mostly in the γ-position of β-O-4 interunit linkages. Although partial acetylation induced by the process cannot be excluded, the absence of aromatic acetates and acetylated polysaccharides in crude lignin demonstrates the mildness of the process. By combining smooth alkaline hydrolysis and dissolution/precipitation steps to the CIMV pulping, it is possible to produce a purified lignin with a composition and a structure quite analogous to that of the native polymer in the plant.  相似文献   

2.
Understanding the mechanism for the catalyzed cleavage of the β–O–4 ether linkage in lignin is crucial to developing efficient strategies for depolymerizing lignin. In this work, veratrylglycerol-β-guaiacyl ether (VG) was used as a lignin model compound in a theoretical investigation of the mechanism for the cleavage of the β–O–4 bond as catalyzed by the acidic ionic liquid (IL) 1-H-3-methylimidazolium chloride ([HMIM]Cl). The reaction was found to involve two processes—dehydration and hydrolysis—in which the cation functions as a Brønsted acid (donating a proton) and the anion acts as a nucleophile (promoting dehydration) or interacts with the substrate through hydrogen bonding, stabilizing the intermediate. These roles of the anion and cation of [HMIM]Cl explain why the [HMIM]Cl medium catalyzes the depolymerization of lignin. In addition, calculations predict that adding formaldehyde during the depolymerization of VG prevents the condensation of VG without significantly altering the mechanism of depolymerization, thus suggesting a method for potentially improving the efficiency of lignin depolymerization.  相似文献   

3.
Various lignin model compounds of the O-arylpropane type were oxidized with purified lignin peroxidase from the white-rot fungus Phanerochaete chrysosporium, and oxidation products were identified by gas-chromatography/mass-spectroscopy procedures. Our results are in accord with the theory that lignin peroxidase catalyzes one-electron oxidations of its substrates with formation of cation radicals, and that these radicals undergo degradative reactions that are predictable from a knowledge of cation radical and oxygen chemistry. Cation radicals formed from O-arylpropane model compounds appeared to undergo the following types of degradative transformations: addition of water to ring-centered radicals, followed by proton loss yielding quinones and alcohols; nucleophilic attack by hydroxy functions on propanoid moieties giving cyclic ketals as intermediates which decompose to yield side chain migration products; transfer of the charge of a radical from a ring to the associated alkyl moiety through an ether bond, with loss of a proton from the latter, forming a new carbon-centered radical. The new alkyl-centered radicals apparently were able to abduct dioxygen to form peroxyl radicals which decomposed giving a variety of oxidation products and probably superoxide anion. Specific examples of the above transformations are presented, and their relevance to lignin degradation is discussed.  相似文献   

4.
The steady state kinetic parameters Km and kcat for the oxidation of phenolic substrates by lignin peroxidase correlated with the presteady state kinetic parameters Kd and k for the reaction of the enzyme intermediate compound II with the substrates, indicating that the latter is the rate-limiting step in the catalytic cycle. ln Km and ln Kd values for phenolic substrates correlated with redox properties, unlike ln kcat and ln k. This finding suggests that in contrast to horseradish peroxidase, electron transfer is not the rate-limiting step during oxidation by lignin peroxidase compound II. A mechanism is proposed for lignin peroxidase compound II reactions consisting of an equilibrium electron transfer step followed by a subsequent rate-limiting step. Analysis of the correlation coefficients for linear relationships between ln Kd and ln Km and different calculated redox parameters supports a mechanism in which the acidic forms of phenols are oxidized by lignin peroxidase and electron transfer is coupled with proton transfer. 1,2-Dimethoxyarenes did not comply with the trend for phenolic substrates, which may be a result of more than one substrate binding site on lignin peroxidase and/or alternative binding modes. This behavior was supported by analogue studies with the 1,2-dimethoxyarenes veratric acid and veratryl aldehyde, both of which are not oxidized by lignin peroxidase. Inclusion of either had little effect on the rate of oxidation of phenolic substrates yet resulted in a decrease in the oxidation rate of 1,2-dimethoxyarene substrates, which was considerable for veratryl alcohol and less pronounced for 3,4-dimethoxyphenethylalcohol and 3,4-dimethoxycinnamic acid, in particular in the presence of veratric acid.  相似文献   

5.
In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70?% at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by (31)P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180?°C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.  相似文献   

6.
A convenient and efficient application of heterogeneous methylrhenium trioxide (MTO) systems for the selective oxidation of lignin model compounds and lignins is reported. Environmental friendly and low-cost H2O2 was used as the oxygen atom donor. Overall, the data presented and discussed in this paper point toward the conclusion that the immobilized heterogeneous catalytic systems based on H2O2/and MTO catalysts are able to extensively oxidize both phenolic and non-phenolic, monomeric, and dimeric, lignin model compounds. Condensed diphenylmethane models were found also extensively oxidized. Technical lignins, such as hydrolytic sugar cane lignin (SCL) and red spruce kraft lignin (RSL), displayed oxidative activity with immobilized MTO catalytic systems. After oxidation, these lignins displayed the formation of more soluble lignin fragments with a high degree of degradation as indicated by the lower contents of aliphatic and condensed OH groups, and the higher amounts of carboxylic acid moieties. Our data indicate that immobilized MTO catalytic systems are significant potential candidates for the development of alternative totally chlorine-free delignification processes and environmental sustainable lignin selective modification reactions.  相似文献   

7.
T B Lam  K Kadoya  K Iiyama 《Phytochemistry》2001,57(6):987-992
A suspension in dichloromethane-water (18:1, v/v) of various fractions containing hydroxycinnamic acid ester-ether bridges between lignin and polysaccharides prepared from cell walls of matured oat (Avena sativa L.) intemodes, and a solution of their acetates in the same solvent, were treated with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). This reagent selectively cleaves benzyl ether and ester linkages of negatively charged aromatic nuclei. The sample treated with DDQ was directly hydrolysed either under mild (1 M NaOH, overnight at 37 degrees C) or severe (4 M NaOH, for 2 h at 170 degrees C) conditions. The hydroxycinnamic acids released in the hydrolysate were methylated with diazomethane and analysed quantitatively using gas chromatography. Significant portions of ether linkages between hydroxycinnamic acids and lignin were cleaved with DDQ, which suggests that most of the hydroxycinnamic acids were ether-linked at the benzyl position, and not the beta-position, of the lignin side chain as previously claimed.  相似文献   

8.
To assess the effects that the physical and chemical properties of lignin might have on the enzymatic hydrolysis of pretreated lignocellulosic substrates, protease treated lignin (PTL) and cellulolytic enzyme lignin (CEL) fractions, isolated from steam and organosolv pretreated corn stover, poplar, and lodgepole pine, were prepared and characterized. The adsorption of cellulases to the isolated lignin preparations corresponded to a Langmuir adsorption isotherm. It was apparent that, rather than the physical properties of the isolated lignin, the carboxylic acid functionality of the isolated lignin, as determined by FTIR and NMR spectroscopy, had much more of an influence when lignin was added to typical hydrolysis of pure cellulose (Avicel). An increase in the carboxylic content of the lignin preparation resulted in an increased hydrolysis yield. These results suggested that the carboxylic acids within the lignin partially alleviate non-productive binding of cellulases to lignin. To try to confirm this possible mechanism, dehydrogenative polymers (DHP) of monolignols were synthesized from coniferyl alcohol (CA) and ferulic acid (FA), and these model compounds were added to a typical enzymatic hydrolysis of Avicel. The DHP from FA, which was enriched in carboxylic acid groups compared with the DHP from CA, adsorbed a lower mount of cellulases and did not decrease hydrolysis yields when compared to the DHP from CA, which decreased the hydrolysis of Avicel by 8.4%. Thus, increasing the carboxylic acid content of the lignin seemed to significantly decrease the non-productive binding of cellulases and consequently increased the enzymatic hydrolysis of the cellulose.  相似文献   

9.
The white-rot fungus Ceriporiopsis subvermispora is able to degrade nonphenolic lignin structures but appears to lack lignin peroxidase (LiP), which is generally thought to be responsible for these reactions. It is well established that LiP-producing fungi such as Phanerochaete chrysosporium degrade nonphenolic lignin via one-electron oxidation of its aromatic moieties, but little is known about ligninolytic mechanisms in apparent nonproducers of LiP such as C. subvermispora. To address this question, C. subvermispora and P. chrysosporium were grown on cellulose blocks and given two high-molecular-weight, polyethylene glycol-linked model compounds that represent the major nonphenolic arylglycerol-(beta)-aryl ether structure of lignin. The model compounds were designed so that their cleavage via one-electron oxidation would leave diagnostic fragments attached to the polyethylene glycol. One model compound was labeled with (sup13)C at C(inf(alpha)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(alpha))-C(inf(beta)) cleavage after one-electron oxidation. The other model compound was labeled with (sup13)C at C(inf(beta)) of its propyl side chain and carried ring alkoxyl substituents that favor C(inf(beta))-O-aryl cleavage after one-electron oxidation. To assess fungal degradation of the models, the high-molecular-weight metabolites derived from them were recovered from the cultures and analyzed by (sup13)C nuclear magnetic resonance spectrometry. The results showed that both C. subvermispora and P. chrysosporium degraded the models by routes indicative of one-electron oxidation. Therefore, the ligninolytic mechanisms of these two fungi are similar. C. subvermispora might use a cryptic LiP to catalyze these C(inf(alpha))-C(inf(beta)) and C(inf(beta))-O-aryl cleavage reactions, but the data are also consistent with the involvement of some other one-electron oxidant.  相似文献   

10.
Pokkuluri PR  Duke NE  Wood SJ  Cotta MA  Li XL  Biely P  Schiffer M 《Proteins》2011,79(8):2588-2592
The structure of the catalytic domain of glucuronoyl esterase Cip2 from the fungus H. jecorina was determined at a resolution of 1.9 ?. This is the first structure of the newly established carbohydrate esterase family 15. The structure has revealed the residues Ser278-His411-Glu301 present in a triad arrangement as the active site. Ser278 is present in the novel consensus sequence GCSRXG reported earlier in the members of CE-15 family. The active site is exposed on the surface of the protein which has implications for the ability of the enzyme to hydrolyze ester bonds of large substrates. Efforts are underway to obtain crystals of Cip2_GE complexed with inhibitor and synthetic substrates. The activity of the glucuronoyl esterase could play a significant role in plant biomass degradation as its expected role is to separate the lignin from hemicelluloses by hydrolysis of the ester bond between 4-O-methyl-D-glucuronic acid moieties of glucuronoxylans and aromatic alcohols of lignin.  相似文献   

11.
Xylan–lignin (XL), glucomannan–lignin (GML) and glucan–lignin (GL) complexes were isolated from spruce wood, hydrolyzed with xylanase or endoglucanase/β-glucosidase, and analyzed by analytical pyrolysis and 2D-NMR. The enzymatic hydrolysis removed most of the polysaccharide moieties in the complexes, and the lignin content and relative abundance of lignin–carbohydrate linkages increased. Analytical pyrolysis confirmed the action of the enzymatic hydrolysis, with strong decreases of levoglucosane and other carbohydrate-derived products. Unexpectedly it also revealed that the hydrolase treatment alters the pattern of lignin breakdown products, resulting in higher amounts of coniferyl alcohol. From the anomeric carbohydrate signals in the 2D-NMR spectra, phenyl glycoside linkages (undetectable in the original complexes) could be identified in the hydrolyzed GML complex. Lower amounts of glucuronosyl and benzyl ether linkages were also observed after the hydrolysis. From the 2D-NMR spectra of the hydrolyzed complexes, it was concluded that the lignin in GML is less condensed than in XL due to its higher content in β-O-4′ ether substructures (62 % of side chains in GML vs 53 % in XL) accompanied by more coniferyl alcohol end units (16 vs 13 %). In contrast, the XL lignin has more pinoresinols (11 vs 6 %) and dibenzodioxocins (9 vs 2 %) than the GML (and both have ~13 % phenylcoumarans and 1 % spirodienones). Direct 2D-NMR analysis of the hydrolyzed GL complex was not possible due to its low solubility. However, after sample acetylation, an even less condensed lignin than in the GML complex was found (with up to 72 % β-O-4′ substructures and only 1 % pinoresinols). The study provides evidence for the existence of structurally different lignins associated to hemicelluloses (xylan and glucomannan) and cellulose in spruce wood and, at the same time, offers information on some of the chemical linkages between the above polymers.  相似文献   

12.
Cephalosporin was used to synthesize soluble and precipitating fluorogenic β-lactam substrates that demonstrated differential catalytic hydrolysis by three different subtypes of β-lactamase: TEM-1 (class A), p99 (class C), and a Bacillus cereus enzyme sold by Genzyme (class B). The most successful soluble substrate contained difluorofluorescein (Oregon Green 488) ligated to two cephalosporin moieties that, therefore, required two turnovers to produce the fluorescent Oregon Green 488 leaving group. The bis-cephalosporin modification was required so that the final reaction product was the Oregon Green 488 carboxylic acid rather than a less bright phenolic adduct of the dye. Hydrolysis in pH 5.5 Mes and pH 7.2 phosphate-buffered saline (PBS) buffers was similar, but in pH 8.0 Tris the hydrolysis rate nearly doubled. Activity of the β-lactamases on the various substrates was shown to depend highly on the linker between the cephalosporin and the fluorophore, with an allyl linker promoting faster turnover than a phenol ether linker. Measured Km values for dichlorofluorescein and difluorofluorescein cephalosporin substrates were approximately the same as Km values for penicillin G and ampicillin found in the literature (∼30–40 μM).  相似文献   

13.
A sulfur-containing glycolipid, accounting for ca. 25% of the total polar lipids, has been isolated from the extreme halophile Halobacterium cutirubrum. The ammonium salt of the lipid was found to have the molecular formula C(61)H(117)O(21)S.NH(4), and on strong acid hydrolysis it yielded 2,3-di-O-phytanyl-sn-glycerol, glucose, mannose, galactose, and sulfate in equimolar proportions. Infrared and NMR spectra indicated the presence of a secondary sulfate group. Solvolysis of the lipid in 0.004 m HCl in tetrahydrofuran resulted in rapid release of inorganic sulfate and formation of galactosyl-mannosyl-glucosyl diphytanyl glycerol ether. With higher acid concentration (0.25 m methanolic HCl), stepwise hydrolysis of monosaccharide units occurred, giving mannosyl-glucosyl glycerol diphytanyl ether and monoglucosyl glycerol diphytanyl ether. The position of attachment of the sugars and of the sulfate group was determined by methylation of the free acid form of the glycolipid sulfate, followed by acid hydrolysis and gas-liquid chromatographic analysis of the partially methylated sugars as the alditol acetates. The configuration of the glycosidic linkages was established both by optical rotation measurements and by specific enzymatic hydrolysis. The results obtained established the structure as 2,3-di-O-phytanyl-1-O-[beta-d-galactopyranosyl-3'-sulfate-(1' -->6')-O-alpha-d-mannopyranosyl-(1' --> 2')-O-alpha-d-glucopyranosyl]-sn-glycerol.  相似文献   

14.
Transgenic tobacco (Nicotiana tabacum L.) plants in which the activity of 4-coumarate:coenzyme A ligase is very low contain a novel lignin in their xylem. Details of changes in hydroxycinnamic acids bound to cell walls and in the structure of the novel lignin were identified by base hydrolysis, alkaline nitrobenzene oxidation, pyrolysis-gas chromatography, and 13C-nuclear magnetic resonance analysis. In the brownish tissue of the transgenic plants, the levels of three hydroxycinnamic acids, p-coumaric, ferulic, and sinapic, which were bound to cell walls, were apparently increased as a result of down-regulation of the expression of the gene for 4-coumarate:coenzyme A ligase. Some of these hydroxycinnamic acids were linked to cell walls via ester and ether linkages. The accumulation of hydroxycinnamic acids also induced an increase in the level of condensed units in the novel lignin of the brownish tissue. Our data indicate that the behavior of some of the incorporated hydroxycinnamic acids resembles lignin monomers in the brownish tissue, and their accumulation results in dramatic changes in the biosynthesis of lignin in transgenic plants.  相似文献   

15.
Ionic liquid (IL)‐acid pretreatment is known to not only enhance the enzymatic hydrolysis efficiency of lignocellulose but also to generate deposits on the surface of fiber by conventional water regeneration, which retard the increment. In this study, ethanol aqueous solution regeneration was developed as a new method to change the substrates characteristics for IL‐acid pretreatment and their effects on the enzymatic hydrolysis were evaluated. Following the IL‐acid reaction, the biomass slurry was subjected to ethanol aqueous solution at various concentration. Results indicated that anti‐solvent choice significantly influenced the reconstruction of both hemicelluloses and lignin as a result of the competition between water and ethanol. The partial removal of hemicelluloses and suitable lignin re‐localization contributed to a more porous structure. Consequently, the cellulose digestibility of aqueous ethanol regenerated samples was dramatically enhanced to ~100% and approximately 11‐ and 2‐fold higher than that of untreated and conventional water regenerated pretreated samples, respectively. A giant leap in the initial rate of enzymatic hydrolysis was also detected in 50% ethanol aqueous solution regenerated samples and only about 10 hr was needed to convert 80% of cellulose to glucose due to the appearance of cellulose II hydrate‐like and more porous structure.  相似文献   

16.
The influence of the residual lignin remaining in the cellulosic rich component of pretreated lignocellulosic substrates on subsequent enzymatic hydrolysis was assessed. Twelve lignin preparations were isolated by two isolation methods (protease treated lignin (PTL) and cellulolytic enzymatic lignin (CEL)) from three types of biomass (corn stover, poplar, and lodgepole pine) that had been pretreated by two processes (steam and organosolv pretreatments). Comparative analysis of the isolated lignin showed that the CEL contained lower amounts of carbohydrates and protein than did the PTL and that the isolated lignin from corn stover contained more carbohydrates than did the lignin derived from the poplar and lodgepole pine. The lower yields of acid insoluble lignin (AIL) obtained from the corn stover when using the PTL method indicated that the lignin from the corn stover had a higher hydrophilicity than did the lignin from the poplar and lodgepole pine. The isolated lignin preparations were added to the reaction mixture containing crystalline cellulose (Avicel) and their possible effects on enzymatic hydrolysis were assessed. It was apparent that the lignin isolated from lodgepole pine and steam pretreated poplar decreased the hydrolysis yields of Avicel, whereas the other isolated lignins did not appear to decrease the hydrolysis yields significantly. The hydrolysis yields of the pretreated lignocellulose and those of Avicel containing the PTL showed good correlation, indicating that the nature of the residual lignin obtained after pretreatment significantly influenced hydrolysis. Biotechnol. Bioeng. 2010;105: 871–879. © 2009 Wiley Periodicals, Inc.  相似文献   

17.
The efficient use of cellulases in the hydrolysis of pretreated lignocellulosic biomass is limited due to the presence of lignin. Lignin is known to bind hydrolytic enzymes nonspecifically, thereby reducing their action on carbohydrate substrates. The composition and location of residual lignin therefore seem to be important for optimizing the enzymatic hydrolysis of lignocellulosic substrates. The use of lignin-modifying enzymes such as laccase may have potential in the modification or partial removal of lignin from the biomass. In this study, the effect of lignin modification by laccase on the hydrolysis of pretreated spruce (Picea abies) and giant reed (Arundo donax) was evaluated. The substrates were first treated with laccase and then hydrolyzed with commercial cellulases. Laccase modification improved the hydrolysis yield of spruce by 12%, but surprisingly had an adverse effect on giant reed, reducing the hydrolysis yield by 17%. The binding properties of cellulases on the untreated and laccase-treated lignins were further studied using isolated lignins. The laccase treatment reduced the binding of enzymes on modified spruce lignin, whereas with giant reed, the amount of bound proteins increased after laccase treatment. Further understanding of the reactions of laccase on lignin will help to control the unspecific-binding of cellulases on lignocellulosic substrates.  相似文献   

18.
A convenient high yielding method for the preparation of scyllo-inositol and its orthoformate from myo-inositol, without involving chromatography is described. myo-Inositol 1,3,5-orthoformate was benzoylated to obtain 2-O-benzoyl-myo-inositol 1,3,5-orthoformate. This diol was tosylated and the benzoyl group removed by aminolysis in a one-pot procedure to obtain 4,6-di-O-tosyl-myo-inositol 1,3,5-orthoformate. Swern oxidation of the ditosylate, followed by sodium borohydride reduction and methanolysis of tosylates gave scyllo-inositol 1,3,5-orthoformate (isolated as the triacetate). Aminolysis of the acetates followed by acid hydrolysis of the orthoformate moiety with trifluoroacetic acid gave scyllo-inositol in an overall yield of 64%.  相似文献   

19.
Copper peroxydisulfate has been shown to mimic "ligninases" in the oxidative degradation of Dihydroanisoin, Veratrylglycerol-beta-guaiacyl ether and veratryl alcohol. A unified mechanism leads to predictable degradative pathways. These are initiated by single-electron oxidation of aromatic substrates to aryl cation radicals as common intermediates to both the enzymic and biomimetic reactions. Our preliminary results show that simple complexes can facilitate the oxidative degradation of lignin model compounds.  相似文献   

20.
The efficient use of cellulases in the hydrolysis of pretreated lignocellulosic biomass is limited due to the presence of lignin. Lignin is known to bind hydrolytic enzymes nonspecifically, thereby reducing their action on carbohydrate substrates. The composition and location of residual lignin therefore seem to be important for optimizing the enzymatic hydrolysis of lignocellulosic substrates. The use of lignin-modifying enzymes such as laccase may have potential in the modification or partial removal of lignin from the biomass. In this study, the effect of lignin modification by laccase on the hydrolysis of pretreated spruce (Picea abies) and giant reed (Arundo donax) was evaluated. The substrates were first treated with laccase and then hydrolyzed with commercial cellulases. Laccase modification improved the hydrolysis yield of spruce by 12%, but surprisingly had an adverse effect on giant reed, reducing the hydrolysis yield by 17%. The binding properties of cellulases on the untreated and laccase-treated lignins were further studied using isolated lignins. The laccase treatment reduced the binding of enzymes on modified spruce lignin, whereas with giant reed, the amount of bound proteins increased after laccase treatment. Further understanding of the reactions of laccase on lignin will help to control the unspecific-binding of cellulases on lignocellulosic substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号